1
|
Toprakçı G, Toprakçı İ, Şahin S. Alginate Microbeads for Trapping Phenolic Antioxidants in Rosemary ( Rosmarinus officinalis L.): Multivariate Optimization Based on Bioactive Properties and Morphological Measurements. Gels 2025; 11:172. [PMID: 40136877 PMCID: PMC11942468 DOI: 10.3390/gels11030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Medical and aromatic plant extracts are often very sensitive to environmental, gastrointestinal, and processing conditions despite their health benefits. Therefore, they can be rapidly inactivated. Microencapsulation is used to overcome such challenges. In this study, phenolic antioxidants from rosemary (Rosmarinus officinalis L.) were encapsulated in alginate beads by means of ionic gelation. A Box-Behnken design with response surface methodology (BBD-RSM) was used with three numeric factors (calcium chloride concentration, alginate concentration, and hardening time) to achieve the best formulation in terms of encapsulation efficiency, antioxidant activity, and morphological characteristics. Generally, the sodium alginate concentration of the microbeads was the most critical factor (p < 0.0001) for the quality of the products. The optimal encapsulation conditions were accessed using concentrations with almost 6% calcium chloride and 2% alginate, and a time of 10 min for bead hardening in order to obtain the highest responses (30.01% encapsulation efficiency, 7.55 mg-TEAC/g-DM of antioxidant activity value as measured by the DPPH method, a sphericity factor of 0.05, and a roundness of 0.78). At the optimum point, the microbeads were determined to be spherical in shape, and the bulk density value was measured as 0.34 ± 0.01 g/mL.
Collapse
Affiliation(s)
| | | | - Selin Şahin
- Chemical Engineering Department, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Türkiye; (G.T.); (İ.T.)
| |
Collapse
|
2
|
Fernandes B, Oliveira MC, Marques AC, Dos Santos RG, Serrano C. Microencapsulation of Essential Oils and Oleoresins: Applications in Food Products. Foods 2024; 13:3873. [PMID: 39682947 DOI: 10.3390/foods13233873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Essential oils (EOs) and oleoresins (ORs) are plant-derived extracts that contain both volatile and non-volatile compounds used for flavoring, coloring, and preservation. In the food industry, they are increasingly used to replace synthetic additives, aligning with consumer demand for natural ingredients, by substituting artificial flavors, colorants, and preservatives. Microcapsules can be added to a vast range of foods and beverages, including bakery products, candies, meat products, and sauces, as well as active food packages. However, incorporating EOs and ORs into foods and beverages can be difficult due to their hydrophobic nature and poor stability when exposed to light, oxygen, moisture, and temperature. Microencapsulation techniques address these challenges by enhancing their stability during storage, protecting sensitive molecules from reacting in the food matrix, providing controlled release of the core ingredient, and improving dispersion in the medium. There is a lack of articles that research, develop, and optimize formulations of microencapsulated EOs and ORs to be incorporated into food products. Microencapsulated ORs are overlooked by the food industry, whilst presenting great potential as natural and more stable alternatives to synthetic flavors, colorants, and preservatives than the pure extract. This review explores the more common microencapsulation methods of EOs and ORs employed in the food industry, with spray drying being the most widely used at an industrial scale. New emerging techniques are explored, with a special focus on spray drying-based technologies. Categories of wall materials and encapsulated ingredients are presented, and their applications in the food and beverage industry are listed.
Collapse
Affiliation(s)
- Beatriz Fernandes
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- CERENA, DEQ, Instituto Superior Técnico (IST), University of Lisbon, Av. Rovisco Pais, No. 1, 1049-001 Lisbon, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico (IST), University of Lisbon, Av. Rovisco Pais, No. 1, 1049-001 Lisbon, Portugal
| | - Ana C Marques
- CERENA, DEQ, Instituto Superior Técnico (IST), University of Lisbon, Av. Rovisco Pais, No. 1, 1049-001 Lisbon, Portugal
| | - Rui Galhano Dos Santos
- CERENA, DEQ, Instituto Superior Técnico (IST), University of Lisbon, Av. Rovisco Pais, No. 1, 1049-001 Lisbon, Portugal
| | - Carmo Serrano
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Linking Landscape, Environment, Agriculture and Food-Research Center (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| |
Collapse
|
3
|
Martins M, Stanisic D, Santos CD. Effect of microencapsulation on antioxidant activities of Eugenia punicifolia (Kunth) DC hydroethanolic extracts. AN ACAD BRAS CIENC 2024; 96:e20240184. [PMID: 39570170 DOI: 10.1590/0001-3765202420240184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/09/2024] [Indexed: 11/22/2024] Open
Abstract
Eugenia punicifolia (Kunth) DC (Myrtaceae) is a folk medicinal plant in the Brazilian Cerrado with antioxidant, anti-inflammatory, antinociceptive, antiulcerogenic activities, etc., usually attributed to its phenolic compounds. Since these compounds are sensitive to heat and light, and to increase their applications, Hydroethanolic Extracts E. punicifolia (HEEP, EtOH:H2O 70% v/v) were encapsulated by freeze-drying in xanthan gum (mesh 80, HEEPX80; mesh 200, HEEPX200) in ratio 1:1(w/w). Flavonoids had the highest encapsulation efficiency in HEEPX80, with a total flavonoid content of 55.56%. The release profile at different pH levels showed that pH = 4.5, a relevant antioxidant activity for HEEPX80 and HEEPX200. Also, in HEEP-modified release, higher antioxidant activity was observed in more acidic media (pH 4.5) than in a more neutral medium (pH 7.4). From these results, we could infer that HEEP encapsulations with Xanthan gum could be a good alternative for preserving antioxidants in these extracts.
Collapse
Affiliation(s)
- Manoela Martins
- Universidade de Campinas - UNICAMP, Departamento de Engenharia de Alimentos, Leμeb - Laboratório de Bioprocessos e Engenharia Metabólica, Rua Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Danijela Stanisic
- Universidade de Campinas - UNICAMP, Departamento de Química Orgânica, Instituto de Química, Laboratório de Química Biológica, Rua Monteiro Lobato, 270, 13083-862 Campinas, SP, Brazil
| | - Catarina Dos Santos
- Universidade Estadual Paulista - UNESP, Departamento de Ciências Biológicas, Laboratório de Química da UNESP-Assis (LAQUA), Campus de Assis-SP, Av. Dom Antônio, 2100, 19806-900 Assis, SP, Brazil
| |
Collapse
|
4
|
Guimarães NSS, Ramos VS, Prado-Souza LFL, Lopes RM, Arini GS, Feitosa LGP, Silva RR, Nantes IL, Damasceno DC, Lopes NP, Rodrigues T. Rosemary (Rosmarinus officinalis L.) Glycolic Extract Protects Liver Mitochondria from Oxidative Damage and Prevents Acetaminophen-Induced Hepatotoxicity. Antioxidants (Basel) 2023; 12:antiox12030628. [PMID: 36978874 PMCID: PMC10045355 DOI: 10.3390/antiox12030628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Rosmarinus officinalis L. (rosemary) is an aromatic culinary herb. Native to the Mediterranean region, it is currently cultivated worldwide. In addition to its use as a condiment in food preparation and in teas, rosemary has been widely employed in folk medicine and cosmetics. Several beneficial effects have been described for rosemary, including antimicrobial and antioxidant activities. Here, we investigated the mechanisms accounting for the antioxidant activity of the glycolic extract of R. officinalis (Ro) in isolated rat liver mitochondria (RLM) under oxidative stress conditions. We also investigated its protective effect against acetaminophen-induced hepatotoxicity in vivo. A crude extract was obtained by fractionated percolation, using propylene glycol as a solvent due to its polarity and cosmeceutical compatibility. The quantification of substances with recognized antioxidant action revealed the presence of phenols and flavonoids. Dereplication studies carried out through LC-MS/MS and GC-MS, supported by The Global Natural Product Social Molecular Networking (GNPS) platform, annotated several phenolic compounds, confirming the previous observation. In accordance, Ro decreased the production of reactive oxygen species (ROS) elicited by Fe2+ or t-BOOH and inhibited the lipid peroxidation of mitochondrial membranes in a concentration-dependent manner in RLM. Such an effect was also observed in liposomes as membrane models. Ro also prevented the oxidation of mitochondrial protein thiol groups and reduced glutathione (GSH). In model systems, Ro exhibited a potent scavenger activity toward 2,2′-diphenyl-1-picrylhydrazyl (DPPH) radicals and superoxide anions. It also demonstrated an Fe2+ chelating activity. Moreover, Ro did not exhibit cytotoxicity or dissipate the mitochondrial membrane potential (∆Ψ) in rat liver fibroblasts (BRL3A cells). To evaluate whether such antioxidant protective activity observed in vitro could also be achieved in vivo, a well-established model of hepatotoxicity induced by acute exposure to acetaminophen (AAP) was used. This model depletes GSH and promotes oxidative-stress-mediated tissue damage. The treatment of rats with 0.05% Ro, administered intraperitoneally for four days, resulted in inhibition of AAP-induced lipid peroxidation of the liver and the prevention of hepatotoxicity, maintaining alanine and aspartate aminotransferase (ALT/AST) levels equal to those of the normal, non-treated rats. Together, these findings highlight the potent antioxidant activity of rosemary, which is able to protect mitochondria from oxidative damage in vitro, and effects such as the antioxidant and hepatoprotective effects observed in vivo.
Collapse
Affiliation(s)
- Natalia S. S. Guimarães
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes (UMC), Mogi das Cruzes CEP 08780-911, SP, Brazil
| | - Vyctória S. Ramos
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes (UMC), Mogi das Cruzes CEP 08780-911, SP, Brazil
| | - Laura F. L. Prado-Souza
- Center for Natural and Human Sciences, Federal University of ABC, Santo André CEP 09210-580, SP, Brazil
| | - Rayssa M. Lopes
- Center for Natural and Human Sciences, Federal University of ABC, Santo André CEP 09210-580, SP, Brazil
| | - Gabriel S. Arini
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-900, SP, Brazil
| | - Luís G. P. Feitosa
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-900, SP, Brazil
| | - Ricardo R. Silva
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-900, SP, Brazil
| | - Iseli L. Nantes
- Center for Natural and Human Sciences, Federal University of ABC, Santo André CEP 09210-580, SP, Brazil
| | - Debora C. Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Sao Paulo State University (UNESP), Botucatu CEP 18618-687, SP, Brazil
| | - Norberto P. Lopes
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-900, SP, Brazil
| | - Tiago Rodrigues
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes (UMC), Mogi das Cruzes CEP 08780-911, SP, Brazil
- Correspondence: ; Tel.: +55-(11)-4996-8371
| |
Collapse
|
5
|
Adami R, Russo P, Amante C, De Soricellis C, Della Porta G, Reverchon E, Del Gaudio P. Supercritical Antisolvent Technique for the Production of Breathable Naringin Powder. Pharmaceutics 2022; 14:pharmaceutics14081623. [PMID: 36015250 PMCID: PMC9414961 DOI: 10.3390/pharmaceutics14081623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are polyphenolic compounds largely present in fruits and vegetables possessing antioxidant properties, anti-inflammatory and antibacterial activities. Their use in clinical practice is very poor due to their low bioavailability, susceptibility to oxidation and degradation. Moreover, their slight solubility in biological fluids and a consequent low dissolution rate leads to an irregular absorption from solid dosage forms, even though, anti-inflammatory formulations could be used as support for several disease treatment, i.e. the COVID-19 syndrome. To improve flavonoid bioavailability particle size of the powder can be reduced to make it breathable and to promote the absorption in the lung tissues. Supercritical fluid based antisolvent technique has been used to produce naringin particles, with size, shape and density as well as free flowing properties able to fit inhalation needs. The dried particles are produced with the removal of the solvent at lower temperatures compared to the most used traditional micronization processes, such as spray drying. The best breathable fraction for naringin particles is obtained for particles with a d50~7 µm manufactured at 35 °C-150 bar and at 60 °C-130 bar, corresponding to 32.6% and 36.7% respectively. The powder is produced using a high CO2 molar fraction (0.99) that assure a better removal of the solvent. NuLi-1 cell line of immortalised bronchial epithelial cells adopted to evaluate powder cytotoxicity indicated after 24 h absence of toxicity at concentration of 25 µM.
Collapse
Affiliation(s)
- Renata Adami
- Department of Physics E. Caianiello, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Correspondence: (R.A.); (P.D.G.)
| | - Paola Russo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
| | - Chiara Amante
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
| | - Chiara De Soricellis
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Odontoiatry, Scuola Medica Salernitana, University of Salerno, Via Salvatore Allende, 1, 84081 Baronissi, SA, Italy;
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy;
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
- Correspondence: (R.A.); (P.D.G.)
| |
Collapse
|
6
|
Mavalizadeh A, Fazlara A, PourMahdi M, Bavarsad N. The effect of separate and combined treatments of nisin, Rosmarinus officinalis essential oil (nanoemulsion and free form) and chitosan coating on the shelf life of refrigerated chicken fillets. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Machado APDF, Montes A, Valor D, Fernández-Ponce MT, Barbero GF, Maróstica Júnior MR, Pereyra C, de la Ossa EM. Co-precipitation of grape residue extract using sub- and supercritical CO2 technology. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Islam T, Al Ragib A, Ferdosh S, Uddin ABMH, Haque Akanda MJ, Mia MAR, D. M RP, Kamaruzzaman BY, Islam Sarker MZ. Development of nanoparticles for pharmaceutical preparations using supercritical techniques. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2021.1983545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tariqul Islam
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Abdullah Al Ragib
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Sahena Ferdosh
- Faculty of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - A. B. M. Helal Uddin
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | | | - Md. Abdur Rashid Mia
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Reddy Prasad D. M
- Petroleum and Chemical Engineering Programme area, Universiti Technology Brunei, Gadong, Brunei Darussalam
| | - Bin Yunus Kamaruzzaman
- Faculty of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Md. Zaidul Islam Sarker
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Food Science Program, Cooperative Research, Education and Extension Services, Northern Marianas College, Saipan, MP, USA
| |
Collapse
|
9
|
Munekata PES, Pateiro M, Bellucci ERB, Domínguez R, da Silva Barretto AC, Lorenzo JM. Strategies to increase the shelf life of meat and meat products with phenolic compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:171-205. [PMID: 34507642 DOI: 10.1016/bs.afnr.2021.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Oxidative reactions and microbial growth are the main processes involved in the loss of quality in meat products. Although the use of additives to improve the shelf life is a common practice in the meat industry, the current trends among consumers are pushing the researchers and professionals of the meat industry to reformulate meat products. Polyphenols are compounds with antioxidant and antimicrobial activity naturally found in several plants, fruits, and vegetables that can be used in the production of extracts and components in active packaging to improve the shelf life of meat products. This chapter aims to discuss the advances in terms of (1) encapsulation techniques to protect phenolic compounds; (2) production of active and edible packages rich on phenolic compounds; (3) use of phenolic-rich additives (free or encapsulated form) with non-thermal technologies to improve the shelf life of meat products; and (4) use of active packaging rich on phenolic compounds on meat products. Innovative strategies to encapsulated polyphenols and produce films are mainly centered in the use of innovative and emerging technologies (such as ultrasound and supercritical fluids). Moreover, the combined use of polyphenols and non-thermal technologies is a relevant approach to improve the shelf life of meat products, especially using high pressure processing. In terms of application of innovative films, nanomaterials have been largely explored and indicated as relevant strategy to preserve meat and meat products.
Collapse
Affiliation(s)
- Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, Ourense, Spain
| | | | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, Ourense, Spain
| | | | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, Ourense, Spain; Facultad de Ciencias de Ourense, Área de Tecnología de los Alimentos, Universidad de Vigo, Ourense, Spain.
| |
Collapse
|
10
|
Carvalho GC, Araujo VHS, Fonseca-Santos B, de Araújo JTC, de Souza MPC, Duarte JL, Chorilli M. Highlights in poloxamer-based drug delivery systems as strategy at local application for vaginal infections. Int J Pharm 2021; 602:120635. [PMID: 33895295 DOI: 10.1016/j.ijpharm.2021.120635] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/02/2023]
Abstract
Infectious diseases related to the vagina include diseases caused by the imbalance of the vaginal flora and by sexually transmitted infections. Some of these present themselves as a public health problem due to the lack of efficient treatment that leads to their complete cure, and others due to the growing resistance to drugs used in therapy. In this sense, new treatment strategies are desirable, with vaginal administration rout being a great choice since can bypass first-pass metabolism and decrease drug interactions and adverse effects. However, it is worth highlighting limitations related to patient's discomfort at application time. Thereby, the use of poloxamer-based drug delivery systems is desirable due its stimuli-sensitive characteristic. Therefore, the present review reports a brief overview of poloxamer properties, biological behavior and advances in poloxamer applications in controlled drug release systems for infectious diseases related to the vagina treatment and prevention.
Collapse
Affiliation(s)
- Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), 13083-871 Campinas, Brazil
| | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil.
| |
Collapse
|
11
|
Buratto RT, Chinchilla MI, Cocero MJ, Martín Á. Formulation of açaí (E. oleracea Mart.) Pulp and seeds extracts by co-precipitation in Supercritical Antisolvent (SAS) technology. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Nasiri M, Ahari H, Sharifan A, Anvar AA, Kakolaki S. Nanoemulsion production techniques upgrade bioactivity potential of nanoemulsified essential oils on Acipenser stellatus filet preserving. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1844749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mina Nasiri
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Anousheh Sharifan
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Ali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahpour Kakolaki
- Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Org., Tehran, Iran
| |
Collapse
|
13
|
Klettenhammer S, Ferrentino G, Morozova K, Scampicchio M. Novel Technologies Based on Supercritical Fluids for the Encapsulation of Food Grade Bioactive Compounds. Foods 2020; 9:E1395. [PMID: 33023107 PMCID: PMC7601192 DOI: 10.3390/foods9101395] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, the demand for nutritive, functional and healthy foods has increased. This trend has induced the food industry to investigate novel technologies able to produce ingredients with enhanced functional and physicochemical properties. Among these technologies, one of the most promising is the encapsulation based on supercritical fluids. Thanks to the inherent absence of organic solvent, the low temperature of the process to reach a supercritical state and the capacity to dissolve lipid soluble bioactives, the encapsulation with supercritical carbon dioxide represents a green technology to produce several functional ingredients, with enhanced stability, high load and tailored protection from environmental factors. Furthermore, from the fine-tuning of the process parameters like temperature, pressure and flow rate, the resulting functional ingredient can be easily designed to tailor the controlled release of the bioactive, or to reach specific levels of taste, odor and color. Accordingly, the aim of the present review is to summarize the state of the art of the techniques based on supercritical carbon dioxide for the encapsulation of bioactive compounds of food interest. Pros and cons of such techniques will be highlighted, giving emphasis to their innovative aspects that could be of interest to the food industry.
Collapse
Affiliation(s)
| | - Giovanna Ferrentino
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (S.K.); (K.M.); (M.S.)
| | | | | |
Collapse
|
14
|
Paulo F, Santos L. New insights in the in vitro release of phenolic antioxidants: The case study of the release behavior of tyrosol from tyrosol-loaded ethylcellulose microparticles during the in vitro gastrointestinal digestion. Colloids Surf B Biointerfaces 2020; 196:111339. [PMID: 32911295 DOI: 10.1016/j.colsurfb.2020.111339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022]
Abstract
In this study, tyrosol - a phenolic antioxidant that present in olive oil and olive mill wastes - was embedded in ethylcellulose microparticles by double emulsion solvent evaporation technique. The effect of loading content (5 % w/w and 10 % w/w) on the release behavior and bioaccessibility of tyrosol was evaluated. The polymer endowed efficient protection to tyrosol during the in vitro gastrointestinal digestion of loaded microparticles as the maximum release of tyrosol was observed during the simulated intestinal digestion, and the releases were kept outstanding low during the simulated salivary and gastric digestions. The bioaccessibility of tyrosol was improved when encapsulated. The best-fitting models of the release profiles of tyrosol were the first, and the zero-order models for formulations considering a loading of 5% w/w and 10 % w/w, respectively. The results of this study bring new perspectives for the design of loaded microparticles that will be further submitted to gastrointestinal digestion.
Collapse
Affiliation(s)
- Filipa Paulo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
15
|
Abstract
The supercritical antisolvent (SAS) technique has been widely employed in the biomedical field, including drug delivery, to obtain drug particles or polymer-based systems of nanometric or micrometric size. The primary purpose of producing SAS particles is to improve the treatment of different pathologies and to better the patient’s compliance. In this context, many active compounds have been micronized to enhance their dissolution rate and bioavailability. Aiming for more effective treatments with reduced side effects caused by drug overdose, the SAS polymer/active principle coprecipitation has mainly been proposed to offer an adequate drug release for specific therapy. The demand for new formulations with reduced side effects on the patient’s health is still growing; in this context, the SAS technique is a promising tool to solve existing issues in the biomedical field. This updated review on the use of the SAS process for clinical applications provides useful information about the achievements, the most effective polymeric carriers, and parameters, as well as future perspectives.
Collapse
|
16
|
Giménez-Rota C, Langa E, Urieta JS, Hernáiz MJ, Mainar AM. Supercritical antisolvent fractionation of antioxidant compounds from Lavandula luisieri (Rozeira) Riv.-Mart. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Bankole VO, Osungunna MO, Souza CRF, Salvador SL, Oliveira WP. Spray-Dried Proliposomes: an Innovative Method for Encapsulation of Rosmarinus officinalis L. Polyphenols. AAPS PharmSciTech 2020; 21:143. [PMID: 32424702 PMCID: PMC7235052 DOI: 10.1208/s12249-020-01668-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
This work aims to improve the functionality of Rosmarinus officinalis L. (rosemary) polyphenols by encapsulation in an optimized proliposome formulation. A 23 Box-Wilson central composite design (CCD) was employed to determine lone and interaction effects of composition variables on moisture content (Xp); water activity (Aw); concentration and retention of rosemary polyphenols-rosmarinic acid (ROA), carnosol (CAR), and carnosic acid (CNA); and recovery of spray-dried proliposomes (SDP). Processing conditions which generate proliposomes with optimum physicochemical properties were determined by multi-response analysis (desirability approach). Antioxidant and antifungal activities were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH•) sequestering and minimum inhibitory concentration (MIC)/minimum fungicidal concentration (MFC) assays, respectively. SDP exhibited high polyphenol retention, ranging from 62.0 to 100.0% w/w, showing dependence on composition variables and polyphenol lipophilicity. SDP recovery ranged from 20.1 to 45.8%, with Xp and Aw of 1.7 ± 0.14-2.5 ± 0.23% w/w and 0.30 ± 0.004-0.47 ± 0.003, respectively, evidencing product with good chemical and microbiological stability. Optimum liposomal composition was determined, namely, lipid concentration (4.26% w/w), lyophilized extract (LE) concentration (4.48% w/w), and drying aid:(lipid+extract) ratio (7.55% w/w) on wet basis. Relative errors between experimental and predicted values for SDP properties showed concurrence for all responses except CAR retention, being 22% lower. SDP showed high antioxidant activity with IC50 of 9.2 ± 0.2 μg/mL, superior to results obtained for LE (10.8 μg/mL) and butylated hydroxytoluene (BHT), a synthetic antioxidant (12.5 μg/mL). MIC and MFC against Candida albicans (ATCC1023) were 312.5 μg/mL and 1250 μg/mL, respectively, a moderate antimicrobial activity for phytochemical-based products. SDP is shown as a veritable tool to encapsulate hydrophilic and lipophilic rosemary polyphenols generating a product with optimal physicochemical and biological properties.
Collapse
|
18
|
Quintana SE, Hernández DM, Villanueva-Bermejo D, García-Risco MR, Fornari T. Fractionation and precipitation of licorice (Glycyrrhiza glabra L.) phytochemicals by supercritical antisolvent (SAS) technique. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Paulo F, Santos L. Deriving valorization of phenolic compounds from olive oil by-products for food applications through microencapsulation approaches: a comprehensive review. Crit Rev Food Sci Nutr 2020; 61:920-945. [PMID: 32274929 DOI: 10.1080/10408398.2020.1748563] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nowadays, olive oil consumption is correlated to many health benefits, essentially due to the presence of antioxidants, especially phenolic compounds, which fostered its intensive production worldwide. During olive oil extraction, through continuous or discontinuous processes, many olive oil by-products are generated. These by-products constitute an environmental problem regarding its management and disposal. They are phytotoxic and biotoxic due to their high content of phenolic compounds, presenting contrastingly relevant health benefits due to their potent radical scavenging activities. In the framework of the disposal and management of olive oil by-products, treatment, and valorization approaches are found. As currently, the majority of the valorization techniques applied have a null market value, alternative strategies for the obtainment of innovative products as fortified foods are being investigated. The recovery and valorization strategies of olive oil by-products may comprise extraction and further encapsulation of bioactive compounds, as an innovative valorization blueprint of phenolic compounds present in these by-products. The majority of phenolic compounds present in olive oil by-products possess limited application on the food industry since they are promptly amended by environmental factors like temperature, pH, and light. Consequently, they must be protected previously ending in the final formulation. Prior to foods fortification with phenolic-rich extracts obtained from olive oil by-products, they should be protected through microencapsulation approaches, allowing a sustained release of phenolic compounds in the fortified foods, without losing their physicochemical properties. The combined strategies of extraction and microencapsulation will contribute to promoting the sustainability of the olive oil sector and aid the food industry to obtain reinvented added-value products.
Collapse
Affiliation(s)
- Filipa Paulo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Quintana SE, Villanueva-Bermejo D, Reglero G, García-Risco MR, Fornari T. Supercritical antisolvent particle precipitation and fractionation of rosemary (Rosmarinus officinalis L.) extracts. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Szerlauth A, Muráth S, Viski S, Szilagyi I. Radical scavenging activity of plant extracts from improved processing. Heliyon 2019; 5:e02763. [PMID: 31844703 PMCID: PMC6895678 DOI: 10.1016/j.heliyon.2019.e02763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
Radical scavenging activity of extracts obtained from 16 plants harvested in South Hungary was assessed and compared to the activity of ascorbic acid standard. During extraction, a novel technique involving an ethanolic treatment at ambient temperature was used for advanced active component release. Although the procedure is time consuming, it serves as an efficient and harmless route to extract valuable antioxidant compounds from their natural sources. The as-prepared extracts consist of two phases (except Allium sativum), a clear solution and a thick suspension containing solid plant parts that separates in about 2 h. The samples were analysed by the antioxidant assay based on the scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals. For most of the species, the solid phase retained considerable amount of available antioxidant agents, while the solution parts showed significant radical scavenging activity. The main exceptions were Nigella sativa, Hippophae rhamnoides and Linum usitatissimum, where the solid parts were less active. Overall, the extracts possessed remarkable antioxidant activity that were compared to published literature data and were found to be superior.
Collapse
Affiliation(s)
- Adél Szerlauth
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, H-6720, Hungary
| | - Szabolcs Muráth
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, H-6720, Hungary.,Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, H-6720, Hungary
| | - Sándor Viski
- HerbaPharm Europe Ltd., Battonya, H-5830, Hungary
| | - Istvan Szilagyi
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, H-6720, Hungary.,Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, H-6720, Hungary
| |
Collapse
|
22
|
Giménez-Rota C, Lorán S, Mainar AM, Hernáiz MJ, Rota C. Supercritical Carbon Dioxide Antisolvent Fractionation for the Sustainable Concentration of Lavandula luisieri (Rozeira) Riv.- Mart Antimicrobial and Antioxidant Compounds and Comparison with Its Conventional Extracts. PLANTS 2019; 8:plants8110455. [PMID: 31717810 PMCID: PMC6918246 DOI: 10.3390/plants8110455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/05/2023]
Abstract
Lavandula stoechas subsp. luisieri is a Spanish subspecies from the Lamiaceae family. Its essential oil has been traditionally used for several medical applications though little is known about other extracts. Similar to many other studies aiming to obtain traditional plant extracts to be used in different applications, this work evaluated the antioxidant and antimicrobial activities of Lavandula luisieri extracts and the correlation with their composition. Traditional hydrodistillation and ethanolic maceration were used to obtain the essential oil and the maceration extract, respectively. A green and sustainable methodology was applied to the maceration extract that was under a Supercritical Antisolvent Fractionation process to obtain a fine solid enriched in rosmarinic acid and the terpenes oleanolic and ursolic acids. Antimicrobial activities of all extracts and pure identified compounds (rosmarinic and ursolic acids) were evaluated against five bacterial strains; Listeria monocytogenes, Enterococcus faecium, Staphylococcus aureus, Salmonella Typhimurium and Escherichia coli and were compared with the pure compounds identified, rosmarinic and ursolic acids. All strains were sensitive against L. luisieri essential oil. The solid product obtained from the supercritical process was concentrated in the identified actives compared to the maceration extract, which resulted in higher antimicrobial and DPPH scavenging activities. The supercritical sustainable process provided L. luisieri compounds, with retention of their antimicrobial and antioxidant activities, in a powder exemptof organic solvents with potential application in the clinical, food or cosmetic fields.
Collapse
Affiliation(s)
- Carlota Giménez-Rota
- GATHERS Group, Aragón Institute of Engineering Research (I3A), University of Zaragoza, c/. Mariano Esquillor s/n, 50018 Zaragoza, Spain; (C.G.-R.); (A.M.M.)
- Chemistry in Pharmaceutical Science Department, Pharmacy Faculty, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
| | - Susana Lorán
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Veterinary Faculty, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain;
- Correspondence: ; Tel.: +34-876-554-143
| | - Ana M. Mainar
- GATHERS Group, Aragón Institute of Engineering Research (I3A), University of Zaragoza, c/. Mariano Esquillor s/n, 50018 Zaragoza, Spain; (C.G.-R.); (A.M.M.)
| | - María J. Hernáiz
- Chemistry in Pharmaceutical Science Department, Pharmacy Faculty, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
| | - Carmen Rota
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Veterinary Faculty, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain;
| |
Collapse
|
23
|
Ali A, Chua BL, Chow YH. An insight into the extraction and fractionation technologies of the essential oils and bioactive compounds in Rosmarinus officinalis L.: Past, present and future. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Ozkan G, Franco P, De Marco I, Xiao J, Capanoglu E. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chem 2019; 272:494-506. [PMID: 30309574 DOI: 10.1016/j.foodchem.2018.07.205] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 02/05/2023]
Abstract
Bioactivities and numerous health benefits against a number of oxidative stress related diseases have been attributed to the role of dietary antioxidants. The development of physical (spray drying, lyophilization, supercritical fluid precipitation and solvent evaporation), physico-chemical (coacervation, liposomes and ionic gelation) and chemical encapsulation techniques (interfacial polymerization and molecular inclusion complexation) enable to obtain healthier and acceptable bioactive compounds. This review focuses on the impacts of microencapsulation techniques on the encapsulation characteristics of food antioxidants. Additionally, this study also provides detailed information on the principles, effective parameters, advantages, disadvantages and applications of microencapsulation techniques.
Collapse
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Paola Franco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
25
|
Soh SH, Lee LY. Microencapsulation and Nanoencapsulation Using Supercritical Fluid (SCF) Techniques. Pharmaceutics 2019; 11:pharmaceutics11010021. [PMID: 30621309 PMCID: PMC6359585 DOI: 10.3390/pharmaceutics11010021] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022] Open
Abstract
The unique properties of supercritical fluids, in particular supercritical carbon dioxide (CO2), provide numerous opportunities for the development of processes for pharmaceutical applications. One of the potential applications for pharmaceuticals includes microencapsulation and nanoencapsulation for drug delivery purposes. Supercritical CO2 processes allow the design and control of particle size, as well as drug loading by utilizing the tunable properties of supercritical CO2 at different operating conditions (flow ratio, temperature, pressures, etc.). This review aims to provide a comprehensive overview of the processes and techniques using supercritical fluid processing based on the supercritical properties, the role of supercritical carbon dioxide during the process, and the mechanism of formulation production for each process discussed. The considerations for equipment configurations to achieve the various processes described and the mechanisms behind the representative processes such as RESS (rapid expansion of supercritical solutions), SAS (supercritical antisolvent), SFEE (supercritical fluid extraction of emulsions), PGSS (particles from gas-saturated solutions), drying, and polymer foaming will be explained via schematic representation. More recent developments such as fluidized bed coating using supercritical CO2 as the fluidizing and drying medium, the supercritical CO2 spray drying of aqueous solutions, as well as the production of microporous drug releasing devices via foaming, will be highlighted in this review. Development and strategies to control and optimize the particle morphology, drug loading, and yield from the major processes will also be discussed.
Collapse
Affiliation(s)
- Soon Hong Soh
- Newcastle Research and Innovation Institute, 80 Jurong East Street 21, #05-04 Devan Nair Institute for Employment & Employability, Singapore 609607, Singapore.
| | - Lai Yeng Lee
- Newcastle Research and Innovation Institute, 80 Jurong East Street 21, #05-04 Devan Nair Institute for Employment & Employability, Singapore 609607, Singapore.
- Newcastle University in Singapore, 537 Clementi Road, #06-01 SIT Building@Ngee Ann Polytechnic, Singapore 599493, Singapore.
| |
Collapse
|
26
|
Guamán-Balcázar M, Montes A, Pereyra C, Martínez de la Ossa E. Production of submicron particles of the antioxidants of mango leaves/PVP by supercritical antisolvent extraction process. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
da Fonseca Machado AP, Alves Rezende C, Alexandre Rodrigues R, Fernández Barbero G, de Tarso Vieira e Rosa P, Martínez J. Encapsulation of anthocyanin-rich extract from blackberry residues by spray-drying, freeze-drying and supercritical antisolvent. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.09.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Gómez B, Barba FJ, Domínguez R, Putnik P, Bursać Kovačević D, Pateiro M, Toldrá F, Lorenzo JM. Microencapsulation of antioxidant compounds through innovative technologies and its specific application in meat processing. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Lee SY, Abdullah LC, Abdul Rahman R, Abas F, Tan WK, Chong GH. Solution enhanced dispersion by supercritical fluids (SEDS): An approach in particle engineering to modify aqueous solubility of andrographolide from Andrographis paniculata extract. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Nieto G, Ros G, Castillo J. Antioxidant and Antimicrobial Properties of Rosemary ( Rosmarinus officinalis, L.): A Review. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E98. [PMID: 30181448 PMCID: PMC6165352 DOI: 10.3390/medicines5030098] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/16/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022]
Abstract
Nowadays, there is an interest in the consumption of food without synthetic additives and rather with the use of natural preservatives. In this regard, natural extracts of the Lamiaceae family, such as rosemary, have been studied because of its bioactive properties. Several studies have reported that rosemary extracts show biological bioactivities such as hepatoprotective, antifungal, insecticide, antioxidant and antibacterial. It is well known that the biological properties in rosemary are mainly due to phenolic compounds. However, it is essential to take into account that these biological properties depend on different aspects. Their use in foods is limited because of their odour, colour and taste. For that reason, commercial methods have been developed for the preparation of odourless and colourless antioxidant compounds from rosemary. Owing to the new applications of natural extracts in preservatives, this review gives a view on the use of natural extract from rosemary in foods and its effect on preservative activities. Specifically, the relationship between the structure and activity (antimicrobial and antioxidant) of the active components in rosemary are being reviewed.
Collapse
Affiliation(s)
- Gema Nieto
- Department of Food Technology and Human Nutrition, Veterinary Faculty, University of Murcia, Espinardo, 30071 Murcia, Spain.
| | - Gaspar Ros
- Department of Food Technology and Human Nutrition, Veterinary Faculty, University of Murcia, Espinardo, 30071 Murcia, Spain.
| | - Julián Castillo
- Research and Development Department of Nutrafur-Frutarom Group, Camino Viejo de Pliego s/n, Alcantarilla, 80320 Murcia, Spain.
| |
Collapse
|
31
|
Arango-Ruiz Á, Martin Á, Cosero MJ, Jiménez C, Londoño J. Encapsulation of curcumin using supercritical antisolvent (SAS) technology to improve its stability and solubility in water. Food Chem 2018; 258:156-163. [DOI: 10.1016/j.foodchem.2018.02.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 11/24/2022]
|
32
|
Generation of potent antioxidant nanoparticles from mango leaves by supercritical antisolvent extraction. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Shishir MRI, Xie L, Sun C, Zheng X, Chen W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.018] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Machado APDF, Rueda M, Barbero GF, Martín Á, Cocero MJ, Martínez J. Co-precipitation of anthocyanins of the extract obtained from blackberry residues by pressurized antisolvent process. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Coprecipitation of turmeric extracts and polyethylene glycol with compressed carbon dioxide. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Chemat F, Rombaut N, Meullemiestre A, Turk M, Perino S, Fabiano-Tixier AS, Abert-Vian M. Review of Green Food Processing techniques. Preservation, transformation, and extraction. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.04.016] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Aliakbarian B, Paini M, Adami R, Perego P, Reverchon E. Use of Supercritical Assisted Atomization to produce nanoparticles from olive pomace extract. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2016.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Selective precipitation of phenolic compounds from Achillea millefolium L. extracts by supercritical anti-solvent technique. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
39
|
Casanova F, Estevinho B, Santos L. Preliminary studies of rosmarinic acid microencapsulation with chitosan and modified chitosan for topical delivery. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2016.04.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
40
|
On-line process for pressurized ethanol extraction of onion peels extract and particle formation using supercritical antisolvent. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.11.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Bartosz T, Irene T. Polyphenols encapsulation – application of innovation technologies to improve stability of natural products. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2015-0005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Osorio-Tobón JF, Carvalho PI, Rostagno MA, Petenate AJ, Meireles MAA. Precipitation of curcuminoids from an ethanolic turmeric extract using a supercritical antisolvent process. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
43
|
|
44
|
Chinnarasu C, Montes A, Pereyra C, Casas L, Fernández-Ponce MT, Mantell C, Pattabhi S, Martínez de la Ossa E. Preparation of polyphenol fine particles potent antioxidants by a supercritical antisolvent process using different extracts of Olea europaea leaves. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-015-0166-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Meneses MA, Caputo G, Scognamiglio M, Reverchon E, Adami R. Antioxidant phenolic compounds recovery from Mangifera indica L. by-products by supercritical antisolvent extraction. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2015.04.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Screening design of experiment applied to the supercritical antisolvent precipitation of quercetin. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
47
|
Chinnarasu C, Montes A, Fernandez-Ponce M, Casas L, Mantell C, Pereyra C, de la Ossa EM, Pattabhi S. Natural antioxidant fine particles recovery from Eucalyptus globulus leaves using supercritical carbon dioxide assisted processes. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Oroian M, Escriche I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res Int 2015; 74:10-36. [PMID: 28411973 DOI: 10.1016/j.foodres.2015.04.018] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 04/03/2015] [Accepted: 04/12/2015] [Indexed: 12/18/2022]
Abstract
Recently many review papers regarding antioxidants from different sources and different extraction and quantification procedures have been published. However none of them has all the information regarding antioxidants (chemistry, sources, extraction and quantification). This article tries to take a different perspective on antioxidants for the new researcher involved in this field. Antioxidants from fruit, vegetables and beverages play an important role in human health, for example preventing cancer and cardiovascular diseases, and lowering the incidence of different diseases. In this paper the main classes of antioxidants are presented: vitamins, carotenoids and polyphenols. Recently, many analytical methodologies involving diverse instrumental techniques have been developed for the extraction, separation, identification and quantification of these compounds. Antioxidants have been quantified by different researchers using one or more of these methods: in vivo, in vitro, electrochemical, chemiluminescent, electron spin resonance, chromatography, capillary electrophoresis, nuclear magnetic resonance, near infrared spectroscopy and mass spectrometry methods.
Collapse
Affiliation(s)
- Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania.
| | - Isabel Escriche
- Institute of Food Engineering for Development (IUIAD), Food Technology Department (DTA), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
49
|
Dias MI, Ferreira ICFR, Barreiro MF. Microencapsulation of bioactives for food applications. Food Funct 2015; 6:1035-52. [DOI: 10.1039/c4fo01175a] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The potential of microencapsulation to protect bioactive compounds ensuring bioavailability maintenance is proved but requires further studies on its applicability and incentives by regulatory agencies.
Collapse
Affiliation(s)
- Maria Inês Dias
- Mountain Research Centre (CIMO)
- ESA
- Polytechnic Institute of Bragança
- 5301-855 Bragança
- Portugal
| | | | - Maria Filomena Barreiro
- Laboratory of Separation and Reaction Engineering (LSRE)
- Associate Laboratory LSRE/LCM
- Polytechnic Institute of Bragança
- 5301-857 Bragança
- Portugal
| |
Collapse
|
50
|
Isolation of carsonic acid from rosemary extracts using semi-preparative supercritical fluid chromatography. J Chromatogr A 2013; 1286:208-15. [DOI: 10.1016/j.chroma.2013.02.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 02/03/2023]
|