1
|
Huang H, Yan W, Tan S, Zhao Y, Dong H, Liao W, Shi P, Yang X, He Q. Frontier in gellan gum-based microcapsules obtained by emulsification: Core-shell structure, interaction mechanism, intervention strategies. Int J Biol Macromol 2024; 272:132697. [PMID: 38843607 DOI: 10.1016/j.ijbiomac.2024.132697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
As a translucent functional gel with biodegradability, non-toxicity and acid resistance, gellan gum has been widely used in probiotic packaging, drug delivery, wound dressing, metal ion adsorption and other fields in recent years. Because of its remarkable gelation characteristics, gellan gum is suitable as the shell material of microcapsules to encapsulate functional substances, by which the functional components can improve stability and achieve delayed release. In recent years, many academically or commercially reliable products have rapidly emerged, but there is still a lack of relevant reports on in-depth research and systematic summaries regarding the process of microcapsule formation and its corresponding mechanisms. To address this challenge, this review focuses on the formation process and applications of gellan gum-based microcapsules, and details the commonly used preparation methods in microcapsule production. Additionally, it explores the impact of factors such as ion types, ion strength, temperature, pH, and others present in the solution on the performance of the microcapsules. On this basis, it summarizes and analyzes the prospects of gellan gum-based microcapsule products. The comprehensive insights from this review are expected to provide inspiration and design ideas for researchers.
Collapse
Affiliation(s)
- Huihua Huang
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Wenjing Yan
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Shuliang Tan
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yihui Zhao
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenzhen Liao
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Pengwei Shi
- Emergency Department, Nanfang Hospital, Southern Medical University, Guangzhou 510640, China
| | - Xingfen Yang
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Qi He
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China; South China Hospital, Shenzhen University, Shenzhen 518116, China.
| |
Collapse
|
2
|
Xu X, Tang Q, Gao Y, Chen S, Yu Y, Qian H, McClements DJ, Cao C, Yuan B. Recent developments in the fabrication of food microparticles and nanoparticles using microfluidic systems. Crit Rev Food Sci Nutr 2024; 65:2199-2213. [PMID: 38520155 DOI: 10.1080/10408398.2024.2329967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Microfluidics is revolutionizing the production of microparticles and nanoparticles, offering precise control over dimensions and internal structure. This technology facilitates the creation of colloidal delivery systems capable of encapsulating and releasing nutraceuticals. Nutraceuticals, often derived from food-grade ingredients, can be used for developing functional foods. This review focuses on the principles and applications of microfluidic systems in crafting colloidal delivery systems for nutraceuticals. It explores the foundational principles behind the development of microfluidic devices for nutraceutical encapsulation and delivery. Additionally, it examines the prospects and challenges with using microfluidics for functional food development. Microfluidic systems can be employed to form emulsions, liposomes, microgels and microspheres, by manipulating minute volumes of fluids flowing within microchannels. This versatility can enhance the dispersibility, stability, and bioavailability of nutraceuticals. However, challenges as scaling up production, fabrication complexity, and microchannel clogging hinder the widespread application of microfluidic technologies. In conclusion, this review highlights the potential role of microfluidics in design and fabrication of nutraceutical delivery systems. At present, this technology is most suitable for exploring the role of specific delivery system features (such as particle size, composition and morphology) on the stability and bioavailability of nutraceuticals, rather than for large-scale production of nutraceutical delivery systems.
Collapse
Affiliation(s)
- Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Qi Tang
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yating Gao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shaoqin Chen
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yingying Yu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongliang Qian
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| | | | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Bianchi JRDO, de la Torre LG, Costa ALR. Droplet-Based Microfluidics as a Platform to Design Food-Grade Delivery Systems Based on the Entrapped Compound Type. Foods 2023; 12:3385. [PMID: 37761094 PMCID: PMC10527709 DOI: 10.3390/foods12183385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Microfluidic technology has emerged as a powerful tool for several applications, including chemistry, physics, biology, and engineering. Due to the laminar regime, droplet-based microfluidics enable the development of diverse delivery systems based on food-grade emulsions, such as multiple emulsions, microgels, microcapsules, solid lipid microparticles, and giant liposomes. Additionally, by precisely manipulating fluids on the low-energy-demand micrometer scale, it becomes possible to control the size, shape, and dispersity of generated droplets, which makes microfluidic emulsification an excellent approach for tailoring delivery system properties based on the nature of the entrapped compounds. Thus, this review points out the most current advances in droplet-based microfluidic processes, which successfully use food-grade emulsions to develop simple and complex delivery systems. In this context, we summarized the principles of droplet-based microfluidics, introducing the most common microdevice geometries, the materials used in the manufacture, and the forces involved in the different droplet-generation processes into the microchannels. Subsequently, the encapsulated compound type, classified as lipophilic or hydrophilic functional compounds, was used as a starting point to present current advances in delivery systems using food-grade emulsions and their assembly using microfluidic technologies. Finally, we discuss the limitations and perspectives of scale-up in droplet-based microfluidic approaches, including the challenges that have limited the transition of microfluidic processes from the lab-scale to the industrial-scale.
Collapse
Affiliation(s)
- Jhonatan Rafael de Oliveira Bianchi
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas 13083-852, Brazil; (J.R.d.O.B.); (L.G.d.l.T.)
| | - Lucimara Gaziola de la Torre
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas 13083-852, Brazil; (J.R.d.O.B.); (L.G.d.l.T.)
| | - Ana Leticia Rodrigues Costa
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas 13083-852, Brazil; (J.R.d.O.B.); (L.G.d.l.T.)
- Institute of Exact and Technological Sciences, Federal University of Viçosa (UFV), Campus Florestal, Florestal 35690-000, Brazil
| |
Collapse
|
4
|
Progress and opportunities in Gellan gum-based materials: A review of preparation, characterization and emerging applications. Carbohydr Polym 2023; 311:120782. [PMID: 37028862 DOI: 10.1016/j.carbpol.2023.120782] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Gellan gum, a microbial exopolysaccharide, is biodegradable and has potential to fill several key roles in many fields from food to pharmacy, biomedicine and tissue engineering. In order to improve the physicochemical and biological properties of gellan gum, some researchers take advantage of numerous hydroxyl groups and the free carboxyl present in each repeating unit. As a result, design and development of gellan-based materials have advanced significantly. The goal of this review is to provide a summary of the most recent, high-quality research trends that have used gellan gum as a polymeric component in the design of numerous cutting-edge materials with applications in various fields.
Collapse
|
5
|
Design of shear-based microfluidic channels for production and stability assessment of food emulsions. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Santos MA, Okuro PK, Fonseca LR, Cunha RL. Protein-based colloidal structures tailoring techno- and bio-functionality of emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Food-grade microgel capsules tailored for anti-obesity strategies through microfluidic preparation. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Dias Meirelles AA, Rodrigues Costa AL, Michelon M, Viganó J, Carvalho MS, Cunha RL. Microfluidic approach to produce emulsion-filled alginate microgels. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Costa ALR, Willerth SM, de la Torre LG, Han SW. Trends in hydrogel-based encapsulation technologies for advanced cell therapies applied to limb ischemia. Mater Today Bio 2022; 13:100221. [PMID: 35243296 PMCID: PMC8866736 DOI: 10.1016/j.mtbio.2022.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ana Letícia Rodrigues Costa
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, SP, Brazil
| | - Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lucimara Gaziola de la Torre
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, SP, Brazil
| | - Sang Won Han
- Department of Biophysics, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
- Corresponding author.
| |
Collapse
|
10
|
Lacroix A, Hayert M, Bosc V, Menut P. Batch versus microfluidic emulsification processes to produce whey protein microgel beads from thermal or acidic gelation. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Logesh D, Vallikkadan MS, Leena MM, Moses J, Anandharamakrishnan C. Advances in microfluidic systems for the delivery of nutraceutical ingredients. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Benvenutti L, Zielinski AAF, Ferreira SRS. Jaboticaba (Myrtaceae cauliflora) fruit and its by-products: Alternative sources for new foods and functional components. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Jurinjak Tušek A, Šalić A, Valinger D, Jurina T, Benković M, Kljusurić JG, Zelić B. The power of microsystem technology in the food industry – Going small makes it better. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Porto Santos T, Cejas CM, Cunha RL, Tabeling P. Unraveling driving regimes for destabilizing concentrated emulsions within microchannels. SOFT MATTER 2021; 17:1821-1833. [PMID: 33399611 DOI: 10.1039/d0sm01674h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coalescence is the most widely demonstrated mechanism for destabilizing emulsion droplets in microfluidic chambers. However, we find that depending on the channel wall surface functionalization, surface zeta potential, type of surfactant, characteristics of the oil as a dispersed phase, or even the presence of externally-induced stress, other different destabilization mechanisms can occur in subtle ways. In general, we observe four regimes leading to destabilization of concentrated emulsions: (i) coalescence, (ii) emulsion bursts, (iii) a combination of the two first mechanisms, attributed to the simultaneous occurrence of coalescence and emulsion bursts; and (iv) compaction of the droplet network that eventually destabilizes to fracture-like behavior. We correlate various physico-chemical properties (zeta potential, contact angle, interfacial tension) to understand their respective influence on the destabilization mechanisms. This work provides insights into possible ways to control or inflict emulsion droplet destabilization for different applications.
Collapse
Affiliation(s)
- Tatiana Porto Santos
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80-CEP 13083-862 Campinas, Brazil. and Microfluidics, MEMS, Nanostructures Laboratory, CNRS Chimie Biologie Innovation (CBI) UMR 8231, Institut Pierre Gilles de Gennes (IPGG), ESPCI Paris, PSL Research University, 6 rue Jean Calvin 75005, Paris, France.
| | - Cesare M Cejas
- Microfluidics, MEMS, Nanostructures Laboratory, CNRS Chimie Biologie Innovation (CBI) UMR 8231, Institut Pierre Gilles de Gennes (IPGG), ESPCI Paris, PSL Research University, 6 rue Jean Calvin 75005, Paris, France.
| | - Rosiane Lopes Cunha
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80-CEP 13083-862 Campinas, Brazil.
| | - Patrick Tabeling
- Microfluidics, MEMS, Nanostructures Laboratory, CNRS Chimie Biologie Innovation (CBI) UMR 8231, Institut Pierre Gilles de Gennes (IPGG), ESPCI Paris, PSL Research University, 6 rue Jean Calvin 75005, Paris, France.
| |
Collapse
|