1
|
Gruppi A, Giuberti G, Duserm Garrido G, Spigno G. Effect of different fibre addition on cookie dough and texture. FOOD SCI TECHNOL INT 2024; 30:614-622. [PMID: 36890775 DOI: 10.1177/10820132231162475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Different commercial fibres from bamboo (BAM), cocoa (COC), psyllium (PSY), chokeberry (ARO) and citrus (CIT) were characterized for technological (oil- and water-holding capacity, solubility and bulk density) and physical (moisture, colour and particle size) features and added to a cookie recipe. The doughs were prepared using sunflower oil and white wheat flour was substituted with 5% (w/w) of the selected fibre ingredient. The attributes of the resulting doughs (colour, pH, water activity and rheological tests) and cookies (colour, water activity, moisture content, texture analysis and spread ratio) were compared to control doughs and to cookies made with refined flour and whole flour formulation. The selected fibres consistently impacted dough rheology and, consequently on, the spread ratio and the texture of the cookies. While the viscoelastic behaviour of the control dough made with refined flour was maintained in all sample doughs, adding fibre decreased loss factor (tan δ), except for ARO-added dough. Substitution of wheat flour with fibre decreased the spread ratio except for the PSY addition. The lowest spread ratio values were observed for CIT-added cookie, which were similar to whole flour cookies. The addition of phenolic-rich fibres positively affected the in vitro antioxidant activity of the final products.
Collapse
Affiliation(s)
- Alice Gruppi
- DiSTAS - Department for Sustainable Food Process - Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gianluca Giuberti
- DiSTAS - Department for Sustainable Food Process - Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Guillermo Duserm Garrido
- DiSTAS - Department for Sustainable Food Process - Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giorgia Spigno
- DiSTAS - Department for Sustainable Food Process - Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
2
|
Chowdhury B, Sharma A, Akshit FNU, Mohan MS, Salunke P, Anand S. A review of oleogels applications in dairy foods. Crit Rev Food Sci Nutr 2024; 64:9691-9709. [PMID: 37229559 DOI: 10.1080/10408398.2023.2215871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The characteristics of dairy products, such as texture, color, flavor, and nutritional profile, are significantly influenced by the presence of milk fat. However, saturated fatty acids account for 65% of total milk fat. With increased health awareness and regulatory recommendations, consumer preferences have evolved toward low/no saturated fat food products. Reducing the saturated fat content of dairy products to meet market demands is an urgent yet challenging task, as it may compromise product quality and increase production costs. In this regard, oleogels have emerged as a viable milk fat replacement in dairy foods. This review focuses on recent advances in oleogel systems and explores their potential for incorporation into dairy products as a milk fat substitute. Overall, it can be concluded that oleogel can be a potential alternative to replace milk fat fully or partially in the product matrix to improve nutritional profile by mimicking similar rheological and textural product characteristics as milk fat. Furthermore, the impact of consuming oleogel-based dairy foods on digestibility and gut health is also discussed. A thorough comprehension of the application of oleogels in dairy products will provide an opportunity for the dairy sector to develop applications that will appeal to the changing consumer needs.
Collapse
Affiliation(s)
- Bhaswati Chowdhury
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Aditya Sharma
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - F N U Akshit
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Maneesha S Mohan
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Prafulla Salunke
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Sanjeev Anand
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
3
|
Valdivia-Culqui JE, Maicelo-Quintana JL, Cayo-Colca IS, Medina-Mendoza M, Castro-Alayo EM, Balcázar-Zumaeta CR. Oleogel Systems for Chocolate Production: A Systematic Review. Gels 2024; 10:561. [PMID: 39330164 PMCID: PMC11431030 DOI: 10.3390/gels10090561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
In response to the growing demand for healthier food options, this review explores advances in oleogel systems as an innovative solution to reduce saturated fats in chocolates. Although appreciated for its flavor and texture, chocolate is high in calories, mainly due to cocoa butter (CB), which is rich in saturated fats. Oleogels, three-dimensional structures formed by structuring agents in edible oils, stand out in terms of mimicking saturated fats' physical and sensory properties without compromising the quality of chocolate. This study reviews how oleogels could improve chocolate's stability and sensory quality, exploring the potential of pectin-rich agro-industrial by-products as sustainable alternatives. It also explores the need for physicochemical evaluations of both oleogel and oleogel-based chocolate.
Collapse
Affiliation(s)
- Jheniffer E Valdivia-Culqui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Jorge L Maicelo-Quintana
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Ilse S Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Marleni Medina-Mendoza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Efraín M Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - César R Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
- Programa de Doctorado en Ciencias Agrarias, Escuela de Posgrado, Universidad Nacional de Piura, Jr. Tacna 748, Piura 20002, Peru
| |
Collapse
|
4
|
Ursachi CȘ, Perța-Crișan S, Tolan I, Chambre DR, Chereji BD, Condrat D, Munteanu FD. Development and Characterization of Ethylcellulose Oleogels Based on Pumpkin Seed Oil and Rapeseed Oil. Gels 2024; 10:384. [PMID: 38920930 PMCID: PMC11203197 DOI: 10.3390/gels10060384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024] Open
Abstract
In contrast to rapeseed oil, pumpkin seed oil has yet to be well investigated in terms of oleogelation, and, to the best of our knowledge, no study related to the use of ethylcellulose (EC) in the structuring of this oil has been identified in the current scientific literature. Therefore, the present study evaluated several oleogels formulated with EC as the oleogelator in different concentrations of 7% (OG7) and 9% (OG9), based on cold-pressed pumpkin seed oil (PO) and refined rapeseed oil (RO), as well as on mixtures of the two oils in different combinations: PO:RO (3:1) (PRO) and PO:RO (1:1) (RPO). Physicochemical properties such as visual appearance, gel formation time (GFT), oil-binding capacity (OBC), oxidative and thermal stability, and textural characteristics were analyzed. Analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD) were used in the statistical analysis of the data, with a significance level of p < 0.05. EC proved to be an effective structuring agent of the mentioned edible oils; the type of oils and the concentration of oleogelator significantly influenced the characteristics of the obtained oleogels. The 9% EC oleogels exhibited a more rigid structure, with a higher OBC and a reduced GFT. Pumpkin seed oil led to more stable oleogels, while the mixture of pumpkin seed oil with rapeseed oil caused a significant reduction in their mechanical properties and decreased the OBC. After 14 days of storage, all oleogels demonstrated proper oxidative stability within the bounds set by international regulations for edible fats, regardless of the kind of oil and EC concentration. All of the oleogels showed a higher oxidative stability than the oils utilized in their formulation; however, those prepared with cold-pressed pumpkin seed oil indicated a lower level of lipid oxidation among all oleogels. The P-OG9 and PR-OG9 oleogels, which mainly included PO and contained 9% EC, demonstrated the optimum levels of quality in texture, GFT, OBC, and oxidative stability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (C.-Ș.U.); (S.P.-C.); (I.T.); (D.R.C.); (B.-D.C.); (D.C.)
| |
Collapse
|
5
|
Marra F, Lavorgna A, Incarnato L, Malvano F, Albanese D. Optimization of Hazelnut Spread Based on Total or Partial Substitution of Palm Oil. Foods 2023; 12:3122. [PMID: 37628121 PMCID: PMC10453538 DOI: 10.3390/foods12163122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Palm oil is widely used in the manufacturing of hazelnut-based spreads due to its unique fatty acid and triacylglycerol profile and, thus, its crystallization behaviour, which makes it suitable for use in fat-based spreadable products. An interesting solution that enables the replacement of palm oil is given by oleogels made with high nutritional quality oil. In this study, the influence of the replacement of palm oil with different glycerol monostearate/olive oil-based oleogels, as well as the influence of the different amounts of GMS employed in oleogel preparation, on the oil binding capacity, spreadability, and rheological and sensory parameters of hazelnut cocoa spreads was investigated. A design of experiment (DoE) approach, with the adoption of the D-optimal design, was used to plan the cocoa hazelnut spread formulations, with the aim being to identify the optimal formulation with desirable quality parameters in terms of Casson's viscosity, spreadability, and oil binding capacity. The resulting optimized formulation was identified in a spread characterized by a total replacement of palm oil with an oleogel made of 95% olive oil and 5% GMS.
Collapse
Affiliation(s)
| | | | | | - Francesca Malvano
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy; (F.M.); (A.L.); (L.I.); (D.A.)
| | | |
Collapse
|
6
|
Cui X, Saleh ASM, Yang S, Wang N, Wang P, Zhu M, Xiao Z. Oleogels as Animal Fat and Shortening Replacers: Research Advances and Application Challenges. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- XiaoTong Cui
- College of Food, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ahmed. S. M. Saleh
- Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Shu Yang
- College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
| | - Na Wang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyany, Liaoning, China
| | - Peng Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| | - Minpeng Zhu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| | - Zhigang Xiao
- College of Food, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Size-dependent filling effect of crystalline celluloses in structural engineering of composite oleogels. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Principato L, Carullo D, Bassani A, Gruppi A, Duserm Garrido G, Dordoni R, Spigno G. Effect of Dietary Fiber and Thermal Conditions on Rice Bran Wax-Based Structured Edible Oils. Foods 2021; 10:foods10123072. [PMID: 34945623 PMCID: PMC8701372 DOI: 10.3390/foods10123072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, extra-virgin olive oil (EVO)- and sunflower oil (SFO)-based oleogels were structured using rice bran wax (RBW) at 10% by weight (w/w). Bamboo fiber milled with 40 (BF40), 90 (BF90) and 150 (BF150) µm of average size was added as a structuring agent. The effect of fiber addition and cooling temperature (0, 4, and 25 °C) on thermal and structural parameters of achieved gels was assessed by rheological (both in rotational and oscillatory mode), texture, and differential scanning calorimetry tests. Oleogelation modified the rheological behavior of EVO and SFO, thus shifting from a Newtonian trend typical of oils to a pseudoplastic non-Newtonian behavior in gels. Moreover, oleogels behaved as solid-like systems with G′ > G″, regardless of the applied condition. All samples exhibit a thermal-reversible behavior, even though the presence of hysteresis suggests a partial reduction in structural properties under stress. Decreasing in cooling temperature negatively contributed to network formation, despite being partially recovered by low-granulometry fiber addition. The latter dramatically improved either textural, rheological, or stability parameters of gels, as compared with only edible oil-based systems. Finally, wax/gel compatibility affected the crystallization enthalpy and final product stability (gel strength) due to different gelator–gelator and gelator–solvent interactions.
Collapse
|
9
|
Sun P, Xia B, Ni ZJ, Wang Y, Elam E, Thakur K, Ma YL, Wei ZJ. Characterization of functional chocolate formulated using oleogels derived from β-sitosterol with γ-oryzanol/lecithin/stearic acid. Food Chem 2021; 360:130017. [PMID: 33984566 DOI: 10.1016/j.foodchem.2021.130017] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
With an aim to prepare the functional chocolate, corn oil was used as the base oil and β-sitosterol was combined with oryzanol/stearic acid/lecithin to prepare respective oleogels (GO, SO, and LO). Oleogels (12%) were prepared by adding compound oleogelators at different ratios [GO-2:3, SO-1:4, and LO-4:1 (w/w)] in corn oil. The microstructure, interaction, thermodynamic, crystalline, and rheological behavior of formulated oleogels were studied by microscopic observation, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and rotational rheometer, respectively. The results showed that GO had the strongest gel forming ability and the densest gel crystallization network. Moreover, chocolate prepared with GO (cocoa butter and oleogels-1:1) had the similar texture, crystal structure, rheological, and sensory properties to that of dark chocolate. This study provides the possibility for the wider application of oleogel prepared with lower saturated and trans-fatty acids in the chocolate industry.
Collapse
Affiliation(s)
- Ping Sun
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Bing Xia
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Zhi-Jing Ni
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Yue Wang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Elnur Elam
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Kiran Thakur
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China.
| | - Yi-Long Ma
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China.
| | - Zhao-Jun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|