1
|
Sorita GD, Favaro SP, Gambetta R, Ambrosi A, Di Luccio M. Macauba (Acrocomia ssp.) fruits: A comprehensive review of nutritional and phytochemical profiles, health benefits, and sustainable oil production. Compr Rev Food Sci Food Saf 2025; 24:e70097. [PMID: 39776255 DOI: 10.1111/1541-4337.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Macauba is an underexplored palm with significant potential for food-grade vegetable oil production. Its fruits yield two distinct sources of oil, the pulp and the kernel, each with its unique composition, emerging as a potential vegetable oil source with high competitiveness with well-established conventional oil sources. Besides the oil, macauba fruits are rich in essential nutrients, including proteins, minerals, vitamins, dietary fiber, and phytochemicals, with outstanding health benefits. Macauba processing generates valuable co-products, including the epicarp, pulp and kernel cakes, and endocarp, which have considerable potential for enhancing the macauba production chain. This review explores the nutritional and phytochemical profile of macauba, its health benefits, and the potential for exploiting its co-products. Innovative extraction methods and a comprehensive strategy for producing multiple products from macauba co-products are also highlighted as opportunities to achieve sustainable development goals and a circular economy in macauba fruit processing.
Collapse
Affiliation(s)
- Guilherme Dallarmi Sorita
- Laboratory of Membrane Processes (LABSEM), Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Agroenergia, Brasília, Federal District, Brazil
| | - Simone Palma Favaro
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Agroenergia, Brasília, Federal District, Brazil
| | - Rossano Gambetta
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Agroenergia, Brasília, Federal District, Brazil
| | - Alan Ambrosi
- Laboratory of Membrane Processes (LABSEM), Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Marco Di Luccio
- Laboratory of Membrane Processes (LABSEM), Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
2
|
Li T, Kong X, Shao Z, Zhang Y, Yang C, Liu K, Xin Y, Chen F, Dong Y. Characteristic and stability changes of peanut oil body emulsion during the process of demulsification using heptanoic acid. Food Chem 2024; 460:140301. [PMID: 39067429 DOI: 10.1016/j.foodchem.2024.140301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/30/2024]
Abstract
In this paper, the changes in oil body emulsion (OBE) during heptanoic acid demulsification (HD) were investigated from the macro and microscopic points of view. Specifically, the OBE particle size increased from 3.04 to 8.41 µm, while the zeta potential absolute decreased to 2.89 mV. The interfacial tension and apparent viscosity of OBE were reduced significantly. Heptanoic acid could contribute to oil droplets aggregation. The findings indicated that high-molecular proteins, including lipoxygenase (97.58 kDa) and arachin (70.28 kDa), detached from the OBs' interface. HD caused alterations in the secondary structure of protein and the environment around proteins changed. The HD mechanism was speculated that the addition of heptanoic acid resulted in the reduction in pH and changes of environment surrounding OBE, which triggered polymerization and the phase transformation of the oil droplets. Overall, this study is vital for solving the problem of demulsification during aqueous enzymatic extraction (AEE).
Collapse
Affiliation(s)
- Tianci Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Xiangrui Kong
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhihua Shao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yiyang Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chenxian Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Xin
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yifan Dong
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
3
|
Wang S, Guo Y, Xie D, Zheng L, Liu X, Wang Z. The underlying reasons for the efficient extraction of peanut oil by aqueous ethanol combined with roasting conditioning pretreatment. Food Chem 2024; 447:138934. [PMID: 38461714 DOI: 10.1016/j.foodchem.2024.138934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024]
Abstract
To overcome the disadvantages of severe emulsification and difficulty in obtaining free oil during aqueous extraction of peanut oil, the effect of roasting assisted aqueous ethanol extraction on free oil recovery was investigated. When peanut kernels were roasted at 180 °C for 10 min, free oil recovery increased from 57% to 96%, and the acid and peroxide values of the peanut oil met the requirements of good quality. The degree of hydration swelling of proteins in the extract increased, and soluble solids were easier to aggregate, resulting in reduced emulsification and significantly higher free oil recovery. The roasting conditions selected were found to significantly promote protein hydrophilicity, aggregation and fusion of oil bodies, as well as cell rupture, which facilitated the release of free oil but with a lower degree of protein denaturation. This study may promote the practical application of aqueous extraction technology for peanut oil.
Collapse
Affiliation(s)
- Sicheng Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yubao Guo
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Dan Xie
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Liyou Zheng
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xinyu Liu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Zhenzhen Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
4
|
Ding J, Qi L, Zhong L, Shang S, Zhu C, Lin S. Conformation-Activity Mechanism of Alcalase Hydrolysis for Reducing In Vitro Allergenicity of Instant Soy Milk Powder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10627-10639. [PMID: 38664940 DOI: 10.1021/acs.jafc.4c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Effective reduction of the allergenicity of instant soy milk powder (ISMP) is practically valuable for expanding its applications. This study optimized the enzymolysis technology of ISMP using single-factor experiments and response surface methodology, combined serological analysis, cellular immunological models, bioinformatics tools, and multiple spectroscopy techniques to investigate the effects of alcalase hydrolysis on allergenicity, spatial conformation, and linear epitopes of ISMP. Under the optimal process, special IgE and IgG1 binding abilities and allergenic activity to induce cell degranulation of alcalase-hydrolyzed ISMP were reduced by (64.72 ± 1.76)%, (56.79 ± 3.72)%, and (73.3 ± 1.19)%, respectively (P < 0.05). Moreover, the spatial conformation of instant soy milk powder hydrolysates (ISMPH) changed, including decreased surface hydrophobicity, a weaker peak of amide II band, lower contents of α-helix and β-sheet, and an enhanced content of random coil. Furthermore, the linear epitopes of major soy allergens, 9 from glycinin and 13 from β-conglycinin, could be directionally disrupted by alcalase hydrolysis. Overall, the structure-activity mechanism of alcalase hydrolysis to reduce ISMP allergenicity in vitro was preliminarily clarified. It provided a new research direction for the breakthrough in the desensitization of ISMP and a theoretical basis for revealing the potential mechanism of alcalase enzymolysis to reduce the allergenicity of ISMP.
Collapse
Affiliation(s)
- Jie Ding
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food of Liaoning Province, Engineering Research Center of Special Dietary Food of Liaoning Province, Dalian 116034, P. R. China
| | - Libo Qi
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Limin Zhong
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| | - Shan Shang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chunyan Zhu
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food of Liaoning Province, Engineering Research Center of Special Dietary Food of Liaoning Province, Dalian 116034, P. R. China
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| |
Collapse
|
5
|
Wang S, Guo Y, Zhu X, Xie D, Wang Z. Effects of the Roasting-Assisted Aqueous Ethanol Extraction of Peanut Oil on the Structure and Functional Properties of Dreg Proteins. Foods 2024; 13:758. [PMID: 38472872 DOI: 10.3390/foods13050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The effects of the roasting-assisted aqueous ethanol extraction of peanut oil on the structure and functional properties of dreg proteins were investigated to interpret the high free oil yield and provide a basis for the full utilization of peanut protein resources. The roasting-assisted aqueous ethanol extraction of peanut oil obtained a free oil yield of 97.74% and a protein retention rate of 75.80% in the dreg. The water-holding capacity of dreg proteins increased significantly, and the oil-holding capacity and surface hydrophobicity decreased significantly, reducing the binding ability with oil and thus facilitating the release of oil. Although the relative crystallinity and denaturation enthalpy of the dreg proteins decreased slightly, the denaturation temperatures remained unchanged. Infrared and Raman spectra identified decreases in the C-H stretching vibration, Fermi resonance and α-helix, and increases in random coil, β-sheet and β-turn, showing a slight decrease in the overall ordering of proteins. After the roasting treatment, 62.57-135.33% of the protein functional properties were still preserved. Therefore, the roasting-assisted aqueous ethanol extraction of peanut oil is beneficial for fully utilizing the oil and protein resources in peanuts.
Collapse
Affiliation(s)
- Sicheng Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yubao Guo
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xiuling Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Dan Xie
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhenzhen Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
6
|
Li T, Yang C, Liu K, Zhu T, Duan X, Xu Y. Demulsification of Emulsion Using Heptanoic Acid during Aqueous Enzymatic Extraction and the Characterization of Peanut Oil and Proteins Extracted. Foods 2023; 12:3523. [PMID: 37835176 PMCID: PMC10572140 DOI: 10.3390/foods12193523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Peanut oil body emulsion occurs during the process of aqueous enzymatic extraction (AEE). The free oil is difficult to release and extract because its structure is stable and not easily destroyed. Demulsification can release free oil in an oil body emulsion, so various fatty acids were selected for the demulsification. Changes in the amount of heptanoic acid added, solid-liquid ratio, reaction temperature, and reaction time were adopted to investigate demulsification, and the technological conditions of demulsification were optimized. While the optimal conditions were the addition of 1.26% of heptanoic acid, solid-liquid ratio of 1:3.25, reaction temperature of 72.7 °C, and reaction time of 55 min, the maximum free oil yield was (95.84 ± 0.19)%. The analysis of the fatty acid composition and physicochemical characterization of peanut oils extracted using four methods were studied during the AEE process. Compared with the amount of oil extracted via other methods, the unsaturated fatty acids of oils extracted from demulsification with heptanoic acid contained 78.81%, which was significantly higher than the other three methods. The results of physicochemical characterization indicated that the oil obtained by demulsification with heptanoic acid had a higher quality. According to the analysis of the amino acid composition, the protein obtained using AEE was similar to that of commercial peanut protein powder (CPPP). However, the essential amino acid content of proteins extracted via AEE was significantly higher than that of CPPP. The capacity of water (oil) holding, emulsifying activity, and foaming properties of protein obtained via AEE were better than those for CPPP. Overall, heptanoic acid demulsification is a potential demulsification method, thus, this work provides a new idea for the industrial application of simultaneous separation of oil and proteins via AEE.
Collapse
Affiliation(s)
| | - Chenxian Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (T.L.); (K.L.); (T.Z.); (X.D.); (Y.X.)
| | | | | | | | | |
Collapse
|
7
|
Gao Y, Zheng Y, Yao F, Chen F. A Novel Strategy for the Demulsification of Peanut Oil Body by Caproic Acid. Foods 2023; 12:3029. [PMID: 37628028 PMCID: PMC10453783 DOI: 10.3390/foods12163029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
The aqueous enzymatic method is a form of green oil extraction technology with limited industrial application, owing to the need for the demulsification of the oil body intermediate product. Existing demulsification methods have problems, including low demulsification rates and high costs, such that new methods are needed. The free fatty acids produced by lipid hydrolysis can affect the stability of peanut oil body (POB) at a certain concentration. After screening even-carbon fatty acids with carbon chain lengths below ten, caproic acid was selected for the demulsification of POB using response surface methodology and a Box-Behnken design. Under the optimal conditions (caproic acid concentration, 0.22%; solid-to-liquid ratio, 1:4.7 (w/v); time, 61 min; and temperature, 79 °C), a demulsification rate of 97.87% was achieved. Caproic acid not only adjusted the reaction system pH to cause the aggregation of the POB interfacial proteins, but also decreased the interfacial tension and viscoelasticity of the interfacial film with an increasing caproic acid concentration to realize POB demulsification. Compared to pressed oil and soxhlet-extracted oil, the acid value and peroxide value of the caproic acid demulsified oil were increased, while the unsaturated fatty acid content and oxidation induction time were decreased. However, the tocopherol and tocotrienol contents were higher than those of the soxhlet-extracted oil. This study provides a new method for the demulsification of POB.
Collapse
Affiliation(s)
| | | | | | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lian Hua Rd., Zhengzhou 450001, China; (Y.G.); (Y.Z.); (F.Y.)
| |
Collapse
|
8
|
Zheng X, Juan M, Kou X, Gao X, Liu J, Li S, Zheng B, Liu Y, Xue Z. Investigation on the emulsification mechanism in aqueous enzymatic extraction of edible oil from Schizochytrium sp. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2904-2913. [PMID: 36698261 DOI: 10.1002/jsfa.12471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The interaction between emulsified substances and lipids generates an emulsification system during the extraction of microalgae edible oil by aqueous enzymatic method. This study aimed to resolve the dynamics of interfacial protein adsorption during the extraction of microalgae oil at different enzymatic times and the effect on the stability of the interfacial membrane formed by the proteins based on interfacial effects. RESULTS At 1.5 h of enzymatic hydrolysis, the molecular weights of the proteins/peptides were all below 35 kD. In addition, the protein-peptide structure was loose, with the lowest number of disulfide bonds, peak surface hydrophobicity, the highest number of residues, and disordered lipid acyl arrangement. At the same time, the physical stability of the emulsion was the lowest, and the interfacial membrane rupture was distinct. On excessive enzymatic hydrolysis (at 3.0 h), a more uniform interfacial membrane was re-formed on the lipid surface. CONCLUSION Protein is the main emulsifying substance in the emulsification system. The addition of protease affects the stability of the interfacial membrane formed by proteins. In addition, sufficient enzymatic hydrolysis (1.5 h) inhibited emulsification, while excessive enzymatic hydrolysis (3.0 h) promoted emulsification. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xu Zheng
- Department of Food Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ma Juan
- Department of Food Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaohong Kou
- Department of Food Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xin Gao
- Department of Food Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jing Liu
- The College of Ecological Environmental and Resources, Qinghai Minzu University, Xining, China
| | - Shihao Li
- Department of Food Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Bowen Zheng
- Department of Food Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yazhou Liu
- Department of Food Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhaohui Xue
- Department of Food Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Burgos-Díaz C, Garrido-Miranda KA, Palacio DA, Chacón-Fuentes M, Opazo-Navarrete M, Bustamante M. Food-Grade Oil-in-Water (O/W) Pickering Emulsions Stabilized by Agri-Food Byproduct Particles. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
In recent years, emulsions stabilized by solid particles (known as Pickering emulsions) have gained considerable attention due to their excellent stability and for being environmentally friendly compared to the emulsions stabilized by synthetic surfactants. In this context, edible Pickering stabilizers from agri-food byproducts have attracted much interest because of their noteworthy benefits, such as easy preparation, excellent biocompatibility, and unique interfacial properties. Consequently, different food-grade particles have been reported in recent publications with distinct raw materials and preparation methods. Moreover, emulsions stabilized by solid particles can be applied in a wide range of industrial fields, such as food, biomedicine, cosmetics, and fine chemical synthesis. Therefore, this review aims to provide a comprehensive overview of Pickering emulsions stabilized by a diverse range of edible solid particles, specifically agri-food byproducts, including legumes, oil seeds, and fruit byproducts. Moreover, this review summarizes some aspects related to the factors that influence the stabilization and physicochemical properties of Pickering emulsions. In addition, the current research trends in applications of edible Pickering emulsions are documented. Consequently, this review will detail the latest progress and new trends in the field of edible Pickering emulsions for readers.
Collapse
|
10
|
Sorita GD, Favaro SP, Ambrosi A, Di Luccio M. Aqueous extraction processing: An innovative and sustainable approach for recovery of unconventional oils. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Gao Y, Zheng Y, Yao F, Chen F. Effects of pH and temperature on the stability of peanut oil bodies: New insights for embedding active ingredients. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Diasa FF, de Moura Bell JM. Understanding the impact of enzyme-assisted aqueous extraction on the structural, physicochemical, and functional properties of protein extracts from full-fat almond flour. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Dias FFG, Taha AY, Bell JMLNDM. Effects of enzymatic extraction on the simultaneous extraction of oil and protein from full-fat almond flour, insoluble microstructure, emulsion stability and functionality. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
Niu R, Zhou L, Chen F, Zhu T, Duan X. Effect of enzyme on the demulsification of emulsion during aqueous enzymatic extraction and the corresponding mechanism. Cereal Chem 2021. [DOI: 10.1002/cche.10401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ruihao Niu
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Longzheng Zhou
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Fusheng Chen
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Tingwei Zhu
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Xiaojie Duan
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| |
Collapse
|
15
|
Onaizi SA. Demulsification of crude oil/water nanoemulsions stabilized by rhamnolipid biosurfactant using enzymes and pH-swing. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118060] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Cao W, Shi L, Hao G, Chen J, Weng W. Effect of molecular weight on the emulsion properties of microfluidized gelatin hydrolysates. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Zhao Q, Li P, Wang M, Zhang W, Zhao W, Yang R. Fate of phospholipids during aqueous extraction processing of peanut and effect of demulsification treatments on oil-phosphorus-content. Food Chem 2020; 331:127367. [PMID: 32574946 DOI: 10.1016/j.foodchem.2020.127367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 05/30/2020] [Accepted: 06/14/2020] [Indexed: 11/16/2022]
Abstract
PC (phosphatidylcholine), PE (phosphatidylethanolamine), PI (phosphatidylinositol), and PA (phosphatidic acid) in 9 peanut matrices obtained during the AEP (aqueous extraction processing) of peanut were quantified employing HPLC-ELSD analysis in this study. Phosphorus contents of crude oils obtained from different demulsification treatments were also investigated. Decantation had a larger effect than grinding in terms of phospholipids loss due to alkaline-hydrolysis, indicating this processing step was vital for the manipulation of phospholipids levels remained in oil. Over 80% of initial phospholipids were lost during AEP and only 19.8% of initial phospholipids ended up in cream, skim and sediment phase. 52.55% of the remained phospholipids trapped in cream phase. Just 22.16-32.61 mg/kg phosphorus content could be detected in crude oils, which indicated the separation of phospholipids from the cream phase into aqueous medium. Degumming was not essential in AEP of peanut and the waste generated after demulsification could be a source of phospholipids.
Collapse
Affiliation(s)
- Qiyan Zhao
- State Key Laboratory of Food Science & Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Pengfei Li
- State Key Laboratory of Food Science & Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mingming Wang
- State Key Laboratory of Food Science & Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenbin Zhang
- State Key Laboratory of Food Science & Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Zhao
- State Key Laboratory of Food Science & Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Ruijin Yang
- State Key Laboratory of Food Science & Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
18
|
Idrovo Encalada AM, Pérez CD, Rossetti L, Rojas AM, Fissore EN. Carrot pectin enriched fraction as a functional additive: Antioxidant and gelling effects in a model spreadable chia oil-in-water emulsion. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Characterization and Demulsification of the Oil-Rich Emulsion from the Aqueous Extraction Process of Almond Flour. Processes (Basel) 2020. [DOI: 10.3390/pr8101228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aqueous extraction process (AEP) allows the concurrent extraction of oil and protein from almond flour without the use of harsh solvents. However, the majority of the oil extracted in the AEP is present in an emulsion that needs to be demulsified for subsequent industrial utilization. The effects of scaling-up the AEP of almond flour from 0.7 to 7 L and the efficiency of enzymatic and chemical approaches to demulsify the cream were evaluated. The AEP was carried out at pH 9.0, solids-to-liquid ratio of 1:10, and constant stirring of 120 rpm at 50 °C. Oil extraction yields of 61.9% and protein extraction yields of 66.6% were achieved. At optimum conditions, enzymatic and chemical demulsification strategies led to a sevenfold increase (from 8 to 66%) in the oil recovery compared with the control. However, enzymatic demulsification resulted in significant changes in the physicochemical properties of the cream protein and faster demulsification (29% reduction in the incubation time and a small reduction in the demulsification temperature from 55 to 50 °C) compared with the chemical approach. Reduced cream stability after enzymatic demulsification could be attributed to the hydrolysis of the amandin α-unit and reduced protein hydrophobicity. Moreover, the fatty acid composition of the AEP oil obtained from both demulsification strategies was similar to the hexane extracted oil.
Collapse
|
20
|
Impact of flocculant addition in oil recovery from multiphasic fermentations. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
de Souza TS, Dias FF, Koblitz MGB, de Moura Bell JM. Effects of enzymatic extraction of oil and protein from almond cake on the physicochemical and functional properties of protein extracts. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Ye J, Hua X, Zhao Q, Dong Z, Li Z, Zhang W, Yang R. Characteristics of alkali-extracted peanut polysaccharide-protein complexes and their ability as Pickering emulsifiers. Int J Biol Macromol 2020; 162:1178-1186. [PMID: 32615212 DOI: 10.1016/j.ijbiomac.2020.06.245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/01/2023]
Abstract
An alkaline isolation method was applied to extract polysaccharide from residues of peanut oil processing while retaining high protein content, in order to enhance the emulsifying ability of these materials. The obtained complexes (PECs) containing protein (13-18%, dry basis) were named as PEC8.0, PEC10.0 and PEC12.0 according to extraction pH values. The protein content of PECs increased with increasing extraction pH value, thereby the hydrophobicity was improved. Additionally, as extraction pH value increased to 10.0, the protein of PECs covalently bonded to polysaccharide and polysaccharide conformation unfolded simultaneously, thus particle size was enlarged. Furthermore, the increasing concentration of PECs further induced the formation of large complex particles. Then, they were used to stabilize the Pickering emulsions with oil fractions (φ) of 0.4-0.7. The emulsions stability especially the gel structure was maintained by the interactions of large particles adsorbed in the interface and those in the continuous phase. Stability analysis indicated the emulsifying capacity of PEC10.0 and PEC12.0 was superior to that of PEC8.0, due to difference of their particle properties. This suggested the promoting effect of alkali in preparation of polysaccharide-protein complex as good Pickering stabilizer.
Collapse
Affiliation(s)
- Jianfen Ye
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiao Hua
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Qiyan Zhao
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Ziyi Dong
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Zhuoyuan Li
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Wenbin Zhang
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Ruijin Yang
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China.
| |
Collapse
|
23
|
Zhou L, Chen F, Liu K, Zhu T, Jiang L. Combination of Alcalase 2.4 L and CaCl 2 for aqueous extraction of peanut oil. J Food Sci 2020; 85:1772-1780. [PMID: 32484970 DOI: 10.1111/1750-3841.15158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 11/28/2022]
Abstract
The combined application of CaCl2 and Alcalase 2.4 L to the aqueous extraction process of peanuts was evaluated as a method to destabilize the oil body (OB) emulsion and improve the oil yield. After adding 5 mM CaCl2 , the oil yield was reached to 92.0% which was similar with that obtained using Alcalase 2.4 L alone, and the required enzyme loading was decreased by approximately 60 times. In addition, the demulsification mechanism during aqueous extraction process was also investigated. Particle size and zeta-potential measurements indicated that the stability of the peanut OB emulsion dramatically decreased when CaCl2 was added. Under these conditions, the demulsification of Alcalase 2.4 L performed was more efficiently. SDS-PAGE results showed that adding CaCl2 changed the subunit structure of the peanut OB interface proteins and promoted the cross-linking among the arachin Ara h3 isoforms, resulting in unstable emulsions.
Collapse
Affiliation(s)
- Longzheng Zhou
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Kunlun Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Tingwei Zhu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
24
|
Zhang W, Peng H, Sun H, Hua X, Zhao W, Yang R. Effect of acidic moisture-conditioning as pretreatment for aqueous extraction of flaxseed oil with lower water consumption. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Effects of Processing Conditions on the Simultaneous Extraction and Distribution of Oil and Protein from Almond Flour. Processes (Basel) 2019. [DOI: 10.3390/pr7110844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The enzyme-assisted aqueous extraction process (EAEP) is an environmentally friendly strategy that simultaneously extracts oil and protein from several food matrices. The aim of this study was to investigate the effects of pH (6.5–9.5), temperature (45–55 °C), solids-to-liquid ratio (SLR) (1:12–1:8), and amount of enzyme (0.5–1.0%) on the extraction and separation of oil and protein from almond flour using a fractional factorial design. Oil and protein extraction yields from 61 to 75% and 64 to 79% were achieved, respectively. Experimental conditions resulting in higher extractability were subsequently replicated for validation of the observed effects. Oil and protein extraction yields of 75 and 72% were achieved under optimized extraction conditions (pH 9.0, 50 °C, 1:10 SLR, 0.5% (w/w) of enzyme, 60 min). Although the use of enzyme during the extraction did not lead to significant increase in extraction yields, it did impact the extracted protein functionality. The use of enzyme and alkaline pH (9.0) during the extraction resulted in the production of more soluble peptides at low pH (5.0), highlighting possible uses of the EAEP skim protein in food applications involving acidic pH. The implications of the use of enzyme during the extraction regarding the de-emulsification of the EAEP cream warrant further investigation.
Collapse
|
26
|
Liu W, Xiao B, Yang G, Bi Y, Chen F. Rapid Salt‐Assisted Microwave Demulsification of Oil‐Rich Emulsion Obtained by Aqueous Enzymatic Extraction of Peanut Seeds. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Liu
- College of Food Science and Technology Henan University of Technology Lianhua Street 100 Zhengzhou 450001 Henan Province P. R. China
| | - Bing Xiao
- College of Food Science and Technology Henan University of Technology Lianhua Street 100 Zhengzhou 450001 Henan Province P. R. China
| | - Guolong Yang
- College of Food Science and Technology Henan University of Technology Lianhua Street 100 Zhengzhou 450001 Henan Province P. R. China
| | - Yanlan Bi
- College of Food Science and Technology Henan University of Technology Lianhua Street 100 Zhengzhou 450001 Henan Province P. R. China
| | - Fusheng Chen
- College of Food Science and Technology Henan University of Technology Lianhua Street 100 Zhengzhou 450001 Henan Province P. R. China
| |
Collapse
|
27
|
Ye J, Hua X, Zhao Q, Zhao W, Chu G, Zhang W, Yang R. Chain conformation and rheological properties of an acid-extracted polysaccharide from peanut sediment of aqueous extraction process. Carbohydr Polym 2019; 228:115410. [PMID: 31635751 DOI: 10.1016/j.carbpol.2019.115410] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/21/2019] [Accepted: 09/29/2019] [Indexed: 12/20/2022]
Abstract
A polysaccharide (PPS) in peanut sediment of aqueous extraction process was obtained at pH4.0, purified via anion-exchange chromatography. The composition, chain conformation and rheological properties were investigated. PPS mainly consisted of arabinose, galacturonic acid, xylose, and rhamnose. The intrinsic viscosity [η] was 0.71 dL/g in 0.1 M NaNO3 solution. The weight-average molar mass Mw and polydispersity index were 3.77 × 105 g/mol and 1.25, suggesting high homogeneity. The average radius of gyration (Rg), hydrodynamic radius (Rh), Rg/Rh ratio and conformation parameter v were 25.5, 18.2, 1.40 and 0.21, respectively, indicating compact coil chain conformation with branched structure. Molecular morphology revealed that PPS displayed chain shape comprised of spheres with a diameter range of 15-50 nm and apparent length of chains mainly ranged from 100 to 300 nm. The aggregation caused by molecular self-association enhanced with concentration increasing. Additionally, Newtonian behavior was observed at various concentrations. Increase in temperature effectively broke this behavior. 10.0 wt.% PPS possessed activation energy of 21.7 KJ/mol, was structured liquid and almost fitted Cox-Merz rule. These closely related with its conformation and molecular self-association behavior.
Collapse
Affiliation(s)
- Jianfen Ye
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, China
| | - Xiao Hua
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, China
| | - Qiyan Zhao
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, China
| | - Wei Zhao
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, China
| | - Guanhe Chu
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, China
| | - Wenbin Zhang
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, China
| | - Ruijin Yang
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
28
|
Zhou LZ, Chen FS, Hao LH, Du Y, Liu C. Peanut Oil Body Composition and Stability. J Food Sci 2019; 84:2812-2819. [PMID: 31546282 DOI: 10.1111/1750-3841.14801] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/27/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022]
Abstract
This study was aimed to assess the effect of membrane structure on the stability of peanut oil bodies extracted by enzyme-assisted extraction. The influence of pH, NaCl concentration, and temperature on the physicochemical properties of peanut oil bodies was characterized using ζ-potential and particle size. The results indicated that the peanut oil bodies had strong stability (ζ-potential, >20 mV) at pH values away from the isoelectric point (pH 4.8), at a low salt concentration (NaCl concentration, <10 mM), and in a certain temperature range (35 to 55 °C). The stable structure of the oil body was closely related to its structure. Phospholipids, along with membrane proteins, were major components of the oil body membrane. Therefore, the phospholipid composition and content were measured and the types of membrane proteins of the oil bodies were identified. The results showed that phosphatidylcholine and phosphatidylserine were major components of the oil body phospholipids. Two-dimensional electrophoresis showed that the oil bodies contained both intrinsic proteins and extrinsic proteins, which might play an important role in the stability of oil bodies during enzyme-assisted extraction processing.
Collapse
Affiliation(s)
- Long-Zheng Zhou
- College of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, 450001, China
| | - Fu-Sheng Chen
- College of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, 450001, China
| | - Li-Hua Hao
- College of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, 450001, China.,Henan Institute of Product Quality Supervision and Inspection
| | - Yan Du
- College of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, 450001, China
| | - Chen Liu
- College of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, 450001, China
| |
Collapse
|
29
|
Aqueous and Enzymatic Extraction of Oil and Protein from Almond Cake: A Comparative Study. Processes (Basel) 2019. [DOI: 10.3390/pr7070472] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The almond cake is a protein- and oil-rich by-product of the mechanical expression of almond oil that has the potential to be used as a source of valuable proteins and lipids for food applications. The objectives of this study were to evaluate the individual and combined effects of solids-to-liquid ratio (SLR), reaction time, and enzyme use on oil and protein extraction yields from almond cake. A central composite rotatable design was employed to maximize the overall extractability and distribution of extracted components among the fractions generated by the aqueous (AEP) and enzyme-assisted aqueous extraction process (EAEP). Simultaneous extraction of oil and protein by the AEP was favored by the use of low SLR (1:12.82) and longer reaction times (2 h), where extraction yields of 48.2% and 70% were achieved, respectively. Increased use of enzyme (0.85%) in the EAEP resulted in higher oil (50%) and protein (75%) extraction yields in a shorter reaction time (1 h), compared with the AEP at the same reaction time (41.6% oil and 70% protein extraction). Overall, extraction conditions that favored oil and protein extraction also favored oil yield in the cream and protein yield in the skim. However, increased oil yield in the skim was observed at conditions where higher oil extraction was achieved. In addition to improving oil and protein extractability, the use of enzyme during the extraction resulted in the production of skim fractions with smaller and more soluble peptides at low pH (5.0), highlighting possible uses of the EAEP skim in food applications involving acidic pH. The implications of the use of enzyme during the extraction regarding the de-emulsification of the EAEP cream warrant further investigation.
Collapse
|
30
|
Ye J, Hua X, Wang M, Zhang W, Yang R. Effect of extraction pH on the yield and physicochemical properties of polysaccharides extracts from peanut sediment of aqueous extraction process. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Li Y, Xiang D. Stability of oil-in-water emulsions performed by ultrasound power or high-pressure homogenization. PLoS One 2019; 14:e0213189. [PMID: 30849091 PMCID: PMC6407764 DOI: 10.1371/journal.pone.0213189] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/16/2019] [Indexed: 11/28/2022] Open
Abstract
Emulsifiers are added to enhance product stability to obtain a satisfactory shelf-life. For this reason, stable emulsions that do not form peroxides nor change the fatty acid composition of food, as well as safe treatments to obtain them, are aspects of utmost importance. High-pressure homogenization is a conventional approach to prepare emulsions because of its high efficiency. In addition, the beneficial effects of ultrasound on the processing efficiency are known. Therefore, the impact of high-pressure homogenization (30 MPa, 50M Pa) or ultrasound power (270 W) on the emulsion stability and emulsifying properties of 5% coconut oil-in-water emulsion were discussed in this study. The complexes (3:7and 4:6, by weight) of propylene glycol alginate and xanthan gum were selected as emulsifier. The apparent viscosity, particle size and distribution, emulsifying properties and ζ-potential of 5% coconut oil-in-water emulsion before and after ultrasound treatment or high-pressure homogenization were investigated and compared. The micro structure of the emulsion was observed under the fluorescence microscope. The experimental results showed that both high-pressure homogenization and ultrasonic treatment effectively reduced the apparent viscosity, average droplet size and narrowed the distribution range of the emulsion, compared with the pre-emulsion. However, aggregation in the emulsion appeared only after being subjected to high-pressure homogenization, while the emulsion made by the ultrasound treatment remained stable during 30 days storage. In conclusion, this study provides valuable information regarding emulsion preparation methods that can be feasible in food and beverage industries, demonstrating a better performance of ultrasound in optimizing and extending food shelf-life in food and beverage industries.
Collapse
Affiliation(s)
- Yujie Li
- College of Food Science, Hainan University, Haikou, Hainan, China
| | - Dong Xiang
- College of Food Science, Hainan University, Haikou, Hainan, China
- Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education, Haikou, Hainan, China
| |
Collapse
|
32
|
Silva JP, Rodrigues AM, Silva LH. Aqueous Enzymatic Extraction of Buriti (Mauritia Flexuosa) Oil: Yield and Antioxidant Compounds. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1874256401911010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
Enzyme-assisted aqueous extraction is considered an emerging green technique that has been applied to different oilseeds.
Objective:
This study aimed to study the enzymatic aqueous extraction process of buriti oil using a central composite rotatable design (CCRD) combined with the response surface methodology aiming to obtain higher yield and antioxidant compounds in the oil.
Methods:
The study was carried out in two steps. The first assessed the efficiency of different enzymes (cellulase, pectinase, and protease) and the variables of greater influence in the extraction process, being conducted for each enzyme a CCRD design. The second step was carried out with the enzyme that showed the best performance on the extraction yield, changing the experimental bands of the variables that had greater significance in the first step, with the goal of broadening the spectrum of study. Were also evaluated in this step, total carotenoids, total phenolic compounds, and the antioxidant capacity of the oils extracted.
Results:
In the first experiment, cellulase gave the highest yield, while the most significant variables were temperature and time. For the second design, performed with cellulase, were defined as optimal operating conditions at 55 °C temperature, 2% enzyme concentration and 6 hours extraction. For these conditions, the yield obtained was 76.5%, with total carotenoid concentration of 3,119.5 µg β-carotene.g-1. Analysis of variance was performed and showed the significance of the regression and non-significance of the lack-of-fit (p<0.05). The coefficients of determination of the yield and carotenoid content were 95.6% and 94.5%, respectively. The highest value of total phenolic compounds determined for buriti oil in this study was 254 ± 5 µg GAE.g-1 oil, while for the antioxidant capacity was 218.0 ± 0.3 µmol Trolox.g-1 oil.
Conclusion:
The enzymatic aqueous extraction process is viable for buriti oil and produced oils with high concentrations of antioxidant compounds.
Collapse
|
33
|
Guo Y, Huang WC, Wu Y, Qi X, Mao X. Conformational changes of proteins and oil molecules in fish oil/water interfaces of fish oil-in-water emulsions stabilized by bovine serum albumin. Food Chem 2019; 274:402-406. [DOI: 10.1016/j.foodchem.2018.08.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 08/02/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
|
34
|
Liu J, Li P, Jiang Z, Yang R, Zhang W. Characterisation of peanut protein concentrates from industrial aqueous extraction processing prepared by spray and freeze drying methods. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Junjun Liu
- State Key Laboratory of Food Science & Technology Jiangnan University Wuxi 214122 China
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Pengfei Li
- Jiangsu JUNQI Grain and Oil Limited Co., LTD Nantong 226000 China
| | - Zhumao Jiang
- School of Life Sciences Yantai University Yantai Shandong 264000 China
| | - Ruijin Yang
- State Key Laboratory of Food Science & Technology Jiangnan University Wuxi 214122 China
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Wenbin Zhang
- State Key Laboratory of Food Science & Technology Jiangnan University Wuxi 214122 China
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|