1
|
Jin Y, Li X, Wu J, Xiao J, Mei X. Oleogels based on protein fibrils-hordein-xanthan gum complexes: Formation, structure, and physicochemical properties. Food Res Int 2025; 208:116244. [PMID: 40263855 DOI: 10.1016/j.foodres.2025.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Recently, oleogelators derived from natural biopolymers have received greater interest. In this study, whey protein isolate fibril (WPIF), ovalbumin fibril (OVAF), soybean protein isolate fibril (SPIF) and pea protein isolate fibril (PPIF) were used as structural agents and separately combined with hordein and xanthan gum (XG), to fabricate oleogels via emulsion template method. The TEM results of the complexes illustrated the crosslinked fibril networks were formed with hordein as the corresponding junctions, where XG coated on the fibril-hordein complex surface in nanoparticles. Hydrogen bonds and hydrophobic interactions were the main driving forces in the formation of fibrils-hordein binary complexes, and XG adhered to the binary complexes via electrostatic attraction. Fibrils affect the formation of oleogels by different interfacial behaviors of emulsions. The CLSM results revealed that oleogel based on OVAF had the densest network, followed by WPIF-, PPIF- and SPIF-based oleogels. Furthermore, the sequence of oil binding capacity, storage/loss modulus, viscosity, and hardness of the oleogels exhibited similar trends with that of the network density. In comparison with soybean oil, the release rates of the free fatty acids in the oleogel systems were notably reduced. This study provided new insights for developing protein fibrils-based oleogels.
Collapse
Affiliation(s)
- Yunan Jin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of P. R., Beijing, 100083, China
| | - Xiaomeng Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of P. R., Beijing, 100083, China
| | - Jingwen Wu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of P. R., Beijing, 100083, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohong Mei
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of P. R., Beijing, 100083, China.
| |
Collapse
|
2
|
Zhang J, Tang J, Shi S, Huang H, Li Y, Liu W, Shi J, Tong C, Pang J, Wu C. Research progress on marine polysaccharide-based Pickering emulsions and their potential applications in the food industry. Food Res Int 2025; 208:116073. [PMID: 40263875 DOI: 10.1016/j.foodres.2025.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/27/2025] [Accepted: 02/22/2025] [Indexed: 04/24/2025]
Abstract
Recently, natural biopolymers have increasingly been utilized to stabilize Pickering emulsions (PEs) for food applications. The research and development of marine polysaccharides is one of the hotspots in the field of PEs due to their low-cost, non-toxicity, abundant, and sustainability. This review aims to provide a comprehensive overview of the latest advancements in marine polysaccharide-based stabilized PEs systems. We begin with an introduction to the sources of marine polysaccharides and the methods for fabricating marine polysaccharide-based PEs. Following this, we summarize the role of natural marine polysaccharides and their complexes (combined with other polysaccharides, proteins, polyphenols, fatty acids, or other particles) as particles to form and stabilize PEs. Additionally, we detail the current applications of marine polysaccharide-based PEs in food packaging films/coatings, 3D printing, encapsulation and delivery of functional food ingredients, as well as in fat substitutes. Finally, potential future developments of PEs stabilized by marine polysaccharides in the food industry are also proposed. This review will provide valuable references to promote the application of marine polysaccharide-based PEs in the food sector.
Collapse
Affiliation(s)
- Jianxi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junjie Tang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Si Shi
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongyan Huang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanzhao Li
- Engineering University of Peoples Armed Police, Coll Equipment Management & Supportabil, Xian, Shaanxi, China
| | - Wenhao Liu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jie Shi
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Cailing Tong
- Xiamen Ocean Vocational College, Xiamen, Fujian, China.
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Liu W, Xu X, Liu W, Zeng X, Shi S, Zhang J, Tang J, Li Y, Pang J, Wu C. Construction of fucoxanthin-loaded multi-functional pea protein isolate-fucoidan nanoparticles at neutral pH: Structural characterization and functional verification. Int J Biol Macromol 2025; 309:142966. [PMID: 40216116 DOI: 10.1016/j.ijbiomac.2025.142966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
Fucoxanthin (FX), a marine-origin carotenoid, possesses various physiological activities. However, FX has instability and low water solubility. Encapsulation using nanoparticles effectively addresses these challenges. Nanoparticles loaded with FX were fabricated using a pH-driven method, with pea protein isolate (PPI) and fucoidan (FUC) serving as the raw materials. The optimal nanoparticles were prepared at pH = 7.0 with a PPI:FUC = 1:3, yielding a particle size of 166.60 ± 0.55 nm and a zeta potential of -40.88 ± 0.68 mV. The formation of FX@PPI/FUC nanoparticles were primarily driven by hydrogen bonding and hydrophobic interactions. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and fluorescence spectroscopy were used to research structure of nanoparticle and interaction during the formation. The FX@PPI/FUC nanoparticles demonstrated excellent thermal and pH stability in neutral and alkaline environments, effectively released FX and showcased antioxidant properties. Additionally, a W/O/W FX@PPI-FUC Pickering emulsion was formulated, containing 65 % of the oil phase, which exhibited a favorable particle size of 26.5 ± 0.28 μm and a zeta potential of -67.2 ± 0.94 mV. Furthermore, the FX@PPI-FUC Pickering emulsion demonstrated outstanding thermal and storage stability, indicating its potential for application in functional food.
Collapse
Affiliation(s)
- Wenhao Liu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoye Xu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wanjing Liu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinxin Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Si Shi
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jianxi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junjie Tang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanzhao Li
- College of Equipment Management and Support, Chinese People's Armed Police Force Engineering University, China
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Delmar K, Bianco-Peled H. Shellac-based nanoparticles provide highly stable Pickering emulsions. Int J Biol Macromol 2025; 307:141941. [PMID: 40074126 DOI: 10.1016/j.ijbiomac.2025.141941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/23/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
This study investigates the hypothesis that modified shellac nanoparticles (NPs) can effectively stabilize Pickering emulsions. Shellac, a natural polyester resin derived from the secretion of insects, was chemically modified using Jeffamine® M600 and Jeffamine® ED2003 to produce two NP types: Sh-M600 and Sh-ED2003, with sizes ranging from 127 to 183 nm. These NPs were used to stabilize oil-in-water emulsions with isopropyl myristate (IPM). Stability tests revealed that Sh-M600-stabzlized emulsions (up to 40 % oil) remained stable for 6 months, while Sh-ED2003-stabilized emulsions were stable with up to 65 % oil content, even under accelerated conditions. Cryo-SEM imaging confirmed NP accumulation at the oil-water interface, corroborated by reduced interfacial tension in the presence of NP. Adsorption energy calculations demonstrated the superior stabilization capacity of Sh-ED2003 NPs over Sh-M600 NPs. Rheological analysis further supported these findings, showing consistently higher viscosity viscosities for Sh-ED2003-stabilized emulsions across all oil percentages, attributed to the higher molecular weight of its modifier. Collectively, this study demonstrates the effectiveness of tailored shellac NPs in stabilizing robust emulsions, offering potential applications in food, pharmaceuticals, and agriculture.
Collapse
Affiliation(s)
- Keren Delmar
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Havazelet Bianco-Peled
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
5
|
Heidari-Dalfard F, Tavasoli S, Assadpour E, Miller R, Jafari SM. Surface modification of particles/nanoparticles to improve the stability of Pickering emulsions; a critical review. Adv Colloid Interface Sci 2025; 336:103378. [PMID: 39671888 DOI: 10.1016/j.cis.2024.103378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Pickering emulsions (PEs) are dispersions stabilized by solid particles, which are derived from various materials, both organic (proteins, polysaccharides, lipids) and inorganic (metals, silica, metal oxides). These colloidal particles play a critical role in ensuring the stability and functionality of PEs, making them highly valued across multiple industries due to their enhanced stability and lower toxicity compared to conventional emulsions. The stabilization mechanisms in PEs differ from those in emulsions stabilized by surfactants or biopolymers. The stability of PEs is influenced by intrinsic particle properties, such as wettability, size, shape, deformability, and charge, as well as external conditions like pH, salinity, and temperature. Some particles, especially organic ones, alone may not be effective stabilizers. For instance, many polysaccharides inherently lack surface activity, while most proteins have significant surface activity but often become unstable under environmental stresses, potentially leading to emulsion instability. The chemical composition and morphology of the particles can lead to varying properties, particularly wettability, which plays a vital role in their ability to adsorb at interfaces. As a result, surface modification emerges as an essential approach for improving the effectiveness of particles as stabilizers in PEs. This review presents the mechanisms that stabilize PEs, identifies factors influencing the stability of PEs, and discusses physical and chemical techniques for modifying particle surfaces. There has been a significant advance in understanding surface modification, employing both physical (non-covalent bonds) and chemical (covalent bonds) approaches. These insights are invaluable for optimizing PE formulations, broadening their application potential across various fields.
Collapse
Affiliation(s)
- Fatemeh Heidari-Dalfard
- Food Science and Technology Department, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
| | - Sedighe Tavasoli
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Reinhard Miller
- TU Darmstadt, Institute for Condensed Matter Physics, Hochschulstrasse 8, 64289 Darmstadt, Germany
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
6
|
Han X, Niu X, Xu M, Feng R, Han Q, Liu B, Cheng Y, Yun S, Cheng F, Feng C, Cao J. Flammulina velutipes protein-Flammulina velutipes soluble polysaccharide-tea polyphenols particles stabilized Pickering emulsions for the delivery of β-carotene. Int J Biol Macromol 2024; 285:138299. [PMID: 39631594 DOI: 10.1016/j.ijbiomac.2024.138299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The delivery vehicles based on protein-polysaccharide-polyphenol are promising methods to encapsulate bioactive components with the aim of improving their solubility and bioavailability. In this study, we used Flammulina velutipes protein (FVP) and Flammulina velutipes soluble polysaccharides (FVSP) as raw materials and prepared FVP-FVSP and FVP-FVSP-TP composite particles loaded with tea polyphenols (TP), the high internal phase Pickering emulsions stabilized by FVP-FVSP and FVP-FVSP-TP for the delivery of β-carotene (BC) were created. FVP-FVSP-TP has more promise as Pickering emulsion stabilizer than FVP-FVSP because of the smaller particle size, proper contact angle, and lower surface tension. The optimal preparation conditions of the emulsion were 4 % particle concentration and 80 % oil phase volume fraction. The emulsions stabilized by FVP-FVSP and FVP-FVSP-TP were o/w emulsions. Compared to the emulsion stabilized by FVP-FVSP, the FVP-FVSP-TP stabilized emulsion had higher G', G″ values and viscosity and showed better thermal, centrifugal, storage and oil oxidation stability. Moreover, FVP-FVSP-TP stabilized emulsions could further enhance the retention rate and bioaccessibility of TP and β-carotene. This study provides a theoretical basis for the application of FVP and FVSP in Pickering emulsions, and a reference for the fabrication of delivery vehicles to improve the stability and bioaccessibility of bioactive substances.
Collapse
Affiliation(s)
- Xiaoyue Han
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Xukai Niu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Mengyan Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Rui Feng
- Shanxi Aquatic Technology Promotion Service Center, Taiyuan, Shanxi 030006, China
| | - Qianxi Han
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Bo Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Feier Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China.
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China.
| |
Collapse
|
7
|
Gao J, Tan X, Dai H, Wang H, Chen H, Zhang Y. Properties regulation and mechanism on ferritin/chitooligosaccharide dual-compartmental emulsions and its application for co-encapsulation of curcumin and quercetin bioactive compounds. Food Chem 2024; 458:140243. [PMID: 38944931 DOI: 10.1016/j.foodchem.2024.140243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Dual-compartmental emulsions, containing multiple chambers, possess great advantages in co-encapsulation of different cargoes. Herein, we reported a stable dual-compartmental emulsion by regulating the ratio of Marsupenaeus japonicus ferritin (MF) and chitooligosaccharide (COS), enabling efficient co-encapsulation of different compounds. The adsorption behavior of MF/COS complex over droplet interface varied at different ratios, thereby exerting an influence on the emulsion properties. Remarkably, emulsions stabilized by MF/COS complex at a ratio of 2:1 exhibited superior stability, as evidenced by no significant creaming or demulsification during storage or heat treatment. The mechanism is that MF/COS2:1 complex can enhance the formation of thicker interfacial layer and dense continuous phase network structure. Additionally, curcumin and quercetin can be co-encapsulated into the emulsions and their retention rates were significantly improved than those in oils, implying the potential of the resulting dual-compartmental emulsions in co-encapsulation and delivery of bioactive compounds.
Collapse
Affiliation(s)
- Junlu Gao
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Xiaoyi Tan
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China
| | - Hai Chen
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China.
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China.
| |
Collapse
|
8
|
Karaca AC, Boostani S, Assadpour E, Tan C, Zhang F, Jafari SM. Pickering emulsions stabilized by prolamin-based proteins as innovative carriers of bioactive compounds. Adv Colloid Interface Sci 2024; 333:103246. [PMID: 39208623 DOI: 10.1016/j.cis.2024.103246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Pickering emulsions (PEs) can be used as efficient carriers for encapsulation and controlled release of different bioactive compounds. Recent research has revealed the potential of prolamins in development of nanoparticle- and emulsion-based carriers which can improve the stability and bioavailability of bioactive compounds. Prolamin-based particles have been effectively used as stabilizers of various PEs including single PEs, high internal phase PEs, multiple PEs, novel triphasic PEs, and PE gels due to their tunable self-assembly behaviors. Prolamin particles can be fabricated via different techniques including anti-solvent precipitation, dissolution followed by pH adjustment, heating, and ion induced aggregation. Particles fabricated from prolamins alone or in combination with other hydrocolloids or polyphenols have also been used for stabilization of different PEs which were shown to be effective carriers for food bioactives, providing improved stability and functionality. This article covers the recent advances in various PEs stabilized by prolamin particles as innovative carriers for bioactive ingredients. Strategies applied for fabrication of prolamin particles and prolamin-based carriers are discussed. Emerging techno-functional applications of prolamin-based PEs and possible challenges are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
9
|
Li Q, Lv L, Liang W, Chen Z, Deng Q, Sun L, Wang Y, Liu Y. Screening, characterization and mechanism of a potential stabiliser for nisin nanoliposomes with high encapsulation efficiency. Food Chem 2024; 457:140185. [PMID: 38936128 DOI: 10.1016/j.foodchem.2024.140185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The encapsulation efficiency (EE%) reflects the amount of bioactive components that can be loaded into nanoliposomes. Obtaining a suitable nanoliposome stabiliser may be the key to improving their EE%. In this study, three polyphenols were screened as stabilisers of nanoliposomes with high nisin EE%, with curcumin nanoliposomes (Cu-NLs) exhibiting the best performance (EE% = 95.94%). Characterizations of particle size, PDI and zeta potential indicate that the Cu-NLs had good uniformity and stability. TEM found that nisin accumulated at the edges of the Cu-NLs' phospholipid layer. DSC and FT-IR revealed that curcumin was involved in the formation of the phospholipid layer and altered its structure. FT-IR and molecular docking simulations indicate that the interactions between curcumin and nisin are mainly hydrogen bonding and hydrophobic. In whole milk, Cu-NLs effectively protected nisin activity. This study provides an effective strategy for improving the EE% of nanoliposomes loaded with nisin and other bacteriocins.
Collapse
Affiliation(s)
- Qibin Li
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Linao Lv
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Weiqi Liang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhibao Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ying Liu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
10
|
Chirilă L, Stan MS, Voinea IC, Popescu A, Ene AG, Danu M, Ibănescu C, Lite MC. Biocompatibility and Antibacterial Activity of Eugenol and Copaiba Essential Oil-Based Emulsions Loaded on Cotton Textile Materials. Polymers (Basel) 2024; 16:2367. [PMID: 39204586 PMCID: PMC11359198 DOI: 10.3390/polym16162367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The present study was focused on the preparation, characterization and application onto cotton fabrics of different topical oil-in-water emulsions based on chitosan, eugenol and copaiba essential oil for potential topical applications. Different amounts of copaiba essential oil (oil phases) and eugenol were used, while the water phase consisted of hamamelis water. The designed formulations were evaluated via optical microscopy and rheological parameters assessment. The textile materials treated with the developed emulsions were analyzed in terms of antibacterial efficiency and in vitro and in vivo biocompatibility. The rheological measurements have shown that the emulsions' stability was dependent on their viscosity and structure of the colloidal systems. The emulsions remained stable at temperatures equal to or below 35 °C, but an increase in temperature led to droplet flocculation and creaming. The emulsion-treated textiles exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus, and in vivo biocompatibility on the skin of guinea pigs without sensitization effects. Our study revealed that eugenol and copaiba essential oil-based emulsions loaded on cotton textile materials could be promising candidates for developing skin-friendly textiles designed for different topical applications.
Collapse
Affiliation(s)
- Laura Chirilă
- National Research and Development Institute for Textiles and Leather—INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (A.P.); (A.-G.E.); (M.-C.L.)
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - Ionela C. Voinea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - Alina Popescu
- National Research and Development Institute for Textiles and Leather—INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (A.P.); (A.-G.E.); (M.-C.L.)
| | - Alexandra-Gabriela Ene
- National Research and Development Institute for Textiles and Leather—INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (A.P.); (A.-G.E.); (M.-C.L.)
| | - Maricel Danu
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Blvd, 700050 Iasi, Romania;
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Vodă Str., 700487 Iasi, Romania
| | - Constanța Ibănescu
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Blvd, 700050 Iasi, Romania;
| | - Mihaela-Cristina Lite
- National Research and Development Institute for Textiles and Leather—INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (A.P.); (A.-G.E.); (M.-C.L.)
| |
Collapse
|
11
|
Sun Y, Wei Z. Modification of hordein by gallic acid in ethanol-free environments: Impact of covalent and non-covalent interactions on structure, physicochemical properties and self-assembly. Food Chem 2024; 449:139273. [PMID: 38599110 DOI: 10.1016/j.foodchem.2024.139273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
The objectives of this study were to modify hordein with gallic acid (GA) in alcohol-free media and to compare the impact of covalent and non-covalent binding on the properties of hordein. Covalent hordein-GA complexes (H-GA) and non-covalent hordein/GA complexes (H/GA) were distinguished by molecular weight, free sulfhydryl groups and free amino groups. Isothermal titration calorimetry (ITC) demonstrated that physical mixing induced non-covalent binding of GA to hordein via hydrogen bonding and hydrophobic interactions, with a lower binding efficiency than covalent ones. Both complexation types led to a structural shift of hordein toward disorder, while grafting of oligomeric GA and alkaline treatment resulted in lower surface hydrophobicity and higher antioxidant activity of H-GA compared to H/GA. The nanoparticles assembled from H-GA had smaller particle sizes and higher physical stability than those formed from H/GA. The results of this study may provide new insights into the modification of hordein by polyphenols.
Collapse
Affiliation(s)
- Yuanjing Sun
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
12
|
Hussain Badar I, Wang Z, Chen Q, Liu Q, Ma J, Liu H, Kong B. Ultrasonic enhancement of structural and emulsifying properties of heat-treated soy protein isolate nanoparticles to fabricate flaxseed-derived diglyceride-based pickering emulsions. Food Chem 2024; 442:138469. [PMID: 38266416 DOI: 10.1016/j.foodchem.2024.138469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Flaxseed-derived diglyceride (DAG)-based Pickering emulsions were fabricated using soy protein isolate (SPI) nanoparticles as stabilizer. The SPI nanoparticles were prepared under the combined action of heating and ultrasound treatment. The SPI nanoparticles exposed to 600 W power exhibited the smallest particle size (133.36 nm) and zeta potential (-34.77 mV). Ultrasonic treatment did not significantly impact the polypeptide chain's primary structure but induced changes in the secondary structure. The Pickering emulsions stabilized with ultrasound-treated SPI nanoparticles showed smaller particle size, lower zeta potential, and improved emulsifying properties. Notably, at 450 W power, these emulsions showed a higher solid-liquid balance, reduced mean square displacement, backscattering fluctuations, and turbiscan stability index. Besides, they displayed a more compact microstructure with smaller droplets. In conclusion, SPI subjected to heating and 450 W ultrasound power resulted in the fabrication of DAG-based Pickering emulsions with enhanced microstructure and stability.
Collapse
Affiliation(s)
- Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ziyi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
13
|
Rayees R, Gani A, Noor N, Ayoub A, Ashraf ZU. General approaches to biopolymer-based Pickering emulsions. Int J Biol Macromol 2024; 267:131430. [PMID: 38599428 DOI: 10.1016/j.ijbiomac.2024.131430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Pickering emulsion is a type of emulsion that uses solid particles or colloidal particles as emulsifiers rather than surfactants to adhere at oil-water interface. Pickering emulsions have gathered significant research attention recently due to their excellent stability and wide range of potential uses compared to traditional emulsions. Major advancements have been made in development of innovative Pickering emulsions using different colloidal particles by various techniques including homogenization, emulsification and ultrasonication. Use of biopolymer particles gives Pickering emulsions a more escalating possibilities. In this review paper, we seek to present a critical overview of development in food-grade particles that have been utilized to create Pickering emulsions with a focus on techniques and application of Pickering emulsions. Particularly, we have evaluated protein, lipid, polysaccharide-based particles and microalgal proteins that have emerged in recent years with respect to their potential to stabilize and add novel functionalities to Pickering emulsions. Some preparation methods of Pickering emulsions in brief, applications of Pickering emulsions are also highlighted. Encapsulation and delivery of bioactive compounds, fat substitutes, film formation and catalysis are potential applications of Pickering emulsions. Pickering double emulsions, nutraceutical and bioactive co-delivery, and preparation of porous materials are among research trends of food-grade Pickering emulsions.
Collapse
Affiliation(s)
- Rahiya Rayees
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India.
| | - Nairah Noor
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Aneesa Ayoub
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Zanoor Ul Ashraf
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| |
Collapse
|
14
|
Tian Y, Sun F, Wang Z, Yuan C, Wang Z, Guo Z, Zhou L. Research progress on plant-based protein Pickering particles: Stabilization mechanisms, preparation methods, and application prospects in the food industry. Food Chem X 2024; 21:101066. [PMID: 38268843 PMCID: PMC10806259 DOI: 10.1016/j.fochx.2023.101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
At present, there have been many research articles reporting that plant-based protein Pickering particles from different sources are used to stabilize Pickering emulsions, but the reports of corresponding review articles are still far from sufficient. This study focuses on the research hotspots and related progress on plant-based protein Pickering particles in the past five years. First, the article describes the mechanism by which Pickering emulsions are stabilized by different types of plant-based protein Pickering particles. Then, the extraction, preparation, and modification methods of various plant-based protein Pickering particles are highlighted to provide a reference for the development of greener and more efficient plant-based protein Pickering particles. The article also introduces some of the most promising applications of Pickering emulsions stabilized by plant-based protein Pickering particles in the food field. Finally, the paper also discusses the potential applications and challenges of plant-based protein Pickering particles in the food industry.
Collapse
Affiliation(s)
- Yachao Tian
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhuying Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chao Yuan
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
15
|
Yang S, Jin Y, Li F, Shi J, Liang J, Mei X. Pickering Emulsion Stabilized by Hordein-Whey Protein Isolate Complex: Delivery System of Quercetin. Foods 2024; 13:665. [PMID: 38472777 DOI: 10.3390/foods13050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
As a lipophilic flavonol, quercetin has low bioavailability, which limits its application in foods. This work aimed to prepare a hordein-based system to deliver quercetin. We constructed hordein-whey isolate protein fibril (WPIF) complexes (H-Ws) by anti-solvent precipitation method at pH 2.5. The TEM results of the complexes showed that spherical-like hordein particles were wrapped in WPIF clusters to form an interconnected network structure. FTIR spectra revealed that hydrogen bonds and hydrophobic interactions were the main driving forces for the complex formation. H-W1 (the mass ratio of hordein to WPIF was 1:1) with a three-phase contact angle of 70.2° was chosen to stabilize Pickering emulsions with oil volume fractions (φ) of 40-70%. CLSM images confirmed that the oil droplets were gradually embedded in the three-dimensional network structure of H-W1 with the increase in oil volume fraction. The emulsion with φ = 70% showed a tight gel structure. Furthermore, this emulsion exhibited high encapsulation efficiency (97.8%) and a loading capacity of 0.2%, demonstrating the potential to deliver hydrophobic bioactive substances. Compared with free quercetin, the bioaccessibility of the encapsulated quercetin (35%) was significantly improved. This study effectively promoted the application of hordein-based delivery systems in the food industry.
Collapse
Affiliation(s)
- Songqi Yang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100083, China
| | - Yunan Jin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100083, China
| | - Feifan Li
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Jinfeng Shi
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100083, China
| | - Jiahui Liang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100083, China
| | - Xiaohong Mei
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100083, China
- Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
16
|
Zhong W, Li D, Li L, Yu S, Pang J, Zhi Z, Wu C. pH-responsive Pickering emulsion containing citrus essential oil stabilized by zwitterionically charged chitin nanofibers: Physicochemical properties and antimicrobial activity. Food Chem 2024; 433:137388. [PMID: 37688825 DOI: 10.1016/j.foodchem.2023.137388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
In this study, zwitterionic chitin nanofibers (Z-ChNFs) were used to prepare Pickering emulsions containing citrus essential oils (CEO) and their physicochemical properties and antimicrobial activity were investigated. Results show that as-prepared Pickering emulsions exert pH-reversible properties, pH can adjust the charge of Z-ChNFs to influence the stability of the emulsion. As the concentration of Z-ChNFs increase, the droplet size of the emulsion decreases. The high concentration of Z-ChNFs (1.5 wt%) can enhance the viscosity and promote forming nano-network structures within continuous phases, and their amphiphilic nature can strengthen the capacity for adsorption on the oil/water interface, resulting in enhanced physical stability of the encapsulated CEO emulsion. Additionally, Z-ChNFs have positive effects on the improvement of antimicrobial activity of CEO. This study provides valuable implications for the development and application of essential oils as biopreservation in the food field.
Collapse
Affiliation(s)
- Weiquan Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Danjie Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liang Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shan Yu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
17
|
Gu C, Dong P, Jiang F, Fu H, Lyu B, Li H, Li Y, Yu H, Dai W. The influence of α and α' subunits on SPI Pickering emulsions based on natural hybrid breeding varieties. Food Chem X 2023; 20:100931. [PMID: 38144728 PMCID: PMC10740028 DOI: 10.1016/j.fochx.2023.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 12/26/2023] Open
Abstract
In this study, food-grade protein nanoparticles (Wild-NPs, α-lack-NPs, α'-lack-NPs, and (α + α')-lack-NPs) were organized as emulsion stabilizers via thermal induction. The effects of α and α' subunits in soybean protein isolate (SPI) on Wild nanoparticle Pickering emulsion (Wild-NPPEs), α-lack nanoparticle Pickering emulsion (α-lack-NPPEs), α'-lack nanoparticle Pickering emulsion (α'-lack-NPPEs) and (α + α')-lack nanoparticle Pickering emulsion ((α + α')-lack-NPPEs) were investigated. The Pickering emulsion stabilization mechanism indicated that the α'-lack-NPs particle size, surface hydrophobicity, and contact angle were mostly comparatively large. Therefore, the absence of the α' subunit made the desorption of protein nanoparticles at the oil and water interface require higher energy. Through the hydrophobic interaction between molecules, the structure and properties of the emulsion were improved, showing good stability. The existence of α'-lack-NPPEs leads to the formation of a gel-like network in the emulsion, which increases the viscosity of the emulsion and makes the network structure of the emulsion more uniform and denser.
Collapse
Affiliation(s)
- Chunmei Gu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Pengchao Dong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Feihong Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hongling Fu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Haoming Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Youbao Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Weichang Dai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| |
Collapse
|
18
|
Lapo B, Pavón S, Hoyo J, Fortuny A, Scapan P, Bertau M, Sastre AM. Bioderived Pickering Emulsion Based on Chitosan/Trialkyl Phosphine Oxides Applied to Selective Recovery of Rare Earth Elements. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59731-59745. [PMID: 38091526 PMCID: PMC10802976 DOI: 10.1021/acsami.3c10233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
A novel biobased pickering emulsion (PE) material was prepared by the encapsulation of Cyanex 923 (Cy923) into chitosan (CS) to selectively recover rare earth elements (REEs) from the aqueous phase. The preparation of PE was optimized through sequentially applying a 23 full factorial design, followed by a 33 Box-Behnken design varying the Cy923 content, CS concentration, and pH of CS. The material was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), optical microscopy, rheological, compositional, and stability measurements. The resultant material was evaluated in the removal of yttrium by pH influence, nitrate concentration, kinetics, equilibrium isotherms, reusability, and a comparison with liquid-liquid (L-L) extraction and tested in a real scenario to extract Y from a fluorescent lamp powder waste. In addition, the selectivity of PE for REE was investigated with Y/Ca, Gd/Ca, and La/Ni systems. PE extracts REE at 1 ≤ pH ≤ 5 at nitrate concentrations up to 2 mol/L. The kinetics and equilibrium studies showed reaction times <5 min and a maximum sorption capacity of 89.98 mg/g. Compared with L-L extraction, PE consumed 48% less Cy923 without using organic diluents. PE showed a remarkable selectivity for REE in the systems evaluated, showing separation factors of 22.62, 9.35, and 504.64 for the blends Y/Ca, Gd/Ca/Mg, and La/Ni, respectively. PE showed excellent selectivity extracting Y from a real aqueous liquor from the fluorescent lamp powder. PE demonstrates to be an effective and sustainable alternative for REE recovering due to its excellent efficiency in harsh conditions, favorable green chemistry metrics, and use of a biopolymer material in its composition avoiding the use of organic solvents used in L-L extraction.
Collapse
Affiliation(s)
- Byron Lapo
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EPSEVG, Av. Víctor Balaguer 01, 08800 Vilanova i la Geltrú, Spain
- School
of Chemical Engineering, Technical University
of Machala, UACQS, BIOeng, 070151 Machala, Ecuador
- Institute
of Chemical Technology, TU Bergakademie
Freiberg, Leipziger Straße
29, Freiberg 09599, Germany
| | - Sandra Pavón
- Institute
of Chemical Technology, TU Bergakademie
Freiberg, Leipziger Straße
29, Freiberg 09599, Germany
- Fraunhofer
Institute for Ceramic Technologies and Systems IKTS; Fraunhofer Technology Center for High-Performance Materials THM, Am St.-Niclas-Schacht 13, 09599 Freiberg, Germany
| | - Javier Hoyo
- Department
of Physical-Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Agustín Fortuny
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EPSEVG, Av. Víctor Balaguer 01, 08800 Vilanova i la Geltrú, Spain
| | - Paul Scapan
- Institute
of Chemical Technology, TU Bergakademie
Freiberg, Leipziger Straße
29, Freiberg 09599, Germany
| | - Martin Bertau
- Institute
of Chemical Technology, TU Bergakademie
Freiberg, Leipziger Straße
29, Freiberg 09599, Germany
- Fraunhofer
Institute for Ceramic Technologies and Systems IKTS; Fraunhofer Technology Center for High-Performance Materials THM, Am St.-Niclas-Schacht 13, 09599 Freiberg, Germany
| | - Ana María Sastre
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, ETSEIB,
Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Liu R, Li Y, Zhou C, Tan M. Pickering emulsions stabilized with a spirulina protein-chitosan complex for astaxanthin delivery. Food Funct 2023; 14:4254-4266. [PMID: 37067860 DOI: 10.1039/d3fo00092c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Astaxanthin (AXT) is a lipid-soluble carotenoid with good anti-oxidation, hepatic steatosis reduction, anti-inflammation, and intestinal microbiota regulation ability, whose poor stability and pH vulnerability limit its bioavailability. Spirulina protein (SP) derived from spirulina has good emulsifying ability with potential application in nutraceuticals, medicines, and cosmetics. In this study, Pickering emulsions were prepared using a SP-chitosan (CS) complex as an emulsifier. The particle size, zeta potential, and three-phase contact angle of the SP-CS complex with different SP to CS ratios were investigated. A mass ratio of 1 : 2.5 SP-CS complex showed a good emulsifying ability in preparing Pickering emulsion. A higher storage modulus and viscoelasticity were observed with higher SP-CS complex concentrations and oil fractions. The SP-CS Pickering emulsion significantly improved the stability of AXT in different environments. The lipid release rate and AXT bioavailability after digestion of 3 wt% SP-CS complex-stabilized Pickering emulsion reached 70.54 ± 1.59% and 36.60 ± 3.44%, respectively. The results indicated that the SP-CS complex could act as a Pickering emulsion stabilizer and had the potential to deliver protective hydrophobic AXT.
Collapse
Affiliation(s)
- Ronggang Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| | - Chengfu Zhou
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| |
Collapse
|
20
|
Kuang Y, Xiao Q, Yang Y, Liu M, Wang X, Deng P, Wu K, Liu Y, Peng B, Jiang F, Li C. Investigation and Characterization of Pickering Emulsion Stabilized by Alkali-Treated Zein (AZ)/Sodium Alginate (SA) Composite Particles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3164. [PMID: 37110002 PMCID: PMC10146332 DOI: 10.3390/ma16083164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
Pickering emulsions stabilized by food-grade colloidal particles have attracted increasing attention in recent years due to their "surfactant-free" nature. In this study, the alkali-treated zein (AZ) was prepared via restricted alkali deamidation and then combined with sodium alginate (SA) in different ratios to obtain AZ/SA composite particles (ZS), which were used to stabilize Pickering emulsion. The degree of deamidation (DD) and degree of hydrolysis (DH) of AZ were 12.74% and 6.58% respectively, indicating the deamidation occurred mainly in glutamine on the side chain of the protein. After the treatment with alkali, AZ particle size decreased significantly. Moreover, the particle size of ZS with different ratios was all less than 80 nm. when the AZ/SA ratio was 2:1(Z2S1) and 3:1(Z3S1), the three-phase contact angle (θo/w) were close to 90°, which was favorable for stabilizing the Pickering emulsion. Furthermore, at a high oil phase fraction (75%), Z3S1-stabilized Pickering emulsions showed the best long-term storage stability within 60 days. Confocal laser scanning microscope (CLSM) observations showed that the water-oil interface was wrapped by a dense layer of Z3S1 particles with non-agglomeration between independent oil droplets. At constant particle concentration, the apparent viscosity of the Pickering emulsions stabilized by Z3S1 gradually decreased with increasing oil phase fraction, and the oil-droplet size and the Turbiscan stability index (TSI) also gradually decreased, exhibiting solid-like behavior. This study provides new ideas for the fabrication of food-grade Pickering emulsions and will extend the future applications of zein-based Pickering emulsions as bioactive ingredient delivery systems.
Collapse
Affiliation(s)
- Ying Kuang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Qinjian Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yichen Yang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Menglong Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xiaosa Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Pengpeng Deng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Kao Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yi Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Bo Peng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Department of Architecture and Built Environment, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Cao Li
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
21
|
Yang Y, Gupta VK, Amiri H, Pan J, Aghbashlo M, Tabatabaei M, Rajaei A. Recent developments in improving the emulsifying properties of chitosan. Int J Biol Macromol 2023; 239:124210. [PMID: 37001778 DOI: 10.1016/j.ijbiomac.2023.124210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Chitosan is one of the valuable products obtained from crustacean waste. The unique characteristics of chitosan (antimicrobial, antioxidant, anticancer, and anti-inflammatory) have increased its application in various sectors. Besides unique biological properties, chitosan or chitosan-based compounds can stabilize emulsions. Nevertheless, studies have shown that chitosan cannot be used as an efficient stabilizer because of its high hydrophilicity. Hence, this review aims to provide an overview of recent studies dealing with improving the emulsifying properties of chitosan. In general, two different approaches have been reported to improve the emulsifying properties of chitosan. The first approach tries to improve the stabilization property of chitosan by modifying its structure. The second one uses compounds such as polysaccharides, proteins, surfactants, essential oils, and polyphenols with more wettability and emulsifying properties than chitosan's particles in combination with chitosan to create complex particles. The tendency to use chitosan-based particles to stabilize Pickering emulsions has recently increased. For this reason, more studies have been conducted in recent years to improve the stabilizing properties of chitosan-based particles, especially using the electrostatic interaction method. In the electrostatic interaction method, numerous research has been conducted on using proteins and polysaccharides to increase the stabilizing property of chitosan.
Collapse
Affiliation(s)
- Yadong Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
22
|
Preparation, characterization and digestive mechanism of plant-derived oil bodies-based oleogels structured by chitosan and vanillin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Fabrication and characterization of low-fat Pickering emulsion gels stabilized by zein/phytic acid complex nanoparticles. Food Chem 2023; 402:134179. [DOI: 10.1016/j.foodchem.2022.134179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022]
|
24
|
Pickering stabilizing capacity of Plasma-treated Grass pea protein nanoparticles. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
25
|
Song S, Zhong L, Wei Y, Li Y, Tao L, Yu L. Highly stable solid-like Pickering emulsions stabilized by kafirin-chitosan complex particles. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
26
|
Development of emulsion-based edible inks for 3D printing applications: Pickering emulsion gels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Zhao T, Huang K, Luo Y, Li Y, Cheng N, Mei X. Preparation and characterization of high internal phase Pickering emulsions stabilized by hordein-chitosan composite nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Enhancing the interfacial stability of O/W emulsion by adjusting interactions of chitosan and rice protein hydrolysate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Zheng J, Zhao L, Yi J, Zhou L, Cai S. Chestnut Starch Nanocrystal Combined with Macadamia Protein Isolate to Stabilize Pickering Emulsions with Different Oils. Foods 2022; 11:3320. [PMID: 36359933 PMCID: PMC9654634 DOI: 10.3390/foods11213320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 08/12/2023] Open
Abstract
This study investigated the formation and molecular interaction mechanism of chestnut starch nanocrystal (SNC)/macadamia protein isolate (MPI) complexes and their application in edible oil-in-water Pickering emulsion (PE). SNC/MPI complexes were characterized by scanning electron microscopy and particle size analyzer. The PEs stabilized by SNC/MPI complexes were characterized by confocal laser scanning microscopy and rheological measurement. The results showed that hydrogen bonds between the two particles significantly affected the secondary structure and assembly of SNC/MPI complexes at the oil/water interface. The optimal mass ratio of SNC to MPI in the complexes with the best stability was determined as 20:1. The formation of edible oil-in-water PEs stabilized by SNC/MPI complexes significantly improved the oxidative and storage stability of different edible oils (olive oil, walnut oil, edible tea oil, and macadamia oil). These different edible oil-in-water PEs stabilized by SNC/MPI could be used as effective carriers of quercetin with their loading rates higher than 93%.
Collapse
Affiliation(s)
- Jingyi Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
30
|
Producing submicron chitosan-stabilized oil Pickering emulsion powder by an electrostatic collector-equipped spray dryer. Carbohydr Polym 2022; 294:119791. [DOI: 10.1016/j.carbpol.2022.119791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 01/03/2023]
|
31
|
Song H, Wang Q, He A, Li S, Guan X, Hu Y, Feng S. Antioxidant activity, storage stability and in vitro release of epigallocatechin-3-gallate (EGCG) encapsulated in hordein nanoparticles. Food Chem 2022; 388:132903. [DOI: 10.1016/j.foodchem.2022.132903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/23/2022] [Accepted: 04/03/2022] [Indexed: 12/25/2022]
|
32
|
Effect of type of fatty acid attached to chitosan on walnut oil-in-water Pickering emulsion properties. Carbohydr Polym 2022; 291:119566. [DOI: 10.1016/j.carbpol.2022.119566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 01/02/2023]
|
33
|
Wu C, Liu Z, Zhi L, Jiao B, Tian Y, Liu H, Hu H, Ma X, Pignitter M, Wang Q, Shi A. Research Progress of Food-Grade High Internal Phase Pickering Emulsions and Their Application in 3D Printing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2949. [PMID: 36079986 PMCID: PMC9458105 DOI: 10.3390/nano12172949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
High internal phase Pickering emulsion (HIPPE) is a type of emulsion stabilized by solid particles irreversibly adsorbed on an interfacial film, and the volume fraction of the dispersed phase (Φ) is larger than the maximum packing volume fraction (Φmax). Proteins, polysaccharides, and their composite particles can be used as good particle stabilizers. The contact angle can most intuitively demonstrate the hydrophilicity and hydrophobicity of the particles and also determines the type of emulsions (O/W or W/O type). Particles' three-phase contact angles can be adjusted to about 90° by compounding or modification, which is more conducive to emulsion stability. As a shear thinning pseudoplastic fluid, HIPPE can be extruded smoothly through 3D printer nozzles, and its high storage modulus can support the structure of printed products. There is huge potential for future applications in 3D printing of food. This work reviewed the biomacromolecules that can be used to stabilize food-grade HIPPE, the stabilization mechanism of the emulsions, and the research progress of food 3D printing to provide a reference for the development of advanced food products based on HIPPE.
Collapse
Affiliation(s)
- Chao Wu
- College of Food Science and Engineering, Hebei Agricultural University, Baoding 071001, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Lanyi Zhi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yanjie Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Hongzhi Liu
- College of Food Science and Engineering, Hebei Agricultural University, Baoding 071001, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Qiang Wang
- College of Food Science and Engineering, Hebei Agricultural University, Baoding 071001, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Aimin Shi
- College of Food Science and Engineering, Hebei Agricultural University, Baoding 071001, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| |
Collapse
|
34
|
Enzymatically modified quinoa starch-based Pickering emulsion: Effect of enzymolysis and emulsifying conditions. Int J Biol Macromol 2022; 219:824-834. [PMID: 35963347 DOI: 10.1016/j.ijbiomac.2022.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/16/2022] [Accepted: 08/07/2022] [Indexed: 11/20/2022]
Abstract
Both the effects of enzymolysis condition on the microstructures and emulsifying property of enzymatic modified quinoa starch (EMQS) and the effects of emulsion formulation on the EMQS based emulsions were investigated. The emulsifying capacity (EC) and stability (ES) of EMQS were positive correlated with enzyme amount (0-2.4 % w/wstarch). The particle sizes of EMQS decreased and its hydrophobicity increased with increasing enzyme amount (0-2.4 % w/wstarch), which were the main reasons for the increasing emulsifying performance of EMQS. With the increasing starch concentration, the EC of the EMQS increased, the oil droplet size of the emulsion decreased. With the oil/water ratios ranging from 1:9 to 6:4, the emulsification index (EI) and oil droplet size of the emulsion increased. EMQS based emulsion had a relatively good stability in the pH range of 2-10. This study lays the foundation for the application of EMQS as a stable clean-label Pickering emulsifier.
Collapse
|
35
|
Duan F, Zhang Y, Wang Y, Zhang X, Zhao W, Zhang H. Study on stability of grape seed oil/rice hydrolyzed protein emulsion. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, the stability mechanism of grape seed oil/rice hydrolyzed protein emulsion was studied. The grape seed oil (10% v/v) and rice hydrolyzed protein (2% w/v) were homogenized under high pressure to prepare the emulsion. It was observed by CLSM and Multiple light scatterometer that the emulsion had long-term storage stability, and the average particle size of droplets was 0.984–1.363 µm. ζ-potential ranged from −37.733 mV to −25.633 mV. It is found that the emulsion has strong resistance to temperature, ions and other environmental factors from the macroscopic and microscopic structure, and no emulsion stratification phenomenon occurs. The composite emulsion can be used in the field of food industry and fine chemical industry, which can provide nutrition and functionality of products, its research has certain value and has a wide space for development.
Collapse
Affiliation(s)
- Fangyu Duan
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| | - Ying Zhang
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| | - Yue Wang
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| | - Xu Zhang
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| | - Wei Zhao
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| | - Hao Zhang
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| |
Collapse
|
36
|
Cheng S, Li F, Mei X. Structure, mechanical and physical properties of hordein/chitosan composite films. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Li F, Huang K, Luo Y, Mei X. Isolation of B-constituent through selective complex coacervation of hordein with ι-carrageenan. Int J Biol Macromol 2022; 212:508-516. [PMID: 35623460 DOI: 10.1016/j.ijbiomac.2022.05.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/02/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022]
Abstract
The complex behavior of the crude hordein with ι-carrageenan (Car) as a function of pH (11.0-3.0) and Hordein/Car mass ratios (20:1-1:1, w/w) was studied through zeta potential analysis, turbidimetric titration and SDS-PAGE. By preferential binding with Car, B-hordein was isolated from the crude hordein at pHmax (6.2) and Hordein/Car mass ratio of 15:1, which was further confirmed by LC-MS/MS analysis. The results of zeta potential and size of separated B-hordein and C-hordein suggested that the difference in charge density was the main driving force of selective complexation between hordein and Car. Simultaneously, Fourier transform infrared spectroscopy also confirmed the existence of strong electrostatic interaction between B-hordein and Car. Additionally, the more ordered secondary structure of B-hordein at pHmax might be beneficial to its preferential binding with Car. This study further promotes the application of B-hordein in food industry.
Collapse
Affiliation(s)
- Feifan Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of P.R., Beijing 100083, China
| | - Kunlun Huang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of P.R., Beijing 100083, China
| | - Yunbo Luo
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of P.R., Beijing 100083, China
| | - Xiaohong Mei
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
38
|
Li W, Jiao B, Li S, Faisal S, Shi A, Fu W, Chen Y, Wang Q. Recent Advances on Pickering Emulsions Stabilized by Diverse Edible Particles: Stability Mechanism and Applications. Front Nutr 2022; 9:864943. [PMID: 35600821 PMCID: PMC9121063 DOI: 10.3389/fnut.2022.864943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023] Open
Abstract
Pickering emulsions, which are stabilized by particles, have gained considerable attention recently because of their extreme stability and functionality. A food-grade particle is preferred by the food or pharmaceutical industries because of their noteworthy natural benefits (renewable resources, ease of preparation, excellent biocompatibility, and unique interfacial properties). Different edible particles are reported by recent publications with distinct shapes resulting from the inherent properties of raw materials and fabrication methods. Furthermore, they possess distinct interfacial properties and functionalities. Therefore, this review provides a comprehensive overview of the recent advances in the stabilization of Pickering emulsions using diverse food-grade particles, as well as their possible applications in the food industry.
Collapse
Affiliation(s)
- Wei Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Sisheng Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shah Faisal
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Weiming Fu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
39
|
Tavasoli S, Liu Q, Jafari SM. Development of Pickering emulsions stabilized by hybrid biopolymeric particles/nanoparticles for nutraceutical delivery. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Zhang Y, Xiang S, Yu H, Wang H, Tan M. Fabrication and characterization of superior stable Pickering emulsions stabilized by propylene glycol alginate gliadin nanoparticles. Food Funct 2022; 13:2172-2183. [PMID: 35113104 DOI: 10.1039/d1fo03940g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gliadin, a kind of amphiphilic protein from wheat, has been widely used for stabilizing Pickering emulsions, which is easy to form colloidal particles. Herein, gliadin/propylene glycol alginate (PGA) colloidal particles (GPPs) with different gliadin/PGA ratios were developed and used as emulsifiers to prepare Pickering emulsions with an internal phase of 80% (v/v). The addition of PGA made the GPPs a tree-fruit-like morphology, increasing the particle size and changing the zeta-potential. Hydrogen bond and electrostatic interaction are the major forces between gliadin and PGA. The wettability of GPPs was improved significantly in the presence of PGA. The oil-water contact angle reached 89.5° when the gliadin/PGA ratio was 1 : 1. The emulsion could be maintained at room temperature for 6 months when the oil phase ratio (Φ) was 70%. The high stability of the Pickering emulsion could be attributed to the thin film formed by GPPs on the surface of oil droplets. The improved resistance of algal oil in emulsions against oxidation was proved as the induction time increased six times. In addition, the porous material prepared using GPPs-stabilized emulsion as the template displayed an oil absorption ability of 106.41 g g-1 and heavy metal adsorption ability of 202.71 mg g-1. Such performance implies that GPPs are highly efficient food-grade Pickering emulsifiers that may be applied in various fields.
Collapse
Affiliation(s)
- Yin Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siyuan Xiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Hongjin Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Haitao Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
41
|
Pickering emulsions stabilized by pea protein isolate-chitosan nanoparticles: fabrication, characterization and delivery EPA for digestion in vitro and in vivo. Food Chem 2022; 378:132090. [PMID: 35032809 DOI: 10.1016/j.foodchem.2022.132090] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022]
Abstract
The work aimed to prepare pea protein isolate-chitosan (PPI-CS) nanoparticles, fabricate PPI-CS nanoparticles stabilized Pickering emulsions (PPI-CS Pickering emulsions) and deliver EPA for digestion in vitro and in vivo. The nanoparticles were characterized by scanning electron microscopy (SEM), and PPI-CS Pickering emulsions were characterized by physicochemical and rheological properties. The results showed that the size of PPI-CS nanoparticles was 194.22 ± 0.45 nm. Rheological measurement showed that the PPI-CS Pickering emulsions possessed a gel-like network. EPA encapsulated Pickering emulsions (EPA-PE, φ = 0.6) exhibited a high retention rate (93%) during storage and performed a lower release rate compared with EPA-PE (φ = 0.4) in vitro digestion. The area under the curve of EPA concentration of EPA-PE group and EPA-emulsions (EPA-Em) group was 1.71 and 1.48, respectively. It demonstrated that PPI-CS Pickering emulsions provided the possibility to deliver EPA for digestive absorption.
Collapse
|
42
|
Hossain KMZ, Deeming L, Edler KJ. Recent progress in Pickering emulsions stabilised by bioderived particles. RSC Adv 2021; 11:39027-39044. [PMID: 35492448 PMCID: PMC9044626 DOI: 10.1039/d1ra08086e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/25/2021] [Indexed: 01/06/2023] Open
Abstract
In recent years, the demand for non-surfactant based Pickering emulsions in many industrial applications has grown significantly because of the option to select biodegradable and sustainable materials with low toxicity as emulsion stabilisers. Usually, emulsions are a dispersion system, where synthetic surfactants or macromolecules stabilise two immiscible phases (typically water and oil phases) to prevent coalescence. However, synthetic surfactants are not always a suitable choice in some applications, especially in pharmaceuticals, food and cosmetics, due to toxicity and lack of compatibility and biodegradability. Therefore, this review reports recent literature (2018-2021) on the use of comparatively safer biodegradable polysaccharide particles, proteins, lipids and combinations of these species in various Pickering emulsion formulations. Also, an overview of the various tuneable factors associated with the functionalisation or surface modification of these solid particles, that govern the stability of the Pickering emulsions is provided.
Collapse
Affiliation(s)
- Kazi M Zakir Hossain
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
- Centre for Sustainable Chemical Technologies, University of Bath Claverton Down Bath BA2 7AY UK
| | - Laura Deeming
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
- Centre for Sustainable Chemical Technologies, University of Bath Claverton Down Bath BA2 7AY UK
| | - Karen J Edler
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
- Centre for Sustainable Chemical Technologies, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
43
|
Sharkawy A, Silva AM, Rodrigues F, Barreiro F, Rodrigues A. Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles as green topical delivery vehicles for cannabidiol (CBD). Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Sharkawy A, Barreiro MF, Rodrigues AE. New Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles: Synthesis, characterization and tracking of the nanoparticles after skin application. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|