1
|
Saubade F, Cossec N, Giguelay Gesret L, Kouamé C, Ellouze M, Gérard C, Couvert O, Desriac N. Heat resistance of five spoilage microorganisms in a carbonated broth. Food Microbiol 2024; 122:104545. [PMID: 38839231 DOI: 10.1016/j.fm.2024.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 06/07/2024]
Abstract
Despite their acidic pH, carbonated beverages can be contaminated by spoilage microorganisms. Thermal treatments, before and/or after carbonation, are usually applied to prevent the growth of these microorganisms. However, the impact of CO2 on the heat resistance of spoilage microorganisms has never been studied. A better understanding of the combined impact of CO2 and pH on the heat resistance of spoilage microorganisms commonly found in carbonated beverages might allow to optimize thermal treatment. Five microorganisms were selected for this study: Alicyclobacillus acidoterrestris (spores), Aspergillus niger (spores), Byssochlamys fulva (spores), Saccharomyces cerevisiae (vegetative cells), and Zygosaccharomyces parabailii (vegetative cells). A method was developed to assess the impact of heat treatments in carbonated media on microbial resistance. The heat resistances of the five studied species are coherent with the literature, when data were available. However, neither the dissolved CO2 concentration (from 0 to 7 g/L), nor the pH (from 2.8 to 4.1) have an impact on the heat resistance of the selected microorganisms, except for As. niger, for which the presence of dissolved CO2 reduced the heat resistance. This study improved our knowledge about the heat resistance of some spoilage microorganisms in presence of CO2.
Collapse
Affiliation(s)
- Fabien Saubade
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000, Quimper, France.
| | - Noëmie Cossec
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000, Quimper, France.
| | - Luc Giguelay Gesret
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000, Quimper, France.
| | - Christelle Kouamé
- NPTC Nestlé Waters, 1020 avenue Georges Clémenceau, F-88800, Vittel, France.
| | | | | | - Olivier Couvert
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000, Quimper, France.
| | - Noémie Desriac
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000, Quimper, France.
| |
Collapse
|
2
|
Napiórkowska A, Khaneghah AM, Kurek MA. Essential Oil Nanoemulsions-A New Strategy to Extend the Shelf Life of Smoothies. Foods 2024; 13:1854. [PMID: 38928796 PMCID: PMC11202876 DOI: 10.3390/foods13121854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Over the years, consumer awareness of proper, healthy eating has increased significantly, but the consumption of fruits and vegetables remains too low. Smoothie drinks offer a convenient way to supplement daily diets with servings of fruits and vegetables. These ready-to-eat beverages retain the nutritional benefits of the raw ingredients from which they are made. Furthermore, they cater to the growing demand for quick and nutritious meal options. To meet consumer expectations, current trends in the food market are shifting towards natural, high-quality products with minimal processing and extended shelf life. Food manufacturers are increasingly aiming to reduce or eliminate synthetic preservatives, replacing them with plant-based alternatives. Plant-based preservatives are particularly appealing to consumers, who often view them as natural and organic substitutes for conventional preservatives. Essential oils, known for their antibacterial and antifungal properties, are effective against the microorganisms and fungi present in fruit and vegetable smoothies. However, the strong taste and aroma of essential oils can be a significant drawback, as the concentrations needed for microbiological stability are often unpalatable to consumers. Encapsulation of essential oils in nanoemulsions offers a promising and effective solution to these challenges, allowing for their use in food production without compromising sensory qualities.
Collapse
Affiliation(s)
- Alicja Napiórkowska
- Department of Technique and Food Development, Warsaw, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, bud. 32, pok. 109B, 02-787 Warszawa, Poland;
| | - Amin Mousavi Khaneghah
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran 1435713715, Iran;
| | - Marcin Andrzej Kurek
- Department of Technique and Food Development, Warsaw, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, bud. 32, pok. 109B, 02-787 Warszawa, Poland;
| |
Collapse
|
3
|
Torres-Ossandón MJ, Castillo L, Uribe E, Bilbao-Sainz C, Ah-Hen KS, Vega-Gálvez A. Combined Effect of High Hydrostatic Pressure and Proteolytic Fraction P1G10 from Vasconcellea cundinamarcensis Latex against Botrytis cinerea in Grape Juice. Foods 2023; 12:3400. [PMID: 37761109 PMCID: PMC10530099 DOI: 10.3390/foods12183400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The effect of high hydrostatic pressure (HHP) and the proteolytic fraction P1G10 from papaya latex was studied to find out whether a synergy exists in the growth inhibition of Botrytis cinerea in grape juice, contributing to the improvement of conservation techniques and extending the shelf life and quality of food products. Grape juice (GJ) diluted to 16 °Brix with a water activity (aw) of 0.980 was prepared from a concentrated GJ and used in this study. Results indicated a 92% growth inhibition of B. cinerea when exposed to 1 mg/mL of P1G10 and 250 MPa/4 min of pressure treatment. The proximate composition and antioxidant compounds present in the GJ were not significantly affected after the treatments. Eight phenolic compounds and two flavonoids in GJ were identified and quantified, with values fluctuating between 12.77 ± 0.51 and 240.40 ± 20.9 mg/L in the control sample (0.1 MPa). The phenolic compounds showed a significant decrease after the applied treatments, with the HHP sample having a content of 65.4 ± 6.9 mg GAE/100 mL GJ. In conclusion, a synergistic effect at moderate HHP of 250 MPa/4 min with the addition of P1G10 was observed, and the successful development of a stable and acceptable GJ product was possible.
Collapse
Affiliation(s)
- María José Torres-Ossandón
- Laboratorio de Biotecnología y Microbiología Aplicada, Departamento en Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago 9170022, Chile
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Luis Castillo
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Elsa Uribe
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
- Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Cristina Bilbao-Sainz
- Healthy Processed Foods Research, U.S. Department of Agriculture, Albany, CA 94710, USA
| | - Kong Shun Ah-Hen
- Instituto de Ciencia y Tecnología de los Alimentos, Universidad Austral de Chile, Avda. Julio Sarrazín sn, Valdivia 5090000, Chile
| | - Antonio Vega-Gálvez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| |
Collapse
|
4
|
Lopes SJS, S Sant'Ana A, Freire L. Non-thermal emerging processing Technologies: Mitigation of microorganisms and mycotoxins, sensory and nutritional properties maintenance in clean label fruit juices. Food Res Int 2023; 168:112727. [PMID: 37120193 DOI: 10.1016/j.foodres.2023.112727] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 05/01/2023]
Abstract
The increase in the fruit juice consumption and the interest in clean label products boosted the development and evaluation of new processing technologies. The impact of some emerging non-thermal technologies in food safety and sensory properties has been evaluated. The main technologies applied in the studies are ultrasound, high pressure, supercritical carbon dioxide, ultraviolet, pulsed electric field, cold plasma, ozone and pulsed light. Since there is no single technique that presents high potential for all the evaluated requirements (food safety, sensory, nutritional and the feasibility of implementation in the industry), the search for new technologies to overcome the limitations is fundamental. The high pressure seems to be the most promising technology regarding all the aspects mentioned. Some of the outstanding results are 5 log reduction of E. coli, Listeria and Salmonella, 98.2% of polyphenol oxidase inactivation and 96% PME reduction. However its cost can be a limitation for industrial implementation. The combination of pulsed light and ultrasound could overcome this limitation and provide higher quality fruit juices. The combination was able to achieve 5.8-6.4 log cycles reduction of S. Cerevisiae, and pulsed light is able to obtain PME inactivation around 90%, 61.0 % more antioxidants, 38.8% more phenolics and 68.2% more vitamin C comparing to conventional processing, and similar sensory scores after 45 days at 4 °C comparing to fresh fruit juice. This review aims to update the information related to the application of non-thermal technologies in the fruit juice processing through systematic and updated data to assist in industrial implementation strategies.
Collapse
Affiliation(s)
- Simone J S Lopes
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Luísa Freire
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul. Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
5
|
Pinto CA, Galante D, Espinoza-Suarez E, Gaspar VM, Mano JF, Barba FJ, Saraiva JA. Development Control and Inactivation of Byssochlamys nivea Ascospores by Hyperbaric Storage at Room Temperature. Foods 2023; 12:978. [PMID: 36900495 PMCID: PMC10001197 DOI: 10.3390/foods12050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
This study tested hyperbaric storage (25-150 MPa, for 30 days) at room-temperature (HS/RT, 18-23 °C) in order to control the development of Byssochlamys nivea ascospores in apple juice. In order to mimic commercially pasteurized juice contaminated with ascospores, thermal pasteurization (70 and 80 °C for 30 s) and nonthermal high pressure pasteurization (600 MPa for 3 min at 17 °C, HPP) took place, and the juice was afterwards placed under HS/RT conditions. Control samples were also placed in atmospheric pressure (AP) conditions at RT and were refrigerated (4 °C). The results showed that HS/RT, in samples without a pasteurization step and those pasteurized at 70 °C/30 s, was able to inhibit ascospore development, contrarily to samples at AP/RT and refrigeration. HS/RT for samples pasteurized at 80 °C/30 s evidenced ascospore inactivation, especially at 150 MPa, wherein an overall reduction of at least 4.73 log units of ascospores was observed to below detection limits (1.00 Log CFU/mL); meanwhile, for HPP samples, especially at 75 and 150 MPa, an overall reduction of 3 log units (to below quantification limits, 2.00 Log CFU/mL) was observed. Phase-contrast microscopy revealed that the ascospores do not complete the germination process under HS/RT, hence avoiding hyphae formation, which is important for food safety since mycotoxin development occurs only after hyphae formation. These findings suggest that HS/RT is a safe food preservation methodology, as it prevents ascospore development and inactivates them following commercial-like thermal or nonthermal HPP pasteurization, preventing mycotoxin production and enhancing ascospore inactivation.
Collapse
Affiliation(s)
- Carlos A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diogo Galante
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Vítor M. Gaspar
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João F. Mano
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain
| | - Jorge A. Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Ravichandran C, Jayachandran LE, Kothakota A, Pandiselvam R, Balasubramaniam V. Influence of high pressure pasteurization on nutritional, functional and rheological characteristics of fruit and vegetable juices and purees-an updated review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Ultrasonic Processing of Food Waste to Generate Value-Added Products. Foods 2022; 11:foods11142035. [PMID: 35885279 PMCID: PMC9319240 DOI: 10.3390/foods11142035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Ultrasonic processing has a great potential to transform waste from the food and agriculture industry into value-added products. In this review article, we discuss the use of ultrasound for the valorisation of food and agricultural waste. Ultrasonic processing is considered a green technology as compared to the conventional chemical extraction/processing methods. The influence of ultrasound pre-treatment on the soluble chemical oxygen demand (SCOD), particle size, and cell wall content of food waste is first discussed. The use of ultrasonic processing to produce/extract bioactives such as oil, polyphenolic, polysaccharides, fatty acids, organic acids, protein, lipids, and enzymes is highlighted. Moreover, ultrasonic processing in bioenergy production from food waste such as green methane, hydrogen, biodiesel, and ethanol through anaerobic digestion is also reviewed. The conversion of waste oils into biofuels with the use of ultrasound is presented. The latest developments and future prospective on the use of ultrasound in developing energy-efficient methods to convert food and agricultural waste into value-added products are summarised.
Collapse
|
8
|
Koutsoumanis K, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Castle L, Crotta M, Grob K, Milana MR, Petersen A, Roig Sagués AX, Vinagre Silva F, Barthélémy E, Christodoulidou A, Messens W, Allende A. The efficacy and safety of high-pressure processing of food. EFSA J 2022; 20:e07128. [PMID: 35281651 PMCID: PMC8902661 DOI: 10.2903/j.efsa.2022.7128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-pressure processing (HPP) is a non-thermal treatment in which, for microbial inactivation, foods are subjected to isostatic pressures (P) of 400-600 MPa with common holding times (t) from 1.5 to 6 min. The main factors that influence the efficacy (log10 reduction of vegetative microorganisms) of HPP when applied to foodstuffs are intrinsic (e.g. water activity and pH), extrinsic (P and t) and microorganism-related (type, taxonomic unit, strain and physiological state). It was concluded that HPP of food will not present any additional microbial or chemical food safety concerns when compared to other routinely applied treatments (e.g. pasteurisation). Pathogen reductions in milk/colostrum caused by the current HPP conditions applied by the industry are lower than those achieved by the legal requirements for thermal pasteurisation. However, HPP minimum requirements (P/t combinations) could be identified to achieve specific log10 reductions of relevant hazards based on performance criteria (PC) proposed by international standard agencies (5-8 log10 reductions). The most stringent HPP conditions used industrially (600 MPa, 6 min) would achieve the above-mentioned PC, except for Staphylococcus aureus. Alkaline phosphatase (ALP), the endogenous milk enzyme that is widely used to verify adequate thermal pasteurisation of cows' milk, is relatively pressure resistant and its use would be limited to that of an overprocessing indicator. Current data are not robust enough to support the proposal of an appropriate indicator to verify the efficacy of HPP under the current HPP conditions applied by the industry. Minimum HPP requirements to reduce Listeria monocytogenes levels by specific log10 reductions could be identified when HPP is applied to ready-to-eat (RTE) cooked meat products, but not for other types of RTE foods. These identified minimum requirements would result in the inactivation of other relevant pathogens (Salmonella and Escherichia coli) in these RTE foods to a similar or higher extent.
Collapse
|
9
|
Houška M, Silva FVM, Evelyn, Buckow R, Terefe NS, Tonello C. High Pressure Processing Applications in Plant Foods. Foods 2022; 11:223. [PMID: 35053954 PMCID: PMC8774875 DOI: 10.3390/foods11020223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 02/04/2023] Open
Abstract
High pressure processing (HPP) is a cold pasteurization technology by which products, prepacked in their final package, are introduced to a vessel and subjected to a high level of isostatic pressure (300-600 MPa). High-pressure treatment of fruit, vegetable and fresh herb homogenate products offers us nearly fresh products in regard to sensorial and nutritional quality of original raw materials, representing relatively stable and safe source of nutrients, vitamins, minerals and health effective components. Such components can play an important role as a preventive tool against the start of illnesses, namely in the elderly. An overview of several food HPP products, namely of fruit and vegetable origin, marketed successfully around the world is presented. Effects of HPP and HPP plus heat on key spoilage and pathogenic microorganisms, including the resistant spore form and fruit/vegetable endogenous enzymes are reviewed, including the effect on the product quality. Part of the paper is devoted to the industrial equipment available for factories manufacturing HPP treated products.
Collapse
Affiliation(s)
- Milan Houška
- Food Research Institute Prague, 102 00 Prague, Czech Republic
| | - Filipa Vinagre Marques Silva
- LEAF, Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Evelyn
- Department of Chemical Engineering, University of Riau, Pekanbaru 28293, Indonesia;
| | - Roman Buckow
- Faculty of Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2006, Australia;
| | | | - Carole Tonello
- Hiperbaric, S. A., Condado de Trevino, 6, 09001 Burgos, Spain;
| |
Collapse
|
10
|
Hashemi Moosavi M, Mousavi Khaneghah A, Javanmardi F, Hadidi M, Hadian Z, Jafarzadeh S, Huseyn E, Sant'Ana AS. A review of recent advances in the decontamination of mycotoxin and inactivation of fungi by ultrasound. ULTRASONICS SONOCHEMISTRY 2021; 79:105755. [PMID: 34562735 PMCID: PMC8476429 DOI: 10.1016/j.ultsonch.2021.105755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 05/15/2023]
Abstract
Innovative technologies for the pasteurization of food products have increased due to the global demand for higher-quality food products. In this regard, the current article aimed to provide an overview regarding the latest research on US application in the decontamination of fungi in food products and highlight the parameters influencing the effectiveness of this method. Therefore, the related article with inactivation of fungi and mycotoxins by ultrasound among last four years (2018-2021) by using terms such as 'mycotoxin,' 'inactivation,' 'ultrasound,' 'decontamination' among some international databases such as PubMed, Web of Science, Embase and Google Scholar" was retrieved. Ultrasound (US) is considered a non-thermal decontamination method for food products. In US, the release of energy due to the acoustic phenomenon destroys microorganisms. This technology is advantageous as it is inexpensive, eco-friendly, and does not negatively affect food products' food structure and organoleptic properties. The influence of the US on food structure and organoleptic properties dramatically depends on the intensity and energy density applied In addition, it can preserve higher levels of ascorbic acid, lycopene, and chlorophyll in sonicated food products. The treatment conditions, including frequency, intensity, duration, temperature, and processing pressure, influence the effectiveness of decontamination. However, US displays synergistic or antagonistic effects on bacteria, yeasts, molds, and mycotoxins when combined with other types of decontamination methods such as chemical and thermal approaches. Thus, further research is needed to clarify these effects. Overall, the application of US methods in the food industry for decreasing the microbial content of food products during processing has been applied. However, the use of US with other techniques needs to be studied further.
Collapse
Affiliation(s)
- Motahareh Hashemi Moosavi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| | - Fardin Javanmardi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Zahra Hadian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Jafarzadeh
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Elcin Huseyn
- Research Laboratory of Intelligent Control and Decision Making Systems in, Industry and Economics, Azerbaijan State Oil and Industry University, Azerbaijan
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
11
|
Emerging Non-Thermal Technologies as Alternative to SO 2 for the Production of Wine. Foods 2021; 10:foods10092175. [PMID: 34574285 PMCID: PMC8469166 DOI: 10.3390/foods10092175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
SO2 is an antioxidant and selective antimicrobial additive, inhibiting the growth of molds in the must during the early stages of wine production, as well as undesirable bacteria and yeasts during fermentation, thus avoiding microbial spoilage during wine production and storage. The addition of SO2 is regulated to a maximum of 150–350 ppm, as this chemical preservative can cause adverse effects in consumers such as allergic reactions. Therefore, the wine industry is interested in finding alternative strategies to reduce SO2 levels, while maintaining wine quality. The use of non-thermal or cold pasteurization technologies for wine preservation was reviewed. The effect of pulsed electric fields (PEF), high pressure processing (HPP), power ultrasound (US), ultraviolet irradiation (UV), high pressure homogenization (HPH), filtration and low electric current (LEC) on wine quality and microbial inactivation was explored and the technologies were compared. PEF and HPP proved to be effective wine pasteurization technologies as they inactivate key wine spoilage yeasts, including Brettanomyces, and bacteria in short periods of time, while retaining the characteristic flavor and aroma of the wine produced. PEF is a promising technology for the beverage industry as it is a continuous process, requiring only microseconds of processing time for the inactivation of undesirable microbes in wines, with commercial scale, higher throughput production potential.
Collapse
|
12
|
Razali MF, Narayanan S, Md. Hazmi NA, Abdul Karim Shah NN, Mustapa Kamal SM, Mohd Fauzi NA, Sulaiman A. Minimal processing for goat milk preservation: Effect of high‐pressure processing on its quality. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Muhammad Faiz Razali
- Department of Process and Food Engineering Faculty of Engineering Universiti Putra Malaysia Serdang Malaysia
- Department of Chemical Engineering Technology, Faculty of Engineering Technology Universiti Tun Hussein Onn Malaysia (UTHM) Batu Pahat Malaysia
| | - Sangitha Narayanan
- Department of Process and Food Engineering Faculty of Engineering Universiti Putra Malaysia Serdang Malaysia
| | - Nurul Ashikin Md. Hazmi
- Department of Process and Food Engineering Faculty of Engineering Universiti Putra Malaysia Serdang Malaysia
- Food Biotechnology Research Center Agro‐Biotechnology Institute (ABI), National Institutes of Biotechnology Malaysia (NIBM), MARDI Headquarters Serdang Malaysia
| | - Nor Nadiah Abdul Karim Shah
- Department of Process and Food Engineering Faculty of Engineering Universiti Putra Malaysia Serdang Malaysia
| | - Siti Mazlina Mustapa Kamal
- Department of Process and Food Engineering Faculty of Engineering Universiti Putra Malaysia Serdang Malaysia
| | - Noor Akhmazillah Mohd Fauzi
- Department of Chemical Engineering Technology, Faculty of Engineering Technology Universiti Tun Hussein Onn Malaysia (UTHM) Batu Pahat Malaysia
| | - Alifdalino Sulaiman
- Department of Process and Food Engineering Faculty of Engineering Universiti Putra Malaysia Serdang Malaysia
| |
Collapse
|
13
|
Perera CO, Alzahrani MAJ. Ultrasound as a pre-treatment for extraction of bioactive compounds and food safety: A review. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Stefanello A, Magrini LN, Lemos JG, Garcia MV, Bernardi AO, Cichoski AJ, Copetti MV. Comparison of electrolized water and multiple chemical sanitizer action against heat-resistant molds (HRM). Int J Food Microbiol 2020; 335:108856. [DOI: 10.1016/j.ijfoodmicro.2020.108856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 01/13/2023]
|
15
|
Evelyn, Silva FV. Ultrasound assisted thermal inactivation of spores in foods: Pathogenic and spoilage bacteria, molds and yeasts. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|