1
|
Dhaliwal HK, Sonkar S, V P, Puente L, Roopesh MS. Process Technologies for Disinfection of Food-Contact Surfaces in the Dry Food Industry: A Review. Microorganisms 2025; 13:648. [PMID: 40142540 PMCID: PMC11945173 DOI: 10.3390/microorganisms13030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
The survival characteristics of bacterial pathogens, including Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli, in foods with a low water activity (aw) have been extensively examined and reported. Microbial attachment on the food-contact surfaces can result in cross-contamination and compromise the safety of low-aw foods. The bactericidal potential of various conventional and novel disinfection technologies has been explored in the dry food industry. However, the attachment behavior of bacterial pathogens to food-contact surfaces in low-aw conditions and their subsequent response to the cleaning and disinfection practices requires further elucidation. The review summarizes the elements that influence disinfection, such as the presence of organic residues, persistent strains, and the possibility of microbial biotransfer. This review explores in detail the selected dry disinfection technologies, including superheated steam, fumigation, alcohol-based disinfectants, UV radiation, and cold plasma, that can be used in the dry food industry. The review also highlights the use of several wet disinfection technologies employing chemical antimicrobial agents against surface-dried microorganisms on food-contact surfaces. In addition, the disinfection efficacy of conventional and novel technologies against surface-dried microorganisms on food-contact surfaces, as well as their advantages and disadvantages and underlying mechanisms, are discussed. Dry food processing facilities should implement stringent disinfection procedures to ensure food safety. Environmental monitoring procedures and management techniques are essential to prevent adhesion and allow the subsequent inactivation of microorganisms.
Collapse
Affiliation(s)
- Harleen Kaur Dhaliwal
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
| | - Shivani Sonkar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
| | - Prithviraj V
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
| | - Luis Puente
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
- Departamento de Ciencias de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Dr. Carlos Lorca Tobar 964, Independencia, Santiago 8380494, Chile
| | - M. S. Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
| |
Collapse
|
2
|
Panebianco F, Alvarez-Ordóñez A, Oliveira M, Ferreira S, Lovisolo S, Vono C, Cannizzo FT, Chiesa F, Civera T, Di Ciccio P. Effect of neutral electrolyzed water on biofilm formed by meat-related Listeria monocytogenes: Intraspecies variability and influence of the growth surface material. Int J Food Microbiol 2025; 431:111064. [PMID: 39837152 DOI: 10.1016/j.ijfoodmicro.2025.111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Listeria monocytogenes raises major challenges for the food industry. Due to its capacity to form biofilms, this pathogen can persist in processing environments and contaminate the final products. Neutral electrolyzed water (NEW) may offer a promising and eco-friendly method for controlling L. monocytogenes biofilms, though current in vitro studies on its antibiofilm activity are limited and often focused on reference strains. In this study, we assessed the effect of NEW on biofilms formed by meat-related and reference L. monocytogenes strains on polystyrene and stainless steel. Forty wild-type strains isolated from meat products and processing environments were firstly screened for their biofilm-forming abilities and classified as weak (30 %; 12/40), moderate (55 %; 22/40), and strong (15 %; 6/40) biofilm producers. Twenty-two wild-type and two reference strains were selected for the eradication assays, performed by treating the biofilms with NEW for 9 minutes of total contact time. In silico functional enrichment analysis and the visualization of biofilms by scanning electron microscopy (SEM) were also performed. The NEW treatment resulted in a greater average reduction of viable cells in biofilms formed on polystyrene (4.3 ± 1.0 log10 CFU/cm2) compared to stainless steel (2.9 ± 2.0 log10 CFU/cm2), and a remarkable intraspecies variability was observed. SEM images revealed higher structural damage on biofilms formed on polystyrene. Functional enrichment analysis suggested that clustered regularly interspaced short palindromic repeats (CRISPR)-associated elements could be involved in resistance to the treatments. NEW could be a promising additional tool to mitigate L. monocytogenes biofilms in meat processing environments, although its effect varied with surface material and strain-specific characteristics.
Collapse
Affiliation(s)
- Felice Panebianco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy.
| | | | - Márcia Oliveira
- Department of Food Hygiene and Technology, University of León, 24071, León, Spain
| | - Susana Ferreira
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Stella Lovisolo
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Cristina Vono
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy
| | | | - Francesco Chiesa
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Tiziana Civera
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Pierluigi Di Ciccio
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy
| |
Collapse
|
3
|
Atasoy M, Bartkova S, Çetecioğlu-Gürol Z, P Mira N, O'Byrne C, Pérez-Rodríguez F, Possas A, Scheler O, Sedláková-Kaduková J, Sinčák M, Steiger M, Ziv C, Lund PA. Methods for studying microbial acid stress responses: from molecules to populations. FEMS Microbiol Rev 2024; 48:fuae015. [PMID: 38760882 PMCID: PMC11418653 DOI: 10.1093/femsre/fuae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
The study of how micro-organisms detect and respond to different stresses has a long history of producing fundamental biological insights while being simultaneously of significance in many applied microbiological fields including infection, food and drink manufacture, and industrial and environmental biotechnology. This is well-illustrated by the large body of work on acid stress. Numerous different methods have been used to understand the impacts of low pH on growth and survival of micro-organisms, ranging from studies of single cells to large and heterogeneous populations, from the molecular or biophysical to the computational, and from well-understood model organisms to poorly defined and complex microbial consortia. Much is to be gained from an increased general awareness of these methods, and so the present review looks at examples of the different methods that have been used to study acid resistance, acid tolerance, and acid stress responses, and the insights they can lead to, as well as some of the problems involved in using them. We hope this will be of interest both within and well beyond the acid stress research community.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University and Research, PO Box 9101, 6700 HB, the Netherlands
| | - Simona Bartkova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Zeynep Çetecioğlu-Gürol
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21 106 91 Stockholm, Stockholm, Sweden
| | - Nuno P Mira
- iBB, Institute for Bioengineering and Biosciences, Department of Bioengineering, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Conor O'Byrne
- Microbiology, School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Aricia Possas
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Ott Scheler
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Jana Sedláková-Kaduková
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Mirka Sinčák
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Matthias Steiger
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, 7505101 Rishon LeZion, Israel
| | - Peter A Lund
- School of Biosciences and Institute of Microbiology of Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
4
|
Tarlak F, Yücel Ö. Prediction of Pseudomonas spp. Population in Food Products and Culture Media Using Machine Learning-Based Regression Methods. Life (Basel) 2023; 13:1430. [PMID: 37511805 PMCID: PMC10381478 DOI: 10.3390/life13071430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Machine learning approaches are alternative modelling techniques to traditional modelling equations used in predictive food microbiology and utilise algorithms to analyse large datasets that contain information about microbial growth or survival in various food matrices. These approaches leverage the power of algorithms to extract insights from the data and make predictions regarding the behaviour of microorganisms in different food environments. The objective of this study was to apply various machine learning-based regression methods, including support vector regression (SVR), Gaussian process regression (GPR), decision tree regression (DTR), and random forest regression (RFR), to estimate bacterial populations. In order to achieve this, a total of 5618 data points for Pseudomonas spp. present in food products (beef, pork, and poultry) and culture media were gathered from the ComBase database. The machine learning algorithms were applied to predict the growth or survival behaviour of Pseudomonas spp. in food products and culture media by considering predictor variables such as temperature, salt concentration, water activity, and acidity. The suitability of the algorithms was assessed using statistical measures such as coefficient of determination (R2), root mean square error (RMSE), bias factor (Bf), and accuracy (Af). Each of the regression algorithms showed appropriate estimation capabilities with R2 ranging from 0.886 to 0.913, RMSE from 0.724 to 0.899, Bf from 1.012 to 1.020, and Af from 1.086 to 1.101 for each food product and culture medium. Since the predictive capability of RFR was the best among the algorithms, externally collected data from the literature were used for RFR. The external validation process showed statistical indices of Bf ranging from 0.951 to 1.040 and Af ranging from 1.091 to 1.130, indicating that RFR can be used for predicting the survival and growth of microorganisms in food products. Therefore, machine learning approaches can be considered as an alternative to conventional modelling methods in predictive microbiology. However, it is important to highlight that the prediction power of the machine learning regression method directly depends on the dataset size, and it requires a large dataset to be employed for modelling. Therefore, the modelling work of this study can only be used for the prediction of Pseudomonas spp. in specific food products (beef, pork, and poultry) and culture medium with certain conditions where a large dataset is available.
Collapse
Affiliation(s)
- Fatih Tarlak
- Department of Nutrition and Dietetics, Istanbul Gedik University, Kartal, Istanbul 34876, Turkey
| | - Özgün Yücel
- Department of Chemical Engineering, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
| |
Collapse
|
5
|
Inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on stainless steel by synergistic effects of tap water-based neutral electrolyzed water and lactic acid. Food Microbiol 2023; 112:104233. [PMID: 36906304 DOI: 10.1016/j.fm.2023.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Contaminated food contact surface is one of the most important transmission routes for foodborne pathogens. Stainless steel is one such food-contact surface that is widely used in food-processing environments. The present study aimed to evaluate the synergistic antimicrobial efficacy of a combination of tap water-based neutral electrolyzed water (TNEW) and lactic acid (LA) against the foodborne pathogens Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on stainless steel. The results revealed that simultaneous treatment with TNEW (ACC of 4.60 mg/L) and 0.1% LA (TNEW-LA) for 5 min resulted in 4.99-, 4.34-, and >5.4- log CFU/cm2 reductions in E. coli O157:H7, S. Typhimurium, and L. monocytogenes on stainless steel, respectively. Of these, 4.00-, 3.57-, and >4.76-log CFU/cm2 reductions in E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively were exclusively attributed to the synergistic action of the combined treatments after factoring out the reductions due to individual treatments. Furthermore, five mechanistic investigations revealed that the key mechanisms underlying the synergistic antibacterial effect of TNEW-LA were reactive oxygen species (ROS) production, cell membrane damage resulting from membrane lipid oxidation, DNA damage, and inactivation of intracellular enzymes. Overall, our findings suggest that the TNEW-LA combination treatment could be effectively used in the sanitization of food processing environments, especially the food contact surfaces, to control major pathogens and enhance food safety.
Collapse
|
6
|
Xue W, Macleod J, Blaxland J. The Use of Ozone Technology to Control Microorganism Growth, Enhance Food Safety and Extend Shelf Life: A Promising Food Decontamination Technology. Foods 2023; 12:foods12040814. [PMID: 36832889 PMCID: PMC9957223 DOI: 10.3390/foods12040814] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The need for microorganism control in the food industry has promoted research in food processing technologies. Ozone is considered to be a promising food preserving technique and has gained great interest due to its strong oxidative properties and significant antimicrobial efficiency, and because its decomposition leaves no residues in foods. In this ozone technology review, the properties and the oxidation potential of ozone, and the intrinsic and extrinsic factors that affect the microorganism inactivation efficiency of both gaseous and aqueous ozone, are explained, as well as the mechanisms of ozone inactivation of foodborne pathogenic bacteria, fungi, mould, and biofilms. This review focuses on the latest scientific studies on the effects of ozone in controlling microorganism growth, maintaining food appearance and sensorial organoleptic qualities, assuring nutrient contents, enhancing the quality of food, and extending food shelf life, e.g., vegetables, fruits, meat, and grain products. The multifunctionality effects of ozone in food processing, in both gaseous and aqueous form, have promoted its use in the food industries to meet the increased consumer preference for a healthy diet and ready-to-eat products, although ozone may present undesirable effects on physicochemical characteristics on certain food products at high concentrations. The combined uses of ozone and other techniques (hurdle technology) have shown a promotive future in food processing. It can be concluded from this review that the application of ozone technology upon food requires increased research; specifically, the use of treatment conditions such as concentration and humidity for food and surface decontamination.
Collapse
Affiliation(s)
- Wenya Xue
- ZERO2FIVE Food Industry Centre, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Cardiff School of Sports and Health Science, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Joshua Macleod
- ZERO2FIVE Food Industry Centre, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Cardiff School of Sports and Health Science, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - James Blaxland
- ZERO2FIVE Food Industry Centre, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Cardiff School of Sports and Health Science, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Correspondence:
| |
Collapse
|
7
|
Ren Z, Wang M, Heng Y, Tian M, Jiang H, Zhang J, Song Y, Zhu Y. Bactericidal effects of a low-temperature acidic electrolyzed water on quantitative suspension, packaging and contact surface in food cold chain. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Hu M, Dong Q, Liu Y, Sun T, Gu M, Zhu H, Xia X, Li Z, Wang X, Ma Y, Yang S, Qin X. A Meta-Analysis and Systematic Review of Listeria monocytogenes Response to Sanitizer Treatments. Foods 2022; 12:foods12010154. [PMID: 36613373 PMCID: PMC9818549 DOI: 10.3390/foods12010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous organism that can be found in food-related environments, and sanitizers commonly prevent and control it. The aim of this study is to perform a meta-analysis of L. monocytogenes response to sanitizer treatments. According to the principle of systematic review, we extracted 896 records on the mean log-reduction of L. monocytogenes from 84 publications as the dataset for this study. We applied a mixed-effects model to describe L. monocytogenes response to sanitizer treatment by considering sanitizer type, matrix type, biofilm status, sanitizer concentration, treatment time, and temperature. Based on the established model, we compared the response of L. monocytogenes under different hypothetical conditions using forest plots. The results showed that environmental factors (i.e., sanitizer concentration, temperature, and treatment time) affected the average log-reduction of L. monocytogenes (p < 0.05). L. monocytogenes generally exhibited strong resistance to citric acid and sodium hypochlorite but had low resistance to electrolyzed water. The planktonic cells of L. monocytogenes were less resistant to peracetic acid and sodium hypochlorite than the adherent and biofilm cells. Additionally, the physical and chemical properties of the contaminated or inoculated matrix or surface also influenced the sanitizer effectiveness. This review may contribute to increasing our knowledge of L. monocytogenes resistance to sanitizers and raising awareness of appropriate safety precautions.
Collapse
Affiliation(s)
- Minmin Hu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence:
| | - Tianmei Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mingliang Gu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Huajian Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuo Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
9
|
Bae D, Song KY, Macoy DM, Kim MG, Lee CK, Kim YS. Inactivation of Airborne Avian Pathogenic E. coli (APEC) via Application of a Novel High-Pressure Spraying System. Microorganisms 2022; 10:microorganisms10112201. [PMID: 36363793 PMCID: PMC9694486 DOI: 10.3390/microorganisms10112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Infectious diseases of livestock caused by novel pathogenic viruses and bacteria are a major threat to global animal health and welfare and their effective control is crucial for agronomic health and for securing global food supply. It has been widely recognized that the transmission of infectious agents can occur between people and/or animals in indoor spaces. Therefore, infection control practices are critical to reduce the transmission of the airborne pathogens. ViKiller®-high-pressure sprayer and Deger®-disinfectant are newly developed spraying systems that can produce an optimal size of disinfectants to reduce airborne microbes. The system was evaluated to reduce the infection caused by avian pathogenic Escherichia coli (APEC), an airborne bacterium which survives in indoor spaces. pH-neutral electrolyzed water (NEW) containing 100 ppm of free chlorine, laboratory-scale chambers, a recently developed sprayer, and a conventional sprayer were used in the study. A total of 123 day-of-hatch male layer chicks (Hy-Line W-36) were randomly classified into five groups (negative control (NC): no treatment; treatment 1 (Trt 1): spraying only NEW without APEC; treatment 2 (Trt 2): spraying NEW + APEC using a high-pressure sprayer; treatment 3 (Trt 3): spraying NEW + APEC using a conventional sprayer; positive control (PC): spraying only APEC). Experimental chicks in the chambers were daily exposed to 50 mL of NEW and/or APEC (1.0 × 106 cfu/mL) until the end of the experiment (day 35). APEC strains were sprayed by ViKiller®. At least four chicks in each group were evaluated weekly to monitor APEC infection and determine the lesion. Data showed that our spraying system significantly reduced airborne APEC concentrations, mortality rate, respiratory infection, and APEC lesions in birds in the chamber space (p < 0.05). The results demonstrate that the antibacterial effect of the novel spraying sprayer with NEW on APEC was far superior compared to the conventional sprayer. This study provides a new insight for preventive measures against airborne microorganisms in indoor spaces.
Collapse
Affiliation(s)
- Dongryeoul Bae
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
- Research Institute of Pharmaceutical Science, College of Pharmacy, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: (D.B.); (Y.-S.K.); Tel.: +82-55-772-2416 (D.B.); +82-10-4402-0795 (Y.-S.K.)
| | - Kwang-Young Song
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Donah Mary Macoy
- Research Institute of Pharmaceutical Science, College of Pharmacy, Gyeongsang National University, Jinju 52828, Korea
| | - Min Gab Kim
- Research Institute of Pharmaceutical Science, College of Pharmacy, Gyeongsang National University, Jinju 52828, Korea
| | - Chul-Kyu Lee
- Division of Research and Development, TracoWorld Ltd., Gwangmyeong-si 14348, Korea
| | - Yu-Seong Kim
- Division of Research and Development, TracoWorld Ltd., Gwangmyeong-si 14348, Korea
- Correspondence: (D.B.); (Y.-S.K.); Tel.: +82-55-772-2416 (D.B.); +82-10-4402-0795 (Y.-S.K.)
| |
Collapse
|
10
|
Yan P, Jo HY, Chelliah R, Jo KH, Woo NC, Wook MS, Oh DH. Optimization and Effect of Water Hardness for the Production of Slightly Acidic Electrolyzed Water on Sanitization Efficacy. Front Microbiol 2022; 13:816671. [PMID: 35308354 PMCID: PMC8924475 DOI: 10.3389/fmicb.2022.816671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Slightly acidic electrolyzed water (SAEW) has been recently proposed as a novel promising sanitizer and cleaner in the agricultural and food industries. However, several factors, including water hardness, were considered to strongly affect the physical properties and sanitization efficacy of SAEW. To study the effect of water hardness on the SAEW production, we evaluated the production properties and sanitization effect of SAEW, which was generated from water sources in 16 representatively geographical locations of South Korea. The results showed that the hardness of water sources from Kangwon-do, Jeollanam-do, and Daegu was 22-41 ppm; that from Busan, Gyeongnam-do, Gwangju Bukgu was 80-443 ppm, and that from seven other locations was 41-79 ppm. SAEW is produced from water hardness less than 50 ppm and greater than 80 ppm was beyond the accepted pH range (5.0-6.5). Notably, high-hardness water (>80 ppm) containing 5% HCl could be used to produce SAEW with accepted pH. The SAEW generated from low-hardness water with additions of 2% HCl and 2 M NaCl at 7 A showed accepted pH and higher germicidal effect. Furthermore, SAEW with the available chlorine concentration of 27-41 mg/L for 1 min was sufficient to completely inactivate non-spore-forming foodborne pathogens. Sanitization efficacy was not markedly affected by storage conditions for SAEW at 40 ppm. Our results demonstrated that the degree of water hardness is an important factor in the production of SAEW, which would provide a foundation for commercial application of SAEW.
Collapse
Affiliation(s)
- Pianpian Yan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, South Korea
| | | | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, South Korea
| | - Kyoung Hee Jo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, South Korea
| | - Nam Chan Woo
- Seoulin Bioscience Company, Seongnam-si, South Korea
| | | | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, South Korea
| |
Collapse
|
11
|
Research Trends on the Application of Electrolyzed Water in Food Preservation and Sanitation. Processes (Basel) 2021. [DOI: 10.3390/pr9122240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Electrolyzed water (EW) has been proposed as a novel promising sanitizer and cleaner in recent years. It is an effective antimicrobial and antibiofilm agent that has several advantages of being on the spot, environmentally friendly, cheap, and safe for human beings. Therefore, EW has been applied widely in various fields, including agriculture, food sanitation, livestock management, medical disinfection, clinical, and other fields using antibacterial technology. Currently, EW has potential significance for high-risk settings in hospitals and other clinical facilities. The research focus has been shifted toward the application of slightly acidic EW as more effective with some supplemental chemical and physical treatment methods such as ultraviolet radiations and ultrasound. This review article summarizes the possible mechanism of action and highlights the latest research studies in antimicrobial applications.
Collapse
|
12
|
Jee DY, Ha JW. Synergistic interaction of tap water-based neutral electrolyzed water combined with UVA irradiation to enhance microbial inactivation on stainless steel. Food Res Int 2021; 150:110773. [PMID: 34865788 DOI: 10.1016/j.foodres.2021.110773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022]
Abstract
As an emerging electrolyzed water (EW) technology, tap water-based neutral electrolyzed water (TNEW) is an attractive alternative to other types of conventional EW for sterilization of food contact surfaces. In this study, we sought to identify strategies for improving TNEW inactivation efficiencies of major foodborne pathogenic bacteria. We investigated the synergistic antimicrobial effect of TNEW and ultraviolet-A light (UVA) combination treatment against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on stainless steel. The data confirmed that simultaneous TNEW and UVA treatment for 60 min reduced E. coli O157:H7, S. Typhimurium, and L. monocytogenes population by 2.15, 1.55, and 2.65 log CFU/cm2, respectively. The synergistic cell count reductions in E. coli O157:H7, S. Typhimurium, and L. monocytogenes in the combination treatment group were 1.17, 0.59, and 1.62 log units, respectively. Additionally, the mechanisms of the synergistic bactericidal effects of TNEW and UVA were identified through several approaches. Mechanistic investigations suggested that the synergistic effect was associated with intracellular reactive oxygen species generation, bacterial cell membrane damage, and inactivation of dehydrogenase. These findings demonstrate that treatment with TNEW and UVA light can enhance the microbiological safety of food contact surfaces during food processing.
Collapse
Affiliation(s)
- Da-Young Jee
- Department of Food Science and Biotechnology, Global K-Food Research Center, Hankyong National University, Anseong-si 17579, South Korea
| | - Jae-Won Ha
- Department of Food Science and Biotechnology, Global K-Food Research Center, Hankyong National University, Anseong-si 17579, South Korea.
| |
Collapse
|
13
|
Yan P, Daliri EBM, Oh DH. New Clinical Applications of Electrolyzed Water: A Review. Microorganisms 2021; 9:136. [PMID: 33435548 PMCID: PMC7827692 DOI: 10.3390/microorganisms9010136] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
As the situation of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is still deteriorating, there has been a huge increase in the demand and use of disinfectants. Electrolyzed water (EW), as a novel broad-spectrum disinfectant and cleaner, has been widely used for several years. EW can be produced in an electrolysis chamber which contains dilute salt and tap water. It is an effective antimicrobial and antibiofilm agent, with several advantages such as on-the-spot, cheap, environmentally friendly and safe for human beings. Therefore, EW holds potential significance for high-risk settings in hospitals and other clinical facilities. EW can also be applied for wound healing, advanced tissue care, and dental clinics. The present review article highlights the latest developments and new perspectives of EW, especially in clinical fields. Furthermore, the main action modes of antibiofilm and antimicrobial will be summarized.
Collapse
Affiliation(s)
| | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (P.Y.); (E.B.-M.D.)
| |
Collapse
|