1
|
Liu Y, Li XY, Li L, Yin YQ, Zhang HL, Wang KL, Zhou J, Chen Y, Zhang YH. A comprehensive evaluation of milk protein molecular weight distribution based on exclusion chromatography dataset. Food Chem 2024; 436:137725. [PMID: 37839124 DOI: 10.1016/j.foodchem.2023.137725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 09/19/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Molecular weight is one of the main characteristic parameters of proteins, which is the basis for the functional properties of milk protein. This research aims at establishing molecular weight distribution pattern of milk protein based on exclusion chromatography. The method selected Na3PO4-Na2SO4 (0.1 M, pH 6.7) buffer as the mobile phase and detected at 220 nm by HPLC-UV. The protein molecular weight distributions were determined and compared for human milk, bovine milk, and infant formula. The proportion of macromolecular proteins is much higher in infant formula compared to human or bovine milk. The protein molecular weights of human and bovine milk are significantly different around 90, 20, 14, and 2 kDa. The results provide holistic compare of bovine milk, human milk, and infant formula through protein molecular distribution. The new evaluation indicators for protein will drive technological simulation of infant formula.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China; Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot 011517, PR China
| | - Xiao-Yan Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ling Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Qi Yin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Han-Lin Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Kun-Long Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Jie Zhou
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yun Chen
- Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot 011517, PR China.
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Roberto JA, Costa Júnior EFDA, Costa AOSDA. Analysis of the conversion of cellulose present in lignocellulosic biomass for biofuel production. AN ACAD BRAS CIENC 2023; 95:e20220635. [PMID: 37909561 DOI: 10.1590/0001-3765202320220635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/19/2022] [Indexed: 11/03/2023] Open
Abstract
Among the steps for the conversion of biomass into bioenergy, there is enzymatic hydrolysis. However, factors such as composition, formation of inhibitors, inhibition and enzymatic deactivation can affect the yield and productivity of this process. Lignocellulosic biomass is composed of cellulose, hemicellulose and lignin. However, lignin is organized in a complex and non-uniform way, promotes biomass recalcitrance, which repress the enzymatic attack on cellulose to be converted into glucose, and, consequently, the production of biofuel. Thus, a challenge in enzymatic hydrolysis is to model the reaction behavior. In this context, this study aims to evaluate the performance in enzymatic hydrolysis for the conversion of cellulose present in sugarcane bagasse into glucose. Therefore, modeling and optimization will be proposed to produce high glucose concentration rates. Therefore, a previously developed study will be used, in which the authors proposed a kinetic model for the hydrolysis step. However, as a differential to what has been proposed, the calculation will be carried out evaluating the evaporation, in order to maximize the response to the glucose concentration. Thus, considering evaporation and optimized kinetic parameters, it was possible to obtain high rates of glucose concentration at 204.23 $g.L^{-1.
Collapse
Affiliation(s)
- Jaqueline A Roberto
- Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Esly F DA Costa Júnior
- Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Andréa O S DA Costa
- Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
3
|
Wang Y, Yang F, Liu T, Zhao C, Gu F, Du H, Wang F, Zheng J, Xiao H. Carotenoid fates in plant foods: Chemical changes from farm to table and nutrition. Crit Rev Food Sci Nutr 2022; 64:1237-1255. [PMID: 36052655 DOI: 10.1080/10408398.2022.2115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Carotenoids in plant foods are sources of pro-vitamin A and nutrients with several health benefits, including antioxidant and anticancer activities. However, humans cannot synthesize carotenoids de novo and must obtain them from the diet, typically via plant foods. We review the chemical changes of carotenoids in plant foods from farm to table and nutrition, including nutrient release and degradation during processing and metabolism in vivo. We also describe the influencing factors and proposals corresponding to enhancing the release, retention and utilization of carotenoids, thus benefiting human health. Processing methods influence the release and degradation of carotenoids, and nonthermal processing may optimize processing effects. The carotenoid profile, food matrix, and body status influence the digestion, absorption, and biotransformation of carotenoids in vivo; food design (diet and carotenoid delivery systems) can increase the bioavailability levels of carotenoids in the human body. In this review, the dynamic fate of carotenoids in plant foods is summarized systematically and deeply, focusing on changes in their chemical structure; identifying critical control points and influencing factors to facilitate carotenoid regulation; and suggesting multi-dimensional strategies based on the current state of food processing industries to achieve health benefits for consumers.
Collapse
Affiliation(s)
- Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feilong Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Fengying Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Feng Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
4
|
Basheeruddin M, Khan S, Ahmed N, Jamal S. Effect of pH on Diclofenac-Lysozyme Interaction: Structural and Functional Aspect. Front Mol Biosci 2022; 9:872905. [PMID: 35898307 PMCID: PMC9309515 DOI: 10.3389/fmolb.2022.872905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/03/2022] [Indexed: 11/15/2022] Open
Abstract
As a nonsteroidal antiinflammatory drug, diclofenac (DCF) is used in the treatment of a variety of human ailments. It has already been reported that the use of this class of drugs for a longer duration is associated with numerous side effects such as cardiovascular implications, reno-medullary complications, etc. In the present study, the effect of DCF on the structure, stability, and function of lysozyme was studied. The study was designed to examine the effect of DCF only at various pH values. Heat-induced denaturation of lysozyme was analyzed in the presence and absence of various molar concentrations of DCF at different pH values. The values of thermodynamic parameters, the midpoint of denaturation (T m), enthalpy change at T m (ΔH m), constant pressure heat capacity change (ΔC p), and Gibbs energy change at 25°C (ΔG D o), thus obtained under a given set of conditions (pH and molar concentration of DCF), demonstrated the following 1) DCF destabilized lysozyme with respect of T m and ΔG D o at all the pH values, 2) the magnitude of protein destabilization is lesser at acidic pH than at physiological pH, 3) structural changes in lysozyme are less projecting at pH 2.0 than at pH 7.0, and 4) quenching is observed at both pH values. Furthermore, the process of protein destabilization in the presence of DCF is entropically driven.
Collapse
Affiliation(s)
| | | | | | - Shazia Jamal
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| |
Collapse
|
5
|
Alhuthali S, Delaplace G, Macchietto S, Bouvier L. Whey protein fouling prediction in plate heat exchanger by combining dynamic modelling, dimensional analysis, and symbolic regression. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Kinetics of heat-induced changes in dairy products: Developments in data analysis and modelling techniques. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Jia W, Zhang M, Xu M, Shi L. Novel strategy to remove the odor in goat milk: Dynamic discovey magnetic field treatment to reduce the loss of phosphatidylcholine in flash vacuum from the proteomics perspective. Food Chem 2021; 375:131889. [PMID: 34953238 DOI: 10.1016/j.foodchem.2021.131889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/26/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
In present study, a precisely profile of PC species in goat milk was presented by quantitative lipidomics, and the matrix effect (bovine, goat and breast milk) on the lipase catalysis of PC metabolism patterns was explored via proteomics. The effects of flash vacuum and magnetic field processes to PC profile were investigated. Results showed PC(16:0_18:1) (1365.24 μg/mL) and PC(16:0_20:2) (1354.73 μg/mL) had the most abundant intensity in goat milk. Twelve novel bioactive lipases: LDHB, NSDHL, ALDH3B1, DPYD, ALDH1A1, ALDOC, ENO1, ALDOA, PRDX6, XDH, ENO3 and GAPDH were nuclear-localized in PC biosynthesis. PC in C15:0, C16:0 increased while C6:0, C8:0 decreased and the characterized protein XDH was about 91 times up regulated under 0.085 MPa, 65 °C flash vacuum and 5 mT magnetic field. The findings suggest different bioactive lipases show desirable effects on PC species metabolism, and magnetic field realize a beneficial programming impact on reducing the loss of PC.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Min Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Mudan Xu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
8
|
|
9
|
Sharma A, Macchietto S. Fouling and cleaning of plate heat exchangers: Dairy application. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2020.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Lacerda de Oliveira Campos B, Herrera Delgado K, Wild S, Studt F, Pitter S, Sauer J. Surface reaction kinetics of the methanol synthesis and the water gas shift reaction on Cu/ZnO/Al2O3. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00040c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detailed modeling of the methanol synthesis combining theoretical surface kinetics, catalyst structural changes, and a broad experimental validation.
Collapse
Affiliation(s)
- Bruno Lacerda de Oliveira Campos
- Institute for Catalysis Research and Technology (IKFT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Karla Herrera Delgado
- Institute for Catalysis Research and Technology (IKFT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Stefan Wild
- Institute for Catalysis Research and Technology (IKFT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Felix Studt
- Institute for Catalysis Research and Technology (IKFT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)
| | - Stephan Pitter
- Institute for Catalysis Research and Technology (IKFT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Jörg Sauer
- Institute for Catalysis Research and Technology (IKFT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| |
Collapse
|