1
|
Miranda M, Bai J, Pilon L, Torres R, Casals C, Solsona C, Teixidó N. Fundamentals of Edible Coatings and Combination with Biocontrol Agents: A Strategy to Improve Postharvest Fruit Preservation. Foods 2024; 13:2980. [PMID: 39335908 PMCID: PMC11431373 DOI: 10.3390/foods13182980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Challenges in global food supply chains include preserving postharvest quality and extending the shelf life of fruits and vegetables. The utilization of edible coatings (ECs) combined with biocontrol agents (BCAs) represents a promising strategy to enhance the postharvest quality and shelf life of these commodities. This review analyzes the most recent developments in EC technologies and their combination with BCAs, highlighting their synergistic effects on postharvest pathogen control and quality maintenance. Various types of ECs, including polysaccharides, proteins, and lipids, are discussed alongside coating fundamentals and the mechanisms through which BCAs contribute to pathogen suppression. The review also highlights the efficacy of these combined approaches in maintaining the physicochemical properties, sensory attributes, and nutritional value of fruits. Key challenges such as regulatory requirements, consumer acceptance, and the scalability of these technologies are addressed. Future research directions are proposed to optimize formulations, improve application techniques, and enhance the overall efficacy of these biocomposite coatings and multifunctional coatings. By synthesizing current knowledge and identifying gaps, this review provides a comprehensive understanding of the potential and limitations of using ECs and BCAs for sustainable postharvest management.
Collapse
Affiliation(s)
- Marcela Miranda
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| | - Jinhe Bai
- US Horticultural Research Laboratory, United States Department of Agriculture (USDA)-ARS, Ft. Pierce, FL 34945, USA;
| | - Lucimeire Pilon
- Embrapa Vegetables—Brazilian Agricultural Research Corporation, Brasilia 70351-970, DF, Brazil;
| | - Rosario Torres
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| | - Carla Casals
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| | - Cristina Solsona
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| | - Neus Teixidó
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| |
Collapse
|
2
|
Corrêa-Filho LC, Santos Junior JRD, Ramos AV, Martinazzo AP, Habert AC, Carvalho CWPD, Soares AG, Tonon RV, Cabral LMC. Chitosan-based nanocomposite films with carnauba wax, rosin resin, and zinc oxide nanoparticles. Food Res Int 2024; 188:114475. [PMID: 38823838 DOI: 10.1016/j.foodres.2024.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
This work aimed to develop edible emulsion-based barriers in the form of chitosan composite films, with a focus on assessing the impacts of carnauba wax, rosin resin, and zinc oxide nanoparticles on their properties. Six films were produced by casting using chitosan as polymer base and glycerol as plasticizer. Acetic acid and polysorbate 80 were also used to facilitate the dissolution and mixing of the components. The six filmogenic solutions contained chitosan at 1.2% w/v, wax or resin content with 0 or 0.6% m/v and ZnO with 0 or 0.05% m/v. The dried films were characterized according to their chemical, barrier, mechanical, thermal and optical properties. All treatments resulted in flexible films. Chitosan films appeared smoother and more uniform under SEM imaging, while carnauba wax films displayed roughness due to their hydrophobic nature. Wax and resin films were less transparent and water soluble than the chitosan-only films. On the other hand, the addition of ZnO in the formulations increased the solubility of the films. The sorption degree was in line with the solubility results, i.e., films with ZnO presented higher sorption degree and solubility values. All treatments showed low or non-light UV transmission, indicating that the films provide good barrier to UV light. In the visible light region, films of resin with ZnO showed the lowest transmittance values, hence offering a good barrier to visible light. Among the evaluated films, chitosan, and resin films with ZnO nanoparticles were more rigid and resistant to deformation. Overall, films produced with rosin resin and ZnO nanoparticles showed potential improvements in barrier, mechanical, thermal, and optical properties, mainly due to their low water solubility, good UV protection and low permeability to water vapor and oxygen, which are suitable for using in formulations, intended to produce edible films and coatings.
Collapse
Affiliation(s)
| | | | - Andresa Viana Ramos
- Nanotechnology Engineering Program, COPPE, Federal University of Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil
| | - Ana Paula Martinazzo
- Department of Agribusiness Engineering, Federal Fluminense University, 27255-125 Volta Redonda, RJ, Brazil
| | - Alberto Claudio Habert
- Nanotechnology Engineering Program, COPPE, Federal University of Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil; Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
3
|
Betancur-D´Ambrosio MC, Pérez-Cervera CE, Barrera-Martinez C, Andrade-Pizarro R. Antimicrobial activity, mechanical and thermal properties of cassava starch films incorporated with beeswax and propolis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:782-789. [PMID: 38410275 PMCID: PMC10894146 DOI: 10.1007/s13197-023-05878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 09/18/2023] [Accepted: 10/16/2023] [Indexed: 02/28/2024]
Abstract
Edible films can be formed from different polymeric compounds. The use of starch has gained extra value; because it can be used in combination with plasticizers and lipids, helping to improve mechanical properties. Besides, with the addition of an antimicrobial, the function of these films can be extended. The objective of this research was to evaluate the effect of native cassava starch, beeswax and ethanolic propolis extract (EPE) on the mechanical, thermal and inhibitory properties against the Aspergillus niger fungus. An experimental Box-Behnken design with three factors: cassava starch concentration (2-4%w/v), beeswax (0.5-0.9%w/w) and EPE (1-4%v/w) was used. The films obtained were opaque and with low mechanical properties. EPE concentration affected tensile strength, elongation at break (EB) and Young's modulus (YM), and cassava starch content only affected EB and YM. In thermal properties, the weight loss was affected by the cassava starch-beeswax interaction, where the most loss occurred at high levels of these factors in the temperature range of 200-360 °C. The films reduced the growth of the Aspergillus niger by 51%, where the beeswax-EPE interaction had a significant positive effect. The characteristics of the developed films suggest that they would be more acceptable as fruit and vegetable coatings.
Collapse
|
4
|
Burenjargal M, Narangerel T, Batmunkh T, Dong A, Idesh S. A review of the bioactive properties of Mongolian plants, with a focus on their potential as natural food preservatives. Food Sci Nutr 2023; 11:5736-5752. [PMID: 37823130 PMCID: PMC10563759 DOI: 10.1002/fsn3.3529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 10/13/2023] Open
Abstract
Consumers have recently preferred food that is easy to make and of excellent quality, as well as food that is safe, natural, and minimally processed, but has a longer shelf life. Food deteriorates over time as a result of microbiological, chemical, or physical changes. Phytochemicals derived from medicinal and food plants have long been recognized for their biological activity to protect plants. These bioactivities are designed to increase the shelf life of food while inhibiting the growth of microorganisms. The use of natural plant food preservatives containing bioactive compounds as health-promoting agents is particularly intriguing. Furthermore, due to their effectiveness against food spoilage and foodborne pathogens, natural plant-origin antimicrobial compounds have been investigated as alternatives to synthetic antimicrobial compounds for preserving food quality. This review focused on the plant composition and properties that can be utilized as a natural food preservative, as well as the possibilities of using Mongolian medicinal plants.
Collapse
Affiliation(s)
| | - Tuya Narangerel
- Department of ChemistryNational University of MongoliaUlaanbaatarMongolia
| | - Tuyagerel Batmunkh
- Department of Chemical and Biological EngineeringNational University of MongoliaUlaanbaatarMongolia
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of EducationInner Mongolia UniversityHohhotChina
| | - Saruul Idesh
- Department of ChemistryNational University of MongoliaUlaanbaatarMongolia
| |
Collapse
|
5
|
Hu J, Jiao W, Chen Q, Liu B, Fu M. Preparation of a multilayer antibacterial film and its application for controlling postharvest disease in temperate fruit (including apple, pear, and peach) under ambient storage. Food Sci Nutr 2023; 11:5188-5198. [PMID: 37701234 PMCID: PMC10494645 DOI: 10.1002/fsn3.3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/04/2023] [Accepted: 05/25/2023] [Indexed: 09/14/2023] Open
Abstract
The objective of this study was to provide formulation of a new multilayer antibacterial film and to investigate the optimal use concentration of chitosan and carboxymethyl cellulose in the range from 0.5% to 2%, as well as its application for controlling postharvest disease in temperate fruit (apple, pear, and peach). The multilayer antibacterial film used chitosan (CS) and carboxymethyl cellulose (CMC) as polysaccharide macromolecule, lemon essential oil (LEO) as active agent, and ε-polylysine (ε-PL) as the main antibacterial ingredient. The results showed that the physical properties of the self-assembled film were adjusted by the electrostatic layer-by-layer (LbL) deposition. Fourier transform infrared (FT-IR) analysis and thermogravimetric (TGA) revealed that hydrogen bonds were generated during the self-assembly of CS-LEO/CMC-ε-PL film, resulting in changes in intermolecular interactions and thermal stability. Furthermore, compared with CS-LEO single-layer film, the multilayer film exhibited higher retention rate of LEO. In vivo test, the self-assembled film significantly inhibited the infection of postharvest pathogenic fungi including Penicillium expansum (P. expansum) and Alternaria alternata (A. alternata) on fruit. To summarize, the CS-LEO/CMC-ε-PL LbL self-assembly coating notably controlled postharvest pathogen rot on fruit, and reduced the loss of fruit during storage and transportation. Our results suggest that the polysaccharide-based edible coating prepared in this work may offer an alternative to synthetic waxes.
Collapse
Affiliation(s)
- Jingjing Hu
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Wenxiao Jiao
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Qingmin Chen
- College of Food Science and EngineeringShandong Agricultural and Engineering UniversityJinanChina
| | - Bangdi Liu
- Academy of Agricultural Planning and EngineeringMinistry of Agriculture and Rural AffairsBeijingChina
| | - Maorun Fu
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| |
Collapse
|
6
|
Hosseini SF, Mousavi Z, McClements DJ. Beeswax: A review on the recent progress in the development of superhydrophobic films/coatings and their applications in fruits preservation. Food Chem 2023; 424:136404. [PMID: 37257280 DOI: 10.1016/j.foodchem.2023.136404] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
Recently, the design and fabrication of bio-inspired superhydrophobic materials using natural lipid additives such as beeswax (BW) have aroused great attention in food packaging as they can minimize the transfer rate of water molecules and have effective moisture barriers. This review discusses the recent progress in the design and fabrication of BW-containing edible films/coatings (e.g., emulsion and blend films, bilayer materials, bionanocomposites, and antimicrobial materials) and their potential applications on the postharvest life and quality attributes of various fruits. Incorporation of BW into polysaccharides- and proteins-based emulsion films effectively improved their hydrophobicity, water vapor, and UV/visible light barrier properties, as well as the film tensile properties. The addition of nanoparticles to BW-based polymeric matrices often results in improved physico-mechanical properties. BW coatings have been also applied to prolong the shelf-life of various climacteric fruits, however, optimization of the wax concentration can be further investigated to develop targeted food storage systems.
Collapse
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Mazandaran, Iran.
| | - Zahra Mousavi
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Mazandaran, Iran
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
7
|
Alqarni MH, Foudah AI, Aodah AH, Alkholifi FK, Salkini MA, Alam A. Caraway Nanoemulsion Gel: A Potential Antibacterial Treatment against Escherichia coli and Staphylococcus aureus. Gels 2023; 9:gels9030193. [PMID: 36975642 PMCID: PMC10048749 DOI: 10.3390/gels9030193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Novel antibiotics are needed due to the rise of antibiotic-resistant pathogens. Traditional antibiotics are ineffective due to antibiotic-resistant microorganisms, and finding alternative therapies is expensive. Hence, plant-derived caraway (Carum carvi) essential oils and antibacterial compounds have been selected as alternatives. In this, caraway essential oil as an antibacterial treatment was investigated using a nanoemulsion gel. Using the emulsification technique, a nanoemulsion gel was developed and characterized in terms of particle size, polydispersity index, pH, and viscosity. The results showed that the nanoemulsion had a mean particle size of 137 nm and an encapsulation efficiency of 92%. Afterward, the nanoemulsion gel was incorporated into the carbopol gel and was found to be transparent and uniform. The gel had in vitro cell viability and antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The gel safely delivered a transdermal drug with a cell survival rate of over 90%. With a minimal inhibitor concentration (MIC) of 0.78 mg/mL and 0.78 mg/mL, respectively, the gel demonstrated substantial inhibition for E. coli and S. aureus. Lastly, the study demonstrated that caraway essential oil nanoemulsion gels can be efficient in treating E. coli and S. aureus, laying the groundwork for the use of caraway essential oil as an alternative to synthetic antibiotics in the treatment of bacterial infections.
Collapse
Affiliation(s)
- Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Alhussain H. Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al kharj 11942, Saudi Arabia
| | - Faisal K. Alkholifi
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Mohammad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
- Correspondence:
| |
Collapse
|
8
|
Šojić B, Milošević S, Savanović D, Zeković Z, Tomović V, Pavlić B. Isolation, Bioactive Potential, and Application of Essential Oils and Terpenoid-Rich Extracts as Effective Antioxidant and Antimicrobial Agents in Meat and Meat Products. Molecules 2023; 28:molecules28052293. [PMID: 36903538 PMCID: PMC10005741 DOI: 10.3390/molecules28052293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Using food additives (e.g., preservatives, antioxidants) is one of the main methods for preserving meat and meat product quality (edible, sensory, and technological) during processing and storage. Conversely, they show negative health implications, so meat technology scientists are focusing on finding alternatives for these compounds. Terpenoid-rich extracts, including essential oils (EOs), are remarkable since they are generally marked as GRAS (generally recognized as safe) and have a wide ranging acceptance from consumers. EOs obtained by conventional or non-conventional methods possess different preservative potentials. Hence, the first goal of this review is to summarize the technical-technology characteristics of different procedures for terpenoid-rich extract recovery and their effects on the environment in order to obtain safe, highly valuable extracts for further application in the meat industry. Isolation and purification of terpenoids, as the main constituents of EOs, are essential due to their wide range of bioactivity and potential for utilization as natural food additives. Therefore, the second goal of this review is to summarize the antioxidant and antimicrobial potential of EOs and terpenoid-rich extracts obtained from different plant materials in meat and various meat products. The results of these investigations suggest that terpenoid-rich extracts, including EOs obtained from several spices and medicinal herbs (black pepper, caraway, Coreopsis tinctoria Nutt., coriander, garlic, oregano, sage, sweet basil, thyme, and winter savory) can be successfully used as natural antioxidants and antimicrobials in order to prolong the shelf-life of meat and processed meat products. These results could be encouraged for higher exploitation of EOs and terpenoid-rich extracts in the meat industry.
Collapse
Affiliation(s)
- Branislav Šojić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Sanja Milošević
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Danica Savanović
- Faculty of Technology, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Zoran Zeković
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Vladimir Tomović
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Branimir Pavlić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
- Correspondence:
| |
Collapse
|
9
|
Elian C, Andaloussi SA, Moilleron R, Decousser JW, Boyer C, Versace DL. Biobased polymer resources and essential oils: a green combination for antibacterial applications. J Mater Chem B 2022; 10:9081-9124. [PMID: 36326108 DOI: 10.1039/d2tb01544g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To fight nosocomial infections, the excessive use of antibiotics has led to the emergence of multidrug-resistant microorganisms, which are now considered a relevant public health threat by the World Health Organization. To date, most antibacterial systems are based on the use of petro-sourced polymers, but the global supplies of these resources are depleting. Besides, silver NPs are widely accepted as the most active biocide against a wide range of bacterial strains but their toxicity is an issue. The growing interest in natural products has gained increasing interest in the last decade. Therefore, the design of functional antibacterial materials derived from biomass remains a significant challenge for the scientific community. Consequently, attention has shifted to naturally occurring substances such as essential oils (EOs), which are classified as Generally Recognized as Safe (GRAS). EOs can offer an alternative to the common antimicrobial agents as an inner solution or biocide agent to inhibit the resistance mechanism. Herein, this review not only aims at providing developments in the antibacterial modes of action of EOs against various bacterial strains and the recent advances in genomic and proteomic techniques for the elucidation of these mechanisms but also presents examples of biobased polymer resource-based EO materials and their antibacterial activities. Especially, we describe the antibacterial properties of biobased polymers, e.g. cellulose, starch, chitosan, PLA PHAs and proteins, associated with EOs (cinnamon (CEO), clove (CLEO), bergamot (BEO), ginger (GEO), lemongrass (LEO), caraway (CAEO), rosemary (REO), Eucalyptus globulus (EGEO), tea tree (TTEO), orange peel (OPEO) and apricot (Prunus armeniaca) kernel (AKEO) essential oils). Finally, we discuss the influence of EOs on the mechanical strength of bio-based materials.
Collapse
Affiliation(s)
- Christine Elian
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) - UMR7182-CNRS-UPEC, Department C3M, Team BioM&M's, 2-8 rue Henri Dunant, 94320 Thiais, France. .,Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Samir Abbad Andaloussi
- Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Régis Moilleron
- Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Jean-Winoc Decousser
- Department of Bacteriology and Infection Control, University Hospital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France.,EA 7380 Dynamyc Université Paris - Est Créteil (UPEC), Ecole nationale vétérinaire d'Alfort (EnvA), Faculté de Médecine de Créteil, Créteil, 1 rue Gustave Eiffel, 94000 Créteil, France
| | - Cyrille Boyer
- Australian Center for Nanomedicine (ACN), Cluster for Advanced Macromolecular Design, School of Chemical Engineering, UNSW Sydney, Australia
| | - Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) - UMR7182-CNRS-UPEC, Department C3M, Team BioM&M's, 2-8 rue Henri Dunant, 94320 Thiais, France.
| |
Collapse
|
10
|
Kumar H, Ahuja A, Kadam AA, Rastogi VK, Negi YS. Antioxidant Film Based on Chitosan and Tulsi Essential Oil for Food Packaging. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Supercritical CO2 extraction of caraway (Carum carvi L.) seed: Optimization and parametric interaction studies using design of experiments. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Pellissery AJ, Vinayamohan PG, Xue J, Wang X, Viju LS, Joseph D, Luo Y, Donoghue AM, Venkitanarayanan K. Efficacy of pectin-based caproic acid, caprylic acid, linalool, and cuminaldehyde coatings in reducing Salmonella Heidelberg on chicken eggs. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.874219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among the animal derived food products, contamination of poultry eggs, and egg shell surface is one of the major causes for foodborne salmonellosis in the United States. As a means of reducing the pathogen transfer to the internal egg contents, polysaccharide-based coatings containing antimicrobial phytochemicals could potentially serve as a biocontrol strategy for shelled egg products. The current study investigated the efficacy of four GRAS (Generally Recognized as Safe)-status plant-derived compounds, namely, caproic acid (CAO), caprylic acid (CAY), linalool (LIN) and cuminaldehyde (CUM), as pectin-based coating treatments, individually or in combination, for reducing Salmonella Heidelberg (SH) on shell eggs. A three-strain mixture of SH (~8.0 log CFU in 50 μL inoculum) was spot-inoculated on surface sterilized white-shelled eggs. Eggs were evenly coated with either pectin-based treatments of CAO (1%), CAY (1%), LIN (1%) and CUM (1%), individually, or a combination of 4 phytochemicals (COMB- each phytochemical at 0.5% v/v level of inclusion). The treated eggs were stored at 4°C and SH counts were enumerated on days 0, 1, 3, 5, 7, 14, and 21 of storage. The study was replicated thrice, 3 eggs/treatment/day time point, and the data were analyzed using two-way ANOVA with significance tested at p < 0.05. On day 0, pectin-coated control eggs had ~7.6 log CFU of SH/egg. At the end of refrigerated storage (day 21), pectin-based coating of CAO and CAY at 1% level reduced SH by 2.0–2.5 log CFU/egg (P < 0.05) when compared to controls. In addition, the CUM and LIN based coatings produced 3.0 log and 3.9 log reduction, respectively, in SH counts on eggs by day 21 of storage. Among the treatments with phytochemical combinations, COMB1 [pectin (2%) + Caprylic acid, caproic acid and cuminaldehyde (each at 0.5% level)] was found to be most effective, reducing SH counts to 2.5–3.3 log CFU/egg from day 0 through day 14, and by the end of storage period (day 21), a 3.5 log CFU reduction/egg (p < 0.05) compared to untreated controls. Morphological studies of treated eggs using atomic force microscopy (AFM) have shown that the roughness of eggs can be influenced by a combination of various compounds. Results indicate the potential efficacy of the aforesaid phytochemicals in reducing SH on shell eggs; however, further studies investigating their industrial feasibility and effects on sensory attributes of eggs are warranted.
Collapse
|
13
|
Sutharsan J, Zhao J. Physicochemical and Biological Properties of Chitosan Based Edible Films. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2100416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jenani Sutharsan
- Food and Health Cluster, School of Chemical Engineering, UNSW, Sydney, NSW, Australia
| | - Jian Zhao
- Food and Health Cluster, School of Chemical Engineering, UNSW, Sydney, NSW, Australia
| |
Collapse
|
14
|
Xiao M, Tang B, Qin J, Wu K, Jiang F. Properties of film-forming emulsions and films based on corn starch/sodium alginate/gum Arabic as affected by virgin coconut oil content. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Wang L, Xu J, Zhang M, Zheng H, Li L. Preservation of soy protein-based meat analogues by using PLA/PBAT antimicrobial packaging film. Food Chem 2022; 380:132022. [DOI: 10.1016/j.foodchem.2021.132022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/10/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
|
16
|
Chitosan Film Functionalized with Grape Seed Oil—Preliminary Evaluation of Antimicrobial Activity. SUSTAINABILITY 2022. [DOI: 10.3390/su14095410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although the fishing and wine industries undoubtedly contribute significantly to the economy, they also generate large waste streams with considerable repercussions on both economic and environmental levels. Scientific literature has shown products can be extracted from these streams which have properties of interest to the cosmetics, pharmaceutical and food industries. Antimicrobial activity is undoubtedly among the most interesting of these properties, and particularly useful in the production of food packaging to increase the shelf life of food products. In this study, film for food packaging was produced for the first time using chitosan extracted from the exoskeletons of red shrimp (Aristomorpha foliacea) and oil obtained from red grape seeds (Vitis vinifera). The antimicrobial activity of two films was analyzed: chitosan-only film and chitosan film with the addition of red grape seed oil at two different concentrations (0.5 mL and 1 mL). Our results showed noteworthy antimicrobial activity resulting from functionalized chitosan films; no activity was observed against pathogen and spoilage Gram-positive and Gram-negative bacteria, although the antimicrobial effects observed were species-dependent. The preliminary results of this study could contribute to developing the circular economy, helping to promote the reuse of waste to produce innovative films for food packaging.
Collapse
|
17
|
Dumitru CD, Neacsu IA, Grumezescu AM, Andronescu E. Bee-Derived Products: Chemical Composition and Applications in Skin Tissue Engineering. Pharmaceutics 2022; 14:750. [PMID: 35456584 PMCID: PMC9030501 DOI: 10.3390/pharmaceutics14040750] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Skin tissue regeneration is one of the population's most common problems, and the complications that may appear in the healing process can have detrimental consequences. An alternative to conventional treatments could be represented by sustainable materials based on natural products, such as honey and its derivates (propolis, royal jelly, bee pollen, beeswax, and bee venom). They exhibit significant inhibitory activities against bacteria and have great potential in dermal tissue regeneration. Research in the pharmaceutical field demonstrates that conventional medication combined with bee products can deliver better results. The advantages include minimizing side effects and maintaining the same effectiveness by using low concentrations of antibiotic, anti-inflammatory, or chemotherapy drugs. Several studies suggested that bee products can replace the antimicrobial activity and efficiency of antibiotics, but further investigation is needed to establish a topical mixture's potential, including honey, royal jelly, and propolis. Bee products seem to complete each other's deficiencies, and their mixture may have a better impact on the wound healing process. The topic addressed in this paper highlights the usefulness of honey, propolis, royal jelly, bee pollen, beeswax, and bee venom in the re-epithelization process and against most common bacterial infections.
Collapse
Affiliation(s)
- Corina Dana Dumitru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ionela Andreea Neacsu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
18
|
Flórez M, Guerra-Rodríguez E, Cazón P, Vázquez M. Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Hafila KZ, Jumaidin R, Ilyas RA, Selamat MZ, Yusof FAM. Effect of palm wax on the mechanical, thermal, and moisture absorption properties of thermoplastic cassava starch composites. Int J Biol Macromol 2022; 194:851-860. [PMID: 34838853 DOI: 10.1016/j.ijbiomac.2021.11.139] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 11/05/2022]
Abstract
Thermoplastic starch is a potentially sustainable and biodegradable material. However, it possesses some limitations in terms of mechanical performance and high moisture sensitivity. In this current work, the characteristics of thermoplastic cassava starch (TPCS) containing palm wax at various loading were evaluated. TPCS was prepared via hot pressing by varying the ratios of palm wax (2.5, 5, 10, and 15 wt%). Next, characterization via scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), mechanical, water solubility, thickness swelling and moisture absorption tests, were conducted on the samples. The findings showed that incorporating starch-based thermoplastics with palm wax has remarkably improved mechanical characteristics of the thermoplastic blends. Besides, the morphology of the samples demonstrated irregular and rougher cleavage fracture after palm wax addition. FT-IR indicated the existence of intermolecular interaction between TPCS and palm wax with the intermolecular hydrogen bonds that existed between them. The thermal stability of TPCS has improved with rising palm wax content. The incorporation of 15 wt% palm wax resulted in the lowest moisture absorption value among the samples. Overall, the developed TPCS/palm wax with improved mechanical and moisture resistance characteristics has the potential to be used as biodegradable materials.
Collapse
Affiliation(s)
- K Z Hafila
- Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia; German-Malaysian Institute, Jalan Ilmiah Taman Universiti, 43000 Kajang, Selangor, Malaysia
| | - R Jumaidin
- Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.
| | - R A Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia; Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
| | - M Z Selamat
- Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
| | - Fahmi Asyadi Md Yusof
- Universiti Kuala Lumpur, Malaysian Institute of Chemical and Bioengineering Technology, Taboh Naning, Alor Gajah, Melaka 78000, Malaysia
| |
Collapse
|
20
|
Physical, structural, and water barrier properties of emulsified blend film based on konjac glucomannan/agar/gum Arabic incorporating virgin coconut oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Zhang X, Ismail BB, Cheng H, Jin TZ, Qian M, Arabi SA, Liu D, Guo M. Emerging chitosan-essential oil films and coatings for food preservation - A review of advances and applications. Carbohydr Polym 2021; 273:118616. [PMID: 34561014 DOI: 10.1016/j.carbpol.2021.118616] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/28/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022]
Abstract
With the rising demand for fresh and ready-to-eat foods, antimicrobial packaging has been developed to control or prevent microbial growth as well as maintain food quality and safety. Chitosan is an advanced biomaterial for antimicrobial packaging to meet the growing needs of safe and biodegradable packaging. The application of natural essential oils as antimicrobial agents effectively controls the growth of spoilage and pathogenic microbes. Thus, chitosan edible coatings and films incorporated with essential oils have expanded the general applications of antimicrobial packaging in food products. This review summarized the effect of essential oils on modifying the physicochemical characteristics of chitosan-based films. Notably, the antimicrobial efficacy of the developed composite films or coatings was highlighted. The advances in the preparation methods and application of chitosan films were also discussed. Broadly, this review will promote the potential applications of chitosan-essential oils composite films or coatings in antimicrobial packaging for food preservation.
Collapse
Affiliation(s)
- Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Tony Z Jin
- U. S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Mengyan Qian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Effect of basil essential oil and beeswax incorporation on the physical, structural, and antibacterial properties of chitosan emulsion based coating for eggs preservation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Tomović V, Šojić B, Savanović J, Kocić‐Tanackov S, Pavlić B, Jokanović M, Đorđević V, Parunović N, Martinović A, Vujadinović D. Caraway (
Carum carvi
L.) essential oil improves quality of dry‐fermented sausages produced with different levels of sodium nitrite. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vladimir Tomović
- Faculty of Technology Novi Sad University of Novi Sad Novi Sad Serbia
| | - Branislav Šojić
- Faculty of Technology Novi Sad University of Novi Sad Novi Sad Serbia
| | - Jovo Savanović
- Faculty of Technology Novi Sad University of Novi Sad Novi Sad Serbia
- DIM‐DIM” M.I. d.o.o Trn‐Laktaši Svetosavska bb Laktaši Bosnia and Herzegovina
| | | | - Branimir Pavlić
- Faculty of Technology Novi Sad University of Novi Sad Novi Sad Serbia
| | - Marija Jokanović
- Faculty of Technology Novi Sad University of Novi Sad Novi Sad Serbia
| | - Vesna Đorđević
- Institute of Meat Hygiene and Technology (INMES) Belgrade Serbia
| | - Nenad Parunović
- Institute of Meat Hygiene and Technology (INMES) Belgrade Serbia
| | - Aleksandra Martinović
- Faculty for Food Technology, Food Safety and Ecology University of Donja Gorica Podgorica Montenegro
| | - Dragan Vujadinović
- Faculty of Technology Zvornik University of East Sarajevo Zvornik Bosnia and Herzegovina
| |
Collapse
|
24
|
Zandraa O, Ngwabebhoh FA, Patwa R, Nguyen HT, Motiei M, Saha N, Saha T, Saha P. Development of dual crosslinked mumio-based hydrogel dressing for wound healing application: Physico-chemistry and antimicrobial activity. Int J Pharm 2021; 607:120952. [PMID: 34329699 DOI: 10.1016/j.ijpharm.2021.120952] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/17/2023]
Abstract
In this study, an antimicrobial mumio-based hydrogel dressing was developed for wound healing application. The mechanism of gel formation was achieved via a double crosslink network formation between gelatin (GT) and polyvinyl alcohol (PVA) using polyethylene glycol diglycidyl ether (PEGDE) and borax as crosslinking agents. To enhance the mechanical integrity of the hydrogel matrix, bacterial cellulose (BC) was integrated into the GT-PVA hydrogel to produce a composite gel dressing. The obtained hydrogel was characterized by FTIR, SEM, TGA, and XRD. Gel fraction, in vitro swelling and degradation as well as compressive modulus properties of the gel dressing were investigated as a function of change in PVA and BC ratios. By increasing the ratios of PVA and BC, the composite dressing showed lower swelling but higher mechanical strength. Comparing to other formulations, the gel with 4 %w/v PVA and 1 %w/v BC demonstrated to be most suitable in terms of stability and mechanical properties. In vitro cell cytotoxicity by MTT assay on human alveolar basal epithelial (A549) cell lines validated the gels as non-toxic. In addition, the mumio-based gel was compared to other formulations containing different bioactive agents of beeswax and cinnamon oil, which were tested for microbial growth inhibition effects against different bacteria (S. aureus and K. pneumoniae) and fungi (C. albicans and A. niger) strains. Results suggested that the gel dressing containing combinations of mumio, beeswax and cinnamon oil possess promising future in the inhibition of microbial infection supporting its application as a suitable dressing for wound healing.
Collapse
Affiliation(s)
- Oyunchimeg Zandraa
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV, 3685 Zlin, Czech Republic.
| | - Fahanwi Asabuwa Ngwabebhoh
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV, 3685 Zlin, Czech Republic.
| | - Rahul Patwa
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV, 3685 Zlin, Czech Republic
| | - Hau Trung Nguyen
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Marjan Motiei
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Nabanita Saha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV, 3685 Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 76001 Zlin, Czech Republic
| | - Tomas Saha
- Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV, 3685 Zlin, Czech Republic
| | - Petr Saha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV, 3685 Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 76001 Zlin, Czech Republic
| |
Collapse
|
25
|
Liu Y, Ma Y, Feng T, Luo J, Sameen DE, Hossen MA, Dai J, Li S, Qin W. Development and characterization of aldehyde-sensitive cellulose/chitosan/beeswax colorimetric papers for monitoring kiwifruit maturity. Int J Biol Macromol 2021; 187:566-574. [PMID: 34303743 DOI: 10.1016/j.ijbiomac.2021.07.132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
In this study, we developed an in-package colorimetric paper to monitor the ripeness of kiwifruit by detecting the release of aldehydes. Strongly hydrophobic composite films were prepared using chitosan as the matrix and beeswax as an additive. A piece of cellulose paper containing methyl red and bromocresol violet as color indicators was heat-sealed between two hydrophobic films to protect the indicators from the effects of fruit respiration and transpiration. The nucleophilic addition reaction between aldehydes and OH- (Cannizzaro reaction) changes the pH in the paper and triggers a color change in the indicators. As the kiwifruit ripens, the colorimetric paper changes from bluish-purple to dark red and then gradually to red. A mobile phone application was further used to measure the RGB values and link them to kiwifruit ripeness. This intelligent paper can be used for the accurate and convenient monitoring of produce in real time.
Collapse
Affiliation(s)
- Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yanlan Ma
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Tan Feng
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jie Luo
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Md Alomgir Hossen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Yaan 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
26
|
Pandey S. Polysaccharide‐Based Membrane for Packaging Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Cai J, Xiao J, Chen X, Xu L, Cao Y. Spatial distribution of lipids modulated by phase separation in emulsified films and the effects on structure-function relationships. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Immobilization of Caraway Essential Oil in a Polypropylene Matrix for Antimicrobial Modification of a Polymeric Surface. Polymers (Basel) 2021; 13:polym13060906. [PMID: 33809428 PMCID: PMC7999115 DOI: 10.3390/polym13060906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
This study investigates antibacterial polymer composites based on polypropylene as modified by caraway essential oil at various concentrations, the latter immobilized on a talc. The caraway essential oil is incorporated in the polypropylene by a thermoplastic processing method. Analysis of the morphology of the composites was carried out by scanning electron microscopy. The chemical composition of the caraway essential oil in addition to its efficiency of incorporation and release were evaluated by GC/MS and Pyrolysis-GC/MS techniques, respectively. Determination was made as to the influence of such incorporation on thermal and tensile properties of the samples, while antibacterial activity was evaluated through conducting disk diffusion tests and measurement with adherence to the ISO 22196:2011 standard. It was found that incorporating the caraway essential oil in the samples did not affect the homogeneity of the thermoplastic-processed composites at any studied concentration. Stress–strain analysis confirmed the plasticizing effect of the essential oil in the polypropylene matrix, in addition to which, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) analysis revealed that the prepared compositions with essential oil exhibited similar thermal properties to neat polypropylene. Results indicated significant antibacterial activity against Staphylococcus aureus and Escherichia coli at the concentration of essential oil of 4.9 ± 0.2 wt% and higher.
Collapse
|
29
|
Combined effects of octenylsuccination and beeswax on pullulan films: Water-resistant and mechanical properties. Carbohydr Polym 2021; 255:117471. [DOI: 10.1016/j.carbpol.2020.117471] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
|
30
|
Ghamari MA, Amiri S, Rezazadeh-Bari M, Rezazad-Bari L. Physical, mechanical, and antimicrobial properties of active edible film based on milk proteins incorporated with Nigella sativa essential oil. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03550-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Khah MD, Ghanbarzadeh B, Roufegarinejad Nezhad L, Ostadrahimi A. Effects of virgin olive oil and grape seed oil on physicochemical and antimicrobial properties of pectin-gelatin blend emulsified films. Int J Biol Macromol 2021; 171:262-274. [PMID: 33421466 DOI: 10.1016/j.ijbiomac.2021.01.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/19/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
The active emulsified blend films based on gelatin-pectin (5% w/w) containing virgin olive oil (VOO) (0.1-0.3 g/g biopolymer) and grape seed oil (GSO) (0.1-0.3 g/g biopolymer) were prepared by casting method. GSO showed slightly more decreasing effect than VOO on ultimate tensile strength (UTS) and strain at break (SAB) of blend films however; VOO had more reducing effect than GSO on the water vapor permeability (WVP). The scanning electron microscopy (SEM) images showed that incorporating 0.3 g GSO and VOO oils had not considerable effect on the morphology of the emulsified films. Atomic force microscopy (AFM) topography images indicated that adding of oils considerably could increase roughness of emulsified film. Fourier transforms infrared (FTIR) revealed that no new chemical bond formed by adding oils into biopolymer matrix. The minimum inhibitory concentration (MIC) of VOO, GSO and Savory essential oil (SEO) against four important spoilage bacteria showed that GSO had higher antibacterial effect than VOO however; both showed very lower antimicrobial effect than SEO. All active films showed lower inhibitory zone for S. aureus than S. typhimurium and P. fluorescence. The chicken breast fillets wrapped in the films containing VOO-GSO-SEO (0.15-0.15-0.02 g/g polymer) showed considerably lower total viable count (TVC), Pseudomonas spp., Enterobacteriaceae, E. coli 157:H7 and S. typhimurium count than the control one during 12 days storage. Also, it caused significant decrease in peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and total volatile basic nitrogen (TVB-N) of fillet samples.
Collapse
Affiliation(s)
- Mehran Dolat Khah
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran; Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus, Mersin 10, Turkey.
| | | | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Enescu D, Dehelean A, Gonçalves C, Cerqueira MA, Magdas DA, Fucinos P, Pastrana LM. Evaluation of the specific migration according to EU standards of titanium from Chitosan/Metal complexes films containing TiO2 particles into different food simulants. A comparative study of the nano-sized vs micro-sized particles. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Essential oils as antimicrobial agents in biopolymer-based food packaging - A comprehensive review. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100785] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Chen X, Xiao J, Cai J, Liu H. Phase separation behavior in zein-gelatin composite film and its modulation effects on retention and release of multiple bioactive compounds. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
New approach in the development of edible films: The use of carnauba wax micro- or nanoemulsions in arrowroot starch-based films. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Correa-Pacheco ZN, Corona-Rangel ML, Bautista-Baños S, Ventura-Aguilar RI. Application of natural-based nanocoatings for extending the shelf life of green bell pepper fruit. J Food Sci 2020; 86:95-102. [PMID: 33258157 DOI: 10.1111/1750-3841.15542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/15/2020] [Accepted: 11/01/2020] [Indexed: 11/26/2022]
Abstract
Pectobacterium carotovorum is a phytopathogenic bacteria that causes significant economic loses in food crops, such as bell pepper, which is of special significance in the value of production and trade in Mexico. Therefore, a solution for fruit conservation must be sought. Due to environmental concerns, it is necessary the use of environmentally-friendly active packaging. In this article, chitosan and chitosan-thyme essential oil nanocoatings were used for the preservation of green bell pepper. Different formulations based on chitosan nanoparticles (CSNPs) and chitosan-thyme essential oil nanoparticles (15, 30, and 45%) were prepared. For uncoated and coated bell peppers, the quality and physiological variables of inoculated and uninoculated fruit with P. carotovorum during 12-day storage period were assessed. According to the results, the weight loss of the fruit remained almost constant over the storage days for the different formulations. A decrease in fruit firmness and an increase in the respiration rate and ascorbic acid content until day 8 with a decrease at the end of the storage period were observed. Of all the evaluated nanocoatings, the fruit treated with the formulation containing 15% CSNPs showed the lowest colony-forming units and disease incidence. Also, the coated bell peppers with this formulation had lower CO2 production compared to the remaining treatments, and the weight loss and firmness were maintained. Therefore, the use of CSNP coatings could represent a good alternative for the protection of bell pepper against the pathogenic bacteria P. carotovorum. PRACTICAL APPLICATION: The results of the application of nanocoatings based on chitosan and chitosan-thyme essential oil as an antibacterial agent against P. carotovorum on green bell pepper during 12-day storage period suggest that nanoparticle-based coatings can be a natural option for the preservation of fruit quality during ripening.
Collapse
Affiliation(s)
- Zormy Nacary Correa-Pacheco
- CONACYT-Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, km 6, calle CEPROBI, No. 8, San Isidro, Yautepec, Morelos, C.P 62731, Mexico
| | - María Luisa Corona-Rangel
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, km 6, calle CEPROBI, No. 8, San Isidro, Yautepec, Morelos, C.P 62731, Mexico
| | - Silvia Bautista-Baños
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, km 6, calle CEPROBI, No. 8, San Isidro, Yautepec, Morelos, C.P 62731, Mexico
| | - Rosa Isela Ventura-Aguilar
- CONACYT-Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, km 6, calle CEPROBI, No. 8, San Isidro, Yautepec, Morelos, C.P 62731, Mexico
| |
Collapse
|
37
|
Development and characterization of edible films based on native cassava starch, beeswax, and propolis. NFS JOURNAL 2020. [DOI: 10.1016/j.nfs.2020.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Brás T, Rosa D, Gonçalves AC, Gomes AC, Alves VD, Crespo JG, Duarte MF, Neves LA. Development of bioactive films based on chitosan and Cynara cardunculus leaves extracts for wound dressings. Int J Biol Macromol 2020; 163:1707-1718. [DOI: 10.1016/j.ijbiomac.2020.09.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
|
39
|
Amalraj A, Haponiuk JT, Thomas S, Gopi S. Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. Int J Biol Macromol 2020; 151:366-375. [PMID: 32084477 DOI: 10.1016/j.ijbiomac.2020.02.176] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/06/2020] [Accepted: 02/15/2020] [Indexed: 11/16/2022]
Abstract
Natural materials have attracted increasing attention in wound dressing and food packaging process, which could overcome the serious environmental issues caused by conventional synthetic materials. Essential oils (EOs) such as black pepper essential oil (BPEO) and ginger essential oil (GEO) have extensively been reported for their nutritional and biomedical properties. In this study, biocomposite films based on polyvinyl alcohol (PVA), gum arabic (GA) and chitosan (CS) incorporated with BPEO and GEO were fabricated by solvent casting method. FTIR, XRD, SEM and DSC were performed with mechanical and antimicrobial properties of PVA/GA/CS films with and without BPEO and GEO. The BPEO-PVA/GA/CS film showed heterogeneous rough surface with cavities containing entrapment of BPEO droplets, whereas, the GEO-PVA/GA/CS film showed heterogeneous rough surface with coarseness due to the incorporation of respective EOs. The BPEO and GEO incorporated PVA/GA/CS films were considerable resistant to breakage and flexible with improved heat stability. The BPEO and GEO incorporated PVA/GA/CS films were significantly inhibited the growth of Bacillus cereus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. The obtained results have demonstrated that both BPEO and GEO incorporated PVA/GA/CS films are promising alternatives to wound dressing and food packaging materials.
Collapse
Affiliation(s)
- Augustine Amalraj
- R&D Centre, Aurea Biolabs (P) Ltd, Kolenchery, Cochin 682 311, Kerala, India; Chemical Faculty, Gdansk University of Technology, Gdańsk, Poland
| | - Józef T Haponiuk
- Chemical Faculty, Gdansk University of Technology, Gdańsk, Poland
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, School of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills P. O. Kottayam, Kerala 686 560, India
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs (P) Ltd, Kolenchery, Cochin 682 311, Kerala, India; Chemical Faculty, Gdansk University of Technology, Gdańsk, Poland.
| |
Collapse
|
40
|
Zhang X, Lian H, Shi J, Meng W, Peng Y. Plant extracts such as pine nut shell, peanut shell and jujube leaf improved the antioxidant ability and gas permeability of chitosan films. Int J Biol Macromol 2020; 148:1242-1250. [DOI: 10.1016/j.ijbiomac.2019.11.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/25/2022]
|
41
|
Quality of cold-stored cucumber as affected by nanostructured coatings of chitosan with cinnamon essential oil and cinnamaldehyde. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109089] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Bharathi S, Leena M, Moses J, Anandharamakrishnan C. Nanofibre‐based bilayer biopolymer films: enhancement of antioxidant activity and potential for food packaging application. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14492] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- S.K.V. Bharathi
- Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology Thanjavur India
| | - M.M. Leena
- Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology Thanjavur India
| | - J.A. Moses
- Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology Thanjavur India
| | - C. Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology Thanjavur India
| |
Collapse
|
43
|
Sivakumar M, Surendar S, Jayakumar M, Seedevi P, Sivasankar P, Ravikumar M, Anbazhagan M, Murugan T, Siddiqui SS, Loganathan S. Parthenium hysterophorus Mediated Synthesis of Silver Nanoparticles and its Evaluation of Antibacterial and Antineoplastic Activity to Combat Liver Cancer Cells. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01775-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Kõrge K, Bajić M, Likozar B, Novak U. Active chitosan–chestnut extract films used for packaging and storage of fresh pasta. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14569] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kristi Kõrge
- Department of Catalysis and Chemical Reaction Engineering National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- Department of Chemistry and Biotechnology Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Marijan Bajić
- Department of Catalysis and Chemical Reaction Engineering National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
| | - Uroš Novak
- Department of Catalysis and Chemical Reaction Engineering National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
| |
Collapse
|
45
|
From waste/residual marine biomass to active biopolymer-based packaging film materials for food industry applications – a review. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
Waste/residual marine biomass represents a vast and potentially underexplored source of biopolymers chitin/chitosan and alginate. Their isolation and potential application in the development and production of bio-based food packaging are gaining in attractiveness due to a recent increment in plastic pollution awareness. Accordingly, a review of the latest research work was given to cover the pathway from biomass sources to biopolymers isolation and application in the development of active (antimicrobial/antioxidant) film materials intended for food packaging. Screening of the novel eco-friendly isolation processes was followed by an extensive overview of the most recent publications covering the chitosan- and alginate-based films with incorporated active agents.
Collapse
|
46
|
Nurul Syahida S, Ismail-Fitry MR, Ainun ZMA, Nur Hanani ZA. Effects of palm wax on the physical, mechanical and water barrier properties of fish gelatin films for food packaging application. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2019.100437] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Ahmed J, Mulla M, Maniruzzaman M. Rheological and Dielectric Behavior of 3D-Printable Chitosan/Graphene Oxide Hydrogels. ACS Biomater Sci Eng 2020; 6:88-99. [PMID: 33463220 DOI: 10.1021/acsbiomaterials.9b00201] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of concentration, temperature, and the addition of graphene oxide (GO) nanosheets on the rheological and dielectric behavior of chitosan (CS) solutions, which influences the formation of the blend materials for various applications including 3D printing and packaging, was studied. Among tested acid solutions, the rheological behavior of 1% CS in acetic and lactic acid solutions was found to be similar, whereas the hydrochloric acid solution showed an abnormal drop in the dynamic moduli. Oscillatory rheology confirmed a distinct gel point for the CS solutions at below 10 °C. Both the G' and G″ of the solutions increased with the loading concentrations of GO between 0.5 and 1%, and it marginally dropped at the loading concentration of 2%, which is consistent with AFM observation. The steady-shear flow data fitted the Carreau model. Dielectric property measurement further confirmed that both the dielectric constant, ε' and the loss factor, ε″ for the CS in hydrochloric acid solutions behaved differently from others. Addition of GO significantly improved both ε' and ε″, indicating an improvement in the dielectric properties of CS/GO solutions. The dispersion of GO into the CS matrix was assessed by measuring XRD, FTIR, and microscopy of the film prepared from the solutions. Furthermore, the inclusion of GO into CS solution containing pluronic F127 (F127) base for potential 3D printing application showed positive results in terms of the printing accuracy and shape fidelity of the printed objects (films and scaffolds). The optimized composition with homogeneous particle distribution indicated that up to ∼50 mg/mL GO concentration (w/v of F127 base) was suitable to print both films and scaffolds for potential biomedical applications.
Collapse
Affiliation(s)
- Jasim Ahmed
- Food and Nutrition Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Mehrajfatema Mulla
- Food and Nutrition Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Mohammed Maniruzzaman
- Department of Pharmacy (Chemistry), School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom
| |
Collapse
|
48
|
Nandiwilastio N, Muchtadi TR, Suyatma NE, Yuliani S. PENGARUH PENAMBAHAN LILIN LEBAH DAN NANOPARTIKEL SENG OKSIDA TERHADAP SIFAT FISIK DAN MEKANIS FILM BERBASIS KITOSAN. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2019. [DOI: 10.6066/jtip.2019.30.2.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Wardhono EY, Pinem MP, Kustiningsih I, Agustina S, Oudet F, Lefebvre C, Clausse D, Saleh K, Guénin E. Cellulose Nanocrystals to Improve Stability and Functional Properties of Emulsified Film Based on Chitosan Nanoparticles and Beeswax. NANOMATERIALS 2019; 9:nano9121707. [PMID: 31795284 PMCID: PMC6955958 DOI: 10.3390/nano9121707] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
The framework of this work was to develop an emulsion-based edible film based on a chitosan nanoparticle matrix with cellulose nanocrystals (CNCs) as a stabilizer and reinforcement filler. The chitosan nanoparticles were synthesized based on ionic cross-linking with sodium tripolyphosphate and glycerol as a plasticizer. The emulsified film was prepared through a combination system of Pickering emulsification and water evaporation. The oil-in-water emulsion was prepared by dispersing beeswax into an aqueous colloidal suspension of chitosan nanoparticles using high-speed homogenizer at room temperature. Various properties were characterized, including surface morphology, stability, water vapor barrier, mechanical properties, compatibility, and thermal behaviour. Experimental results established that CNCs and glycerol improve the homogeneity and stability of the beeswax dispersed droplets in the emulsion system which promotes the water-resistant properties but deteriorates the film strength at the same time. When incorporating 2.5% w/w CNCs, the tensile strength of the composite film reached the maximum value, 74.9 MPa, which was 32.5% higher than that of the pure chitosan film, while the optimum one was at 62.5 MPa, and was obtained by the addition of 25% w/w beeswax. All film characterizations demonstrated that the interaction between CNCs and chitosan molecules improved their physical and thermal properties.
Collapse
Affiliation(s)
- Endarto Yudo Wardhono
- Chemical Engineering Department, University of Sultan Ageng Tirtayasa, Cilegon 42435, Banten, Indonesia; (M.P.P.); (I.K.); (S.A.)
- Correspondence: (E.Y.W.); (E.G.); Tel.: +62-254-395-502 (E.Y.W.); +33-344-234-584 (E.G.)
| | - Mekro Permana Pinem
- Chemical Engineering Department, University of Sultan Ageng Tirtayasa, Cilegon 42435, Banten, Indonesia; (M.P.P.); (I.K.); (S.A.)
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (D.C.); (K.S.)
| | - Indar Kustiningsih
- Chemical Engineering Department, University of Sultan Ageng Tirtayasa, Cilegon 42435, Banten, Indonesia; (M.P.P.); (I.K.); (S.A.)
| | - Sri Agustina
- Chemical Engineering Department, University of Sultan Ageng Tirtayasa, Cilegon 42435, Banten, Indonesia; (M.P.P.); (I.K.); (S.A.)
| | - François Oudet
- Service d’Analyse Physico-Chimique (SAPC), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (F.O.); (C.L.)
| | - Caroline Lefebvre
- Service d’Analyse Physico-Chimique (SAPC), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (F.O.); (C.L.)
| | - Danièle Clausse
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (D.C.); (K.S.)
| | - Khashayar Saleh
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (D.C.); (K.S.)
| | - Erwann Guénin
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (D.C.); (K.S.)
- Correspondence: (E.Y.W.); (E.G.); Tel.: +62-254-395-502 (E.Y.W.); +33-344-234-584 (E.G.)
| |
Collapse
|
50
|
Mustafa P, Niazi MBK, Jahan Z, Samin G, Hussain A, Ahmed T, Naqvi SR. PVA/starch/propolis/anthocyanins rosemary extract composite films as active and intelligent food packaging materials. J Food Saf 2019. [DOI: 10.1111/jfs.12725] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pakeeza Mustafa
- Chemical Engineering DepartmentSchool of Chemical and Material Engineering, National University of Science and Technology Islamabad Pakistan
| | - Muhammad B. K. Niazi
- Chemical Engineering DepartmentSchool of Chemical and Material Engineering, National University of Science and Technology Islamabad Pakistan
| | - Zaib Jahan
- Chemical Engineering DepartmentSchool of Chemical and Material Engineering, National University of Science and Technology Islamabad Pakistan
| | - Ghufrana Samin
- Department of ChemistryUniversity of Engineering and Technology (Lahore) Faisalabad Campus Faisalabad Pakistan
| | - Arshad Hussain
- Chemical Engineering DepartmentSchool of Chemical and Material Engineering, National University of Science and Technology Islamabad Pakistan
| | - Tahir Ahmed
- Department of Industrial BiotechnologyAtta ur Rehman School of Applied Bio‐sciences, National University of Science and Technology Islamabad Pakistan
| | - Salman R. Naqvi
- Chemical Engineering DepartmentSchool of Chemical and Material Engineering, National University of Science and Technology Islamabad Pakistan
| |
Collapse
|