1
|
Jiang ZJ, Sun X, Guo XN, Zhu KX. Components and physicochemical properties of mill streams: Effects on freeze-thaw stability and quality of frozen steamed bread dough. Food Chem 2025; 478:143738. [PMID: 40056621 DOI: 10.1016/j.foodchem.2025.143738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/11/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
This study investigated the influence of five mill streams on the freeze-thaw (FT) stability of dough and steamed bread quality. The 1M2 stream (1st reduction) exhibited the longest stability time (7.24 min), maximum dough height (36.1 mm), and the highest specific volume (1.93 mL/g) of steamed bread. The 1S stream (1st sizing) had the highest water-extractable arabinoxylan content (0.62 %), which contributed to frozen dough stability and maintained a high specific volume (1.85 mL/g) throughout FT treatment. In contrast, the 3M stream (3rd reduction) showed the shortest stability time (5.83 min) and lowest specific volume (1.39 mL/g). Protein subunit and rheological analyses revealed that higher gliadin content in the 1M2 and 1S streams promoted dough extensibility, facilitating expansion during fermentation and steaming. These results demonstrate the key role of mill stream characteristics in determining dough FT stability and provide valuable insights for the use of specific mill streams in frozen dough.
Collapse
Affiliation(s)
- Zhao-Jing Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Xiaohong Sun
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Hu Q, Qiu L, Zhu Y, Huang Y, Liu L, Han T, Song Y, Zhu X. Impact of freeze-thaw cycles on the structural and quality characteristics of soy protein gels with different 11S/7S protein ratios. Food Chem 2025; 475:143329. [PMID: 39956064 DOI: 10.1016/j.foodchem.2025.143329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/31/2024] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
Freeze-thaw (F-T) is the key factor affecting the quality changes of frozen soybean products. Therefore, this study investigated the effects of F-T on the structure and quality of soybean protein gels with different 11S/7S ratios. It was revealed that recrystallisation of ice crystals during the F-T treatment induced protein structural reorganization. This resulted in a reduction of the gels' water-holding capacity (WHC). F-T decreased the amount of soluble protein by encouraging protein buildup through disulfide bonds and hydrophobic contacts. 5 F-T results were the most significant. When the 11S/7S ratio exceeded 1:1.5, the F-T exerted a more disruptive effect on the protein gel, leading to an increase in β-sheet and random coil content. When 11S/7S was less than 1:1.5, F-T had less impact, and the decrease in WHC was reduced. This study provides theoretical support for regulating soybean protein components to improve the F-T stability of soybean protein gels.
Collapse
Affiliation(s)
- Qinlin Hu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Lidan Qiu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Ying Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Yuyang Huang
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Linlin Liu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Tianlu Han
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - YiHan Song
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Xiuqing Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China.
| |
Collapse
|
3
|
Wang H, Zhang Z, Brunton NP, Liu L, Wang Z, Zhang D, Zhang C. Reducing flavor loss in precooked beef: The critical role of freezing processes. Food Chem 2025; 485:144420. [PMID: 40306059 DOI: 10.1016/j.foodchem.2025.144420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/21/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Flavor loss is a pain point during prepared dishes processing. As a key step during processing, the potential role of freezing in flavor regulation is less known. Hence, the aim of present study was to investigate how freezing affects flavor quality. In this work, simplify processing models of beef was established to describe the effects of different freezing methods-slow (SF), quick (QF), and liquid nitrogen (LNF) freezing-on the flavor retention of precooked beef. The results demonstrate that freezing rate exerts a significant in flavor loss, and high freezing rate (QF and LNF) can reduce key differential compounds (1-octen-3-ol, 2-pentylfuran, and nonanal) changing effectively. The correlation analysis further suggested that QF might strike a balance between forming smaller ice crystals and minimizing protein damage to the best flavor retention. These findings open new avenues of research to emphasizes the role of optimizing freezing processes in prepared dishes industrial production.
Collapse
Affiliation(s)
- Haijie Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs; Laboratory of Processing Technology Integration for Chinese-style Meat and Vegetable Dishes, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; University College Dublin, School of Agriculture and Food Science, Dublin 4, Ireland
| | - Zeyu Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs; Laboratory of Processing Technology Integration for Chinese-style Meat and Vegetable Dishes, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nigel Patrick Brunton
- University College Dublin, School of Agriculture and Food Science, Dublin 4, Ireland
| | - Linggao Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs; Laboratory of Processing Technology Integration for Chinese-style Meat and Vegetable Dishes, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs; Laboratory of Processing Technology Integration for Chinese-style Meat and Vegetable Dishes, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs; Laboratory of Processing Technology Integration for Chinese-style Meat and Vegetable Dishes, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Chunjiang Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs; Laboratory of Processing Technology Integration for Chinese-style Meat and Vegetable Dishes, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China.
| |
Collapse
|
4
|
Liu X, Ren C, Yu B, Yang L, Wang H, Zhang Y, Li S, Zhang H. Elucidation on the quality improvement of dumpling wrappers by glycosylated potato protein under freeze-thaw cycle treatment. Int J Biol Macromol 2025; 304:140359. [PMID: 39929461 DOI: 10.1016/j.ijbiomac.2025.140359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/21/2025]
Abstract
Dumplings are the favorite quick-frozen food for people in many countries. However, the formation and recrystallization of ice crystals damage the quality of dumpling wrappers during storage. Research has shown that proteins and polysaccharides can improve the quality of frozen dough and that the Maillard reaction can improve the functional properties of proteins and polysaccharides. Therefore, the effects of glycosylated protein between potato protein and xanthan gum (PXM) on the overall changes in dumpling wrappers during freeze-thaw cycles (FT) were studied in this study. The results showed that the addition of PXM (1 %) slowed the deterioration of texture and rheological properties and reduced the cooking loss rate and freezable water content of dumpling wrappers during FT, thus improving the texture quality of dumpling wrappers. Moreover, the addition of PXM delayed the changes in the contents of free sulfhydryl (SH) and disulfide (SS) bonds during storage, weakening the damage to the secondary structure and network structure of the protein. The reason for this difference may be that protein glycosylation significantly increases the zeta potential (13.5 %), surface hydrophobicity (63.9 %), emulsifying activity (192.6 %) and emulsification stability (116.7 %) of potato protein (PP). These results suggest that the application of the glycosylated protein provides a potentially feasible approach to improve the quality of frozen dumpling.
Collapse
Affiliation(s)
- Xingli Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China
| | - Chenhui Ren
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China
| | - Boren Yu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China
| | - Longsong Yang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China
| | - Hongwei Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Yanyan Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China
| | - Suyun Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China
| | - Hua Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
5
|
Rasheed M, Fan X, Guo B, Jiang J, Li M, Zhang Y, Zhang B, Cui Y. Unveiling the dynamic interactions of gluten-starch-water in frozen dough: An in-depth review. Compr Rev Food Sci Food Saf 2025; 24:e370120. [PMID: 39921295 DOI: 10.1111/1541-4337.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 02/10/2025]
Abstract
In recent decades, frozen dough has become an attractive means of preserving and offering the convenience of fresh-tasting foods while retaining their nutritional benefits. However, the frozen dough industry still faces significant challenges related to processing, freezing, and storage that affect the dough's quality and stability during thawing. Understanding the complex interactions between proteins (gluten, glutenin, gliadin, and glutenin macropolymers), starch dynamics (gelatinization and retrogradation), and water distribution-particularly how ice crystals interact with the gluten-starch matrix-is essential for improving frozen dough quality. This review also delves into the rheological properties resulting from the interplay of these components, emphasizing their collective impact on dough texture and stability. Additionally, it explores various freezing mechanisms and innovative strategies to reduce freeze damage, as well as practical challenges in translating theoretical insights into industrial applications. Finally, it proposes future strategies for improving the shelf life and quality of frozen dough by optimizing freezing methods and water distribution. Through a comprehensive synthesis of current literature, this review underscores the critical importance of gluten-starch-water interactions in frozen dough and highlights promising strategies for enhancing product performance and quality.
Collapse
Affiliation(s)
- Mohsin Rasheed
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing, China
| | - Xiangqi Fan
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing, China
| | - Boli Guo
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing, China
- Zhongyuan Research Center, CAAS, Xinxiang, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), CAAS, Cangzhou, China
| | - Jikai Jiang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing, China
| | - Ming Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing, China
- Zhongyuan Research Center, CAAS, Xinxiang, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), CAAS, Cangzhou, China
| | - Yingquan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing, China
| | - Bo Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing, China
| | - Yutong Cui
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing, China
| |
Collapse
|
6
|
Jiang ZJ, Guo XN, Zhu KX. Revealing the influence mechanism of pre-fermentation degree and storage temperature fluctuations on frozen steamed bread dough quality. Food Chem 2025; 464:141915. [PMID: 39515170 DOI: 10.1016/j.foodchem.2024.141915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
This study investigated the effects of pre-fermentation degree and storage temperature fluctuations on the gas cells, gluten protein, rheological properties of frozen dough, and quality of steamed bread. Three pre-fermentation degrees and four fluctuating temperatures (-10 °C, 0 °C, 10 °C, and 25 °C) were used. The gas cell size increased with the pre-fermentation degree; however, the gas cells merged and ruptured during temperature fluctuations. Sodium dodecyl sulfate extraction protein content and free sulfhydryl content increased by 3.07 % and 33.62 %, respectively, in the medium pre-fermentation group at 25 °C compared with those at -10 °C. The maximum strain of dough increased as pre-fermentation degree and fluctuating temperatures increased. The specific volumes of steamed bread with medium pre-fermentation degree were 1.87 mL/g at -10 °C and 1.47 mL/g at 25 °C. In conclusion, higher temperature fluctuations exceeding the freezing point exacerbated the dough and steamed bread quality, particularly in high pre-fermentation degree dough.
Collapse
Affiliation(s)
- Zhao-Jing Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
7
|
Zhu Y, Yan Q, Yu Y, Wang K, Yu Z, Wang Y, Liu P, Han D. Effects of arabinoxylan extracted from vinegar residue on physicochemical and structural properties of gluten proteins obtained from freeze-thaw wheat dough. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2077-2085. [PMID: 39440806 DOI: 10.1002/jsfa.13983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 07/14/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Arabinoxylan is commonly used as a hydrocolloid in frozen dough to improve the texture and the sensory qualities of the products. The effects of vinegar residue arabinoxylan (VRAX) on the secondary structures and microstructures of gluten proteins during freeze-thaw storage were studied, and the underlying mechanism governing these effects was clarified. RESULTS The results revealed that VRAX improved the textural properties of gluten proteins, but had a negative impact on their viscoelasticity. Additionally, the addition of VRAX increased the number of disulfide bonds and also improved the freezing tolerance of the gluten proteins. It was found that the enthalpy of the gluten proteins decreased by 19.78% following VRAX addition. As a result of the use of VRAX, the freezing procedure resulted in reduced formation of ice crystals, protecting the gluten network structure and preserving the dough's elasticity. The network structure of gluten proteins after VRAX treatment was more ordered and integrated relative to that of frozen blank control gluten proteins. CONCLUSION Overall, the freeze-thaw stability of the gluten proteins was enhanced by VRAX. These results suggest that VRAX has potential as an effective cryoprotectant in frozen dough. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qian Yan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Dong Han
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
8
|
Qiao D, Huang Y, Hou X, Ye F, Wu K, Jiang F, Zhao G, Zhang B, Xie F. Enhancing thermal stability and mechanical resilience in gelatin/starch composites through polyvinyl alcohol integration. Carbohydr Polym 2024; 344:122528. [PMID: 39218550 DOI: 10.1016/j.carbpol.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
In practical scenarios, destabilizing the physical attributes of natural polymers such as gelatin and starch occurs readily when exposed to specific moisture levels and heat. In this context, this work was carried out to assess the impact of PVA addition (up to 13 wt%) on the structure and physical properties of a 6:4 (w/w) gelatin/starch blend. The inclusion of PVA unfolded the molecular chains of gelatin and starch, thereby disrupting gelatin α-helices and impeding biopolymer crystallization. This facilitated hydrogen-bonding interaction between PVA and the two biopolymers, enhancing the stability of the molecular network structure. Rheological results indicate that composites (added with 4 % or 7 % PVA) with good compatibility exhibited excellent mechanical properties and deformation resistance. The addition of PVA elevated the gelling temperature (Tgel) of the composites from 41.31 °C to 80.33 °C; the tensile strength and elongation at break were increased from 2.89 MPa to 3.40 MPa and 341.62 % to 367.56 %, respectively; and the thermal stability was also apparently improved, signifying the effective enhancement of the physical properties of gelatin/starch-based composites and the broadening of their application scope. This work could provide insights into the development of biodegradable natural/synthetic polymer composites with application-beneficial characteristics.
Collapse
Affiliation(s)
- Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China; Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yuchun Huang
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xinran Hou
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Fayin Ye
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Kao Wu
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Guohua Zhao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
9
|
Zhang C, Yang Y, Ma C, Wang B, Bian X, Zhang G, Liu X, Song Z, Zhang N. High freeze-thaw stability of Pickering emulsion stabilized by SPI-maltose particles and its effect on frozen dough. Int J Biol Macromol 2024; 276:133778. [PMID: 38992541 DOI: 10.1016/j.ijbiomac.2024.133778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Pickering emulsions with good freeze-thaw stability are essential in frozen food applications. This study developed a high freeze-thaw stabilized soy protein isolate (SPI)-maltose (M) Pickering emulsion and applied it to frozen doughs to investigate and reveal its impacts on the processing properties of the frozen dough. The results showed that after the freeze-thaw cycle, with a volume ratio of 1:2 of SPI to M, the appropriate amount of M changed the structure of SPI. This resulted in the Pickering emulsion prepared by the SPI exhibiting the least droplet coalescence and the best freeze-thaw stability. The results of dough rheological properties, textural properties, and binding capacity with water demonstrated that Pickering emulsions effectively inhibited the loss of gluten protein network structure in the dough after freeze treatment and increased the binding capacity of gluten proteins with starch and water in the dough. The best results were obtained with the incorporation of 3 % SPI-M high freeze-thaw stability, where the amount of bound water following three freeze-thaw cycles was 4.27 times higher than in doughs without Pickering emulsion. Overall, this study is significant for enhancing the freeze-thaw stability of Pickering emulsions stabilized by proteins and providing a new application route for Pickering emulsions.
Collapse
Affiliation(s)
- Can Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Ziyue Song
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
10
|
Niu M, Guo J, Yang X, Li P. Quality analysis of dough and steamed bread under various freezing conditions. J Food Sci 2024; 89:4345-4358. [PMID: 38853294 DOI: 10.1111/1750-3841.17150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
Freezing is a crucial step in the process of frozen foods. In this study, the effects of different freezing methods, including liquid nitrogen immersion freezing (LF), quick-freezing machine freezing (QF), packaging immersion freezing (PF), and ultralow temperature refrigerator freezing (UF), and freezing time (0, 15, 30, and 60 days) on the textural properties, dynamic rheological properties, water distribution, and structure of dough and the quality of end steamed bread were evaluated. Freezing resulted in a decline in the physicochemical properties of dough. UF- and QF-doughs had higher storage modulus and loss modulus, compared with PF- and LF-doughs. LF enhanced the textural attributes of the dough, resulting in reduced hardness and increased springiness. At 15 days of freezing, QF- and LF-doughs exhibited a compact and continuous structure with a smooth surface. Additionally, the correlation analysis elucidated that the weight loss rate and the bound water content of the dough had discernible impacts on the texture of both the dough and the resulting steamed bread. Overall, LF demonstrated a relatively high freezing efficiency and effectively maintained the quality of the dough for up to 15 days of freezing. These results offer valuable insights for the applications of freezing methods and time in frozen foods.
Collapse
Affiliation(s)
- Mengli Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Xue Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Peiyao Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| |
Collapse
|
11
|
He T, Feng R, Tao H, Zhang B. A comparative study of magnetic field on the maximum ice crystal formation zone and whole freezing process for improving the frozen dough quality. Food Chem 2024; 435:137642. [PMID: 37827060 DOI: 10.1016/j.foodchem.2023.137642] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
Magnetic field individually applied on the maximum ice crystal formation zone (MMF) and the whole freezing process (WMF) was compared to improve the quality of multiple freezing-thawing treated dough. All treatments showed that the breadmaking performances of magnetic field-assisted freezing were better than the conventional freezing. Especially, the WMF-treated breads exhibited higher resilience and lower firmness than MMF-treated breads. WMF treatment made dough remained a continuous and compact gluten-starch matrix while the starches and glutens got separated in MMF-treated dough. It could keep the gluten macropolymer from freezing-induced depolymerization with the decreased free sulfhydryl by 7.09% and more ordered secondary structure. WMF had positive effects on the homogeneous water distribution and high water-binding ability in frozen dough where the freezable water decreased from 32.47% to 30.77%. This comparative study of different freezing stages provided new insights into the better application of magnetic field on frozen dough-based food.
Collapse
Affiliation(s)
- Tingshi He
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Ran Feng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
12
|
Hu H, Feng Y, Zheng K, Shi K, Yang Y, Yang C, Wang J. The effect of subzero temperatures on the properties and structure of soy protein isolate emulsions. Food Chem 2024; 433:136829. [PMID: 37742511 DOI: 10.1016/j.foodchem.2023.136829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 09/26/2023]
Abstract
Different freezing temperatures (-5, -20, -40 and -80 ℃) could change soy protein isolate (SPI) structure and emulsion properties. After freezing at -5 ℃ and -20 ℃, the structure of the SPI loosened, the fluorescence intensity was red shifted, and the proportion of Phe, Tyr and Trp exposed increased. With decreasing temperature, the surface hydrophobicity (H0 × 100), the number of sulfhydryl groups and the number of disulfide bonds all rose, then fell (-40 ℃), and rose again (-80 ℃). The β-sheet content in the protein secondary structure increased from 32.71% (control) to 50.66% (-40 ℃) and then decreased to 37.05% (-80 ℃), while the β-turn and random coil contents showed the opposite pattern, which also confirmed aggregation. The emulsification performance of SPI after freezing treatment was decreased. The results of this study provide theoretical support for future production of frozen foods with added SPI.
Collapse
Affiliation(s)
- Haiyue Hu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yongli Feng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kaiwen Zheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kexin Shi
- Tangshan Food and Drug Comprehensive Inspection and Test Center, China
| | - Yutong Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chen Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jianming Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
13
|
Yang J, Zhang Y, Jiang J, Zhang B, Li M, Guo B. Effects of Frozen Storage Time, Thawing Treatments, and Their Interaction on the Rheological Properties of Non-Fermented Wheat Dough. Foods 2023; 12:4369. [PMID: 38231864 DOI: 10.3390/foods12234369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, the effects of frozen storage time, thawing treatments, and their interaction on the rheological properties of non-fermented dough were evaluated. Texture profile analysis (TPA), rheological measurements, including strain/frequency sweep, and creep-recovery measurement were applied to the dough. Compared with unfrozen fresh dough, the frozen storage time (S) and thawing treatment (T) influenced almost all indicators significantly, and their mutual effects (S × T) mainly affected the hardness and springiness. Frozen time was the main factor resulting in the destruction of non-fermented dough during the thawing treatments. Moreover, refrigerator thawing (4 °C) produced a dough with minimal changes in the rheological properties, regardless of the frozen storage time. Meanwhile, microwave thawing resulted in lower G' and lower zero shear viscosity (η0) values, as well as higher maximum creep compliance (Jmax) and hardness values. Moreover, the difference between the three thawing treatments was exacerbated after 30 days of frozen storage. SEM images also showed that long-term frozen storage combined with microwave thawing seriously destroyed the rheological properties, structural stability, and inner microstructure of the dough.
Collapse
Affiliation(s)
- Jingjie Yang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs of the People Republic of China, Beijing 100193, China
| | - Yingquan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs of the People Republic of China, Beijing 100193, China
- Western Agriculture Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jikai Jiang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs of the People Republic of China, Beijing 100193, China
| | - Bo Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs of the People Republic of China, Beijing 100193, China
| | - Ming Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs of the People Republic of China, Beijing 100193, China
| | - Boli Guo
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs of the People Republic of China, Beijing 100193, China
- Western Agriculture Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
14
|
Liu X, Chen L, Chen L, Liu D, Liu H, Jiang D, Fu Y, Wang X. The Effect of Terminal Freezing and Thawing on the Quality of Frozen Dough: From the View of Water, Starch, and Protein Properties. Foods 2023; 12:3888. [PMID: 37959007 PMCID: PMC10648450 DOI: 10.3390/foods12213888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Frozen dough is suitable for industrial cold chain transportation, but usually experiences temperature fluctuations through the cold chain to the store after being refrigerated in a factory, seriously damaging the product yield. In order to analyze the influence mechanism of temperature fluctuation during the terminal cold chain on frozen dough, the effects of terminal freezing and thawing (TFT) on the quality (texture and rheology) and component (water, starch, protein) behaviors of dough were investigated. Results showed that the TFT treatment significantly increased the hardness and decreased the springiness of dough and that the storage modules were also reduced. Furthermore, TFT increased the content of freezable water and reduced the bound water with increased migration. Additionally, the peak viscosity and breakdown value after TFT with the increased number of cycles were also increased. Moreover, the protein characteristics showed that the low-molecular-weight region and the β-sheet in the gluten secondary structure after the TFT treatment were increased, which was confirmed by the increased number of free sulfhydryl groups. Microstructure results showed that pores and loose connection were observed during the TFT treatment. In conclusion, the theoretical support was provided for understanding and eliminating the influence of the terminal nodes in a cold chain.
Collapse
Affiliation(s)
- Xiaorong Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (L.C.); (H.L.)
| | - Luncai Chen
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; (L.C.); (D.J.)
| | - Lei Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (L.C.); (H.L.)
| | - Dezheng Liu
- Hubei Selenium Grain Technology Group Co., Ltd., Enshi 445600, China;
| | - Hongyan Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (L.C.); (H.L.)
| | - Dengyue Jiang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; (L.C.); (D.J.)
| | - Yang Fu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (L.C.); (H.L.)
| | - Xuedong Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; (L.C.); (D.J.)
| |
Collapse
|
15
|
Han R, Lin J, Hou J, Xu X, Bao S, Wei C, Xing J, Wu Y, Liu J. Ultrasonic Treatment of Corn Starch to Improve the Freeze-Thaw Resistance of Frozen Model Dough and Its Application in Steamed Buns. Foods 2023; 12:foods12101962. [PMID: 37238784 DOI: 10.3390/foods12101962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Modification of corn starch using ultrasonic waves to improve its freeze-thaw resistance in frozen model doughs and buns. Analysis was performed by rheometry, low-field-intensity nuclear magnetic resonance imaging, Fourier infrared spectroscopy, and scanning electron microscopy. The results showed that the addition of ultrasonically modified corn starch reduced the migration of water molecules inside the model dough, weakened the decrease of elastic modulus, and enhanced the creep recovery effect; the decrease in α-helical and β-fold content in the model dough was reduced, the destruction of internal network structure was decreased, the exposed starch granules were reduced, and the internal interaction of the dough was enhanced; the texture of the buns became softer and the moisture content increased. In conclusion, ultrasound as a physical modification means can significantly improve the freeze-thaw properties of corn starch, providing new ideas for the development and quality improvement of corn-starch-based instant frozen pasta products.
Collapse
Affiliation(s)
- Rui Han
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jiaqi Lin
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jingyao Hou
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xiuying Xu
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Saruna Bao
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Chaoyue Wei
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jiayue Xing
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yuzhu Wu
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jingsheng Liu
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
16
|
Quantitative analysis perspective: Ice growth and super-chilling state of frozen dough under quick freezing. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
17
|
dongdong X, xing L, yingqi S, shuncheng R. Effect of different producing methods on physicochemical and fermentation properties of refrigerated dough. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
18
|
Chen J, Xiao J, Tu J, Yu L, Niu L. The alleviative effect of sweet potato protein hydrolysates on the quality deterioration of frozen dough bread in comparison to trehalose. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Xie X, Li J, Zhu H, Zhang B, Liang D, Cheng L, Hao M, Guo F. Effects of Polydextrose on Rheological and Fermentation Properties of Frozen Dough and Quality of Chinese Steamed Bread. STARCH-STARKE 2022. [DOI: 10.1002/star.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Xinhua Xie
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Jiahui Li
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Hongshuai Zhu
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Bobo Zhang
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Dan Liang
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Lilin Cheng
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Mingyuan Hao
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Fangjie Guo
- Henan Tailijie Biotechnology Co Ltd 278 Xiangzi South Road Mengzhou 454750 China
| |
Collapse
|
20
|
Yang J, Chen L, Guo B, Zhang B, Zhang Y, Li M. Elucidation of rheological properties of frozen non-fermented dough with different thawing treatments: The view from protein structure and water mobility. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Chi C, Xu K, Wang H, Zhao L, Zhang Y, Chen B, Wang M. Deciphering multi-scale structures and pasting properties of wheat starch in frozen dough following different freezing rates. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Dai Y, Gao H, Zeng J, Liu Y, Qin Y, Wang M. Effect of subfreezing storage on the qualities of dough and bread containing pea protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5378-5388. [PMID: 35318659 DOI: 10.1002/jsfa.11891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In this paper, -6, -9 and -12 °C were selected as subfreezing temperatures of dough containing pea protein based on the results of low-field nuclear magnetic relaxation time. The effect of storage at subfreezing temperatures on dough properties was then investigated and compared with sample storage at -18 °C. RESULTS The pH value, springiness, resilience, cohesiveness of dough and sensory score of bread gradually decreased and the hardness and water loss rate of dough gradually increased with the extension of storage time. However, dough hardness, viscoelasticity and fermentation volume were maintained more effectively in subfreezing storage than in -18 °C storage. The subfreezing temperature could alleviate the damage of gluten network structure in frozen dough by ice crystals and was beneficial in maintaining the elasticity of gluten proteins. The network system of pea protein, gluten protein and starch granules in dough storage at -9 and -12 °C was more tightly connected and the microstructure was similar to that at -18 °C. There was no significant difference between the quality of bread made from the dough stored at subfreezing temperature and that stored at -18 °C for 1-6 weeks, and the preservation effect at -12 °C was closer to that at -18 °C. CONCLUSION Subfreezing storage can keep the stability of dough containing pea protein close to traditional frozen storage (-18 °C), which provides a new method for storage and transportation of frozen dough. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yunfei Dai
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Yufen Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Yueqi Qin
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengyu Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
23
|
Fine structures of added maltodextrin impact stability of frozen bread dough system. Carbohydr Polym 2022; 298:120028. [DOI: 10.1016/j.carbpol.2022.120028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
|
24
|
Zhou T, Zhang L, Zhao R, Liu Q, Liu W, Hu H. Effects of particle size distribution of potato starch granules on rheological properties of model dough underwent multiple freezing-thawing cycles. Food Res Int 2022; 156:111112. [DOI: 10.1016/j.foodres.2022.111112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 01/11/2023]
|
25
|
Wang M, Zeng J, Huang K, Tian X, Gao H, Zhang K. Effects of freeze–thaw treatments at different temperatures on the properties of gluten protein from fermented dough. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Mengyu Wang
- School of Food Science Henan Institute of Science and Technology Xinxiang 453003 China
| | - Jie Zeng
- School of Food Science Henan Institute of Science and Technology Xinxiang 453003 China
| | - Keqiang Huang
- Intelligent Agricultural College Liaoning Agricultural Technical College Yingkou, Liaoning 115009 China
| | - Xiaoling Tian
- Food and Drug Department Liaoning Agricultural Technical College Yingkou, Liaoning 115009 China
| | - Haiyan Gao
- School of Food Science Henan Institute of Science and Technology Xinxiang 453003 China
| | - Keke Zhang
- School of Food Science Henan Institute of Science and Technology Xinxiang 453003 China
| |
Collapse
|
26
|
Dai Y, Gao H, Tian X, Huang K, Liu Y, Zeng J, Wang M, Qin Y. Effect of freeze‐thaw cycles at different temperatures on the properties of gluten proteins in unfermented dough. Cereal Chem 2022. [DOI: 10.1002/cche.10563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yunfei Dai
- School of Food Science, Henan Institute of Science and TechnologyXinxiang453003China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and TechnologyXinxiang453003China
| | - Xiaoling Tian
- Food and Drug Department, Liaoning Agricultural Technical CollegeYingkouLiaoning115009China
| | - Keqiang Huang
- Intelligent Agricultural College, Liaoning Agricultural Technical CollegeYingkouLiaoning115009China
| | - Yufen Liu
- School of Food Science, Henan Institute of Science and TechnologyXinxiang453003China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and TechnologyXinxiang453003China
| | - Mengyu Wang
- School of Food Science, Henan Institute of Science and TechnologyXinxiang453003China
| | - Yueqi Qin
- School of Food Science, Henan Institute of Science and TechnologyXinxiang453003China
| |
Collapse
|
27
|
Masuda H, Ryuzaki T, Iyota H. Role of agitation in the freezing process of liquid foods using sucrose aqueous solution as a model liquid. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Chen J, Ying X, Deng S, Li W, Peng L, Ma L. Trehalose and alginate oligosaccharides enhance the stability of myofibrillar proteins in shrimp (
Litopenaeus vannamei
) muscle during frozen storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiasheng Chen
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood Collaborative Innovation Center of Seafood Deep Processing College of Food and Pharmacy Zhejiang Ocean University Zhoushan 316022 China
| | - Xiaoguo Ying
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood Collaborative Innovation Center of Seafood Deep Processing College of Food and Pharmacy Zhejiang Ocean University Zhoushan 316022 China
| | - Shanggui Deng
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
| | - Wenjun Li
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 China
| | - Lukai Ma
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| |
Collapse
|
29
|
Zheng S, Yang Y, Li Z, Pan Z, Huang Z, Ai Z. A Comparative Study of Different Freezing Methods on Water Distribution, Retrogradation and Digestion Properties of Liangpi (Starch Gel Food). STARCH-STARKE 2022. [DOI: 10.1002/star.202100205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuaishuai Zheng
- College of Food Science and Technology Henan Agricultural University Zhengzhou 450002 China
- National R&D Center For Frozen Rice&Wheat Products Processing Technology Zhengzhou 450002 China
| | - Yong Yang
- College of Food Science and Technology Henan Agricultural University Zhengzhou 450002 China
- Key Laboratory of Staple Grain Processing Ministry of Agriculture and Rural Affairs Zhengzhou 450002 China
| | - Zhen Li
- College of Food Science and Technology Henan Agricultural University Zhengzhou 450002 China
- Key Laboratory of Staple Grain Processing Ministry of Agriculture and Rural Affairs Zhengzhou 450002 China
- National R&D Center For Frozen Rice&Wheat Products Processing Technology Zhengzhou 450002 China
| | - Zhili Pan
- College of Food Science and Technology Henan Agricultural University Zhengzhou 450002 China
- Key Laboratory of Staple Grain Processing Ministry of Agriculture and Rural Affairs Zhengzhou 450002 China
- National R&D Center For Frozen Rice&Wheat Products Processing Technology Zhengzhou 450002 China
| | - Zhongmin Huang
- College of Food Science and Technology Henan Agricultural University Zhengzhou 450002 China
- Key Laboratory of Staple Grain Processing Ministry of Agriculture and Rural Affairs Zhengzhou 450002 China
- National R&D Center For Frozen Rice&Wheat Products Processing Technology Zhengzhou 450002 China
| | - Zhilu Ai
- College of Food Science and Technology Henan Agricultural University Zhengzhou 450002 China
- Key Laboratory of Staple Grain Processing Ministry of Agriculture and Rural Affairs Zhengzhou 450002 China
- National R&D Center For Frozen Rice&Wheat Products Processing Technology Zhengzhou 450002 China
| |
Collapse
|
30
|
ZHANG L, ZENG J, GAO H, ZHANG K, WANG M. Effects of different frozen storage conditions on the functional properties of wheat gluten protein in nonfermented dough. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.97821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lin ZHANG
- Henan Institute of Science and Technology, China
| | - Jie ZENG
- Henan Institute of Science and Technology, China
| | - Haiyan GAO
- Henan Institute of Science and Technology, China
| | - Keke ZHANG
- Henan Institute of Science and Technology, China
| | - Mengyu WANG
- Henan Institute of Science and Technology, China
| |
Collapse
|
31
|
Zhang G, Zhu C, Walayat N, Nawaz A, Ding Y, Liu J. Recent development in evaluation methods, influencing factors and control measures for freeze denaturation of food protein. Crit Rev Food Sci Nutr 2022; 63:5874-5889. [PMID: 34996325 DOI: 10.1080/10408398.2022.2025534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Frozen storage is most widely adopted preservation method to maintain food freshness and nutritional attributes. However, at low temperature, food is prone to chemical changes such as protein denaturation and lipid oxidation. In this review, we discussed the reasons and influencing factors that cause protein denaturation during freezing, such as freezing rate, freezing temperature, freezing method, etc. From the previous literatures, it was found that frozen storage is commonly used to prevent freeze induced protein denaturation by adding cryoprotectants to food. Some widely used cryoprotectants (for example, sucrose and sorbitol) have been reported with higher sweetness and weaker cryoprotective abilities. Therefore, this article comprehensively discusses the new cryopreservation methods and providing comparative study to the conventional frozen storage. Meanwhile, this article sheds light on the freeze induced alterations, such as change in functional and gelling properties. In addition, this article could be helpful for the prolonged frozen storage of food with minimum quality related changes. Meanwhile, it could also improve the commercial values and consumer satisfaction of frozen food as well.
Collapse
Affiliation(s)
- Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Chunyan Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, P.R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| |
Collapse
|
32
|
Zhu X, Yuan P, Zhang T, Wang Z, Cai D, Chen X, Shen Y, Xu J, Song C, Goff D. Effect of carboxymethyl chitosan on the storage stability of frozen dough: State of water, protein structures and quality attributes. Food Res Int 2022; 151:110863. [PMID: 34980399 DOI: 10.1016/j.foodres.2021.110863] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/14/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Carboxymethyl chitosan (CMCh), an ampholetic chitosan derivative, has found broad applications in the food industry. However, its cryo-protective properties remained less explored compared to other viscous polysaccharides, such as carboxymethyl cellulose, carrageenan etc., which have been widely utilized as frozen food additives. In this study, we investigated the effect of CMCh addition to frozen dough in terms of water state, protein structure, and the textural properties of prepared frozen dumpling wrappers. Results indicated that CMCh restricted the water migration in dough and delayed protein deterioration during frozen storage. Specifically, the content of freezable water in dough was reduced and the water distribution became more uniform as reflected by DCS and LF-NMR analysis. CMCh also stabilized disulfide bond and secondary structures of the protein, leading to inhibition of dough rheology changes. Accordingly, the obtained frozen dumplings wrappers demonstrated decreased cracking rate and water loss, and improved textural properties. Moreover, CMCh with higher degree of carboxymethyl substitution (DS: 1.2, CMCh-B) exhibited better cryo-protective effects compared to CMCh of lower DS (DS: 0.8, CMCh-A). Our study provides novel insights and scientific basis for the development of ampholetic polysaccharides as high-performance food additives.
Collapse
Affiliation(s)
- Xiangwei Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Peipei Yuan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Ting Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Zhike Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dongna Cai
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xi Chen
- Key Laboratory of Bulk Grain and Oil Deep Processing Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanting Shen
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States
| | - Jianteng Xu
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States
| | - Changyuan Song
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Douglas Goff
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
33
|
|
34
|
Wang J, Ding Y, Wang M, Cui T, Peng Z, Cheng J. Moisture Distribution and Structural Properties of Frozen Cooked Noodles with NaCl and Kansui. Foods 2021; 10:foods10123132. [PMID: 34945683 PMCID: PMC8701863 DOI: 10.3390/foods10123132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The effects of NaCl (1-3%) and kansui (0.5-1.5%) on the quality of frozen cooked noodles (FCNs) were investigated, which provided a reference for alleviating the quality deterioration of FCNs. Textural testing illustrated that the optimal tensile properties were observed in 2% NaCl (N-2) and the maximum hardness and chewiness were reached at 1% kansui (K-1). Compared to NaCl, the water absorption and cooking loss of recooked FCNs increased significantly with increasing kansui levels (p < 0.05). Rheological results confirmed NaCl and kansui improved the resistance to deformation and recovery ability of thawed dough; K-1 especially had the highest dough strength. SEM showed N-2 induced a more elongated fibrous protein network that contributed to the extensibility, while excessive levels of kansui formed a deformed membrane-like gluten network that increased the solid loss. Moisture analysis revealed that N-2 reduced the free water content, while K-1 had the lowest freezable water content and highest binding capacity for deeply adsorbed water. The N-2 and K-1 induced more ordered protein secondary structures with stronger intermolecular disulfide bonds, which were maximally improved in K-1. This study provides more comprehensive theories for the strengthening effect of NaCl and kansui on FCNs quality.
Collapse
|
35
|
New insights into the alleviating role of starch derivatives on dough quality deterioration caused by freeze. Food Chem 2021; 362:130240. [PMID: 34119950 DOI: 10.1016/j.foodchem.2021.130240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/29/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022]
Abstract
The alleviating role of starch derivatives on the quality deterioration of frozen steamed bread dough was investigated in terms of derivative structure, the bread characteristics and dough properties including freezable water contents, yeast activity as well as dough viscoelasticity. The addition of starch derivatives including short-clustered maltodextrin (SCMD), DE2 maltodextrin (MD) and pregelatinized starch (PGS) significantly increased the specific volume and decreased the hardness of steamed bread compared with Control bread after 8-week frozen storage. Lower freezable water content was found in PGS dough than SCMD dough, which was consistent with the results of water absorption index of starch derivatives. The analysis of dough gassing rate and yeast survival ratio demonstrated SCMD could provide more cryoprotection for yeast cells. Meanwhile, a higher elastic module and a more continuous gluten-network structure of SCMD dough were found after 8-week frozen storage. These results indicated starch derivatives especially SCMD were promising to be used as the alternative improvers in frozen dough production.
Collapse
|