1
|
Ren Y, Jia F, Li D. Ingredients, structure and reconstitution properties of instant powder foods and the potential for healthy product development: a comprehensive review. Food Funct 2024; 15:37-61. [PMID: 38059502 DOI: 10.1039/d3fo04216b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Instant foods are widely presented in powder forms across different food segments, which potentially can be formulated with functional or beneficial compounds to provide health benefits. Many reconstituted instant powder foods form colloidal suspensions with complex structures. However, designing instant powder food could be challenging due to the structural complexity and high flexibility in formulation. This review proposed a new classification method for instant powder foods according to the solubility of ingredients and the structure of the reconstituted products. Instant powder foods containing insoluble ingredients are discussed. It summarised challenges and current advances in powder treatments, reconstitution improvement, and influences on food texture and structure to facilitate product design in related industries. The characteristics and incorporation of the main ingredients and ingredients with health benefits in product development were reviewed. Different products vary significantly in the ratios of macronutrients. The macronutrients have limited solubility in water. After being reconstituted by water, the insoluble components are dispersed and swell to form colloidal dispersions with complex structures and textures. Soluble components, which dissolve in the continuous phase, may facilitate the dispersing process or influence the solution environment. The structure of reconstituted products and destabilising factors are discussed. Both particle and molecular structuring strategies have been developed to improve wettability and prevent the formation of lumps and, therefore, to improve reconstitution properties. Various types of instant food have been developed based on healthy or functional ingredients and exhibit positive effects on the prevention of non-communicable diseases and overall health. Less processed materials and by-products are often chosen to enhance the contents of dietary fibre and phenolic compounds. The enrichment of phenolic compounds, dietary fibres and/or probiotics tend to be simultaneous in plant-based products. The process of the ingredients and the formulation of products must be tailored to design the desired structure and to improve the reconstitution property.
Collapse
Affiliation(s)
- Yi Ren
- School of Public Health and Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China.
- Ningbo Yu Fang Tang Biological Science and Technology Co., Ltd, Ningbo 315012, China
| | - Fuhuai Jia
- Ningbo Yu Fang Tang Biological Science and Technology Co., Ltd, Ningbo 315012, China
| | - Duo Li
- School of Public Health and Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
2
|
Maidannyk VA, Simonov Y, McCarthy NA, Ho QT. Water Effective Diffusion Coefficient in Dairy Powder Calculated by Digital Image Processing and through Machine Learning Algorithms of CLSM Micrographs. Foods 2023; 13:94. [PMID: 38201123 PMCID: PMC10778944 DOI: 10.3390/foods13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Rehydration of dairy powders is a complex and essential process. A relatively new quantitative mechanism for monitoring powders' rehydration process uses the effective diffusion coefficient. This research focused on modifying a previously used labor-intensive method that will be able to automatically measure the real-time water diffusion coefficient in dairy powders based on confocal microscopy techniques. Furthermore, morphological characteristics and local hydration of individual particles were identified using an imaging analysis procedure written in Matlab©-R2023b and image analysis through machine learning algorithms written in Python™-3.11. The first model includes segmentation into binary images and labeling particles during water diffusion. The second model includes the expansion of data set selection, neural network training and particle markup. For both models, the effective diffusion follows Fick's second law for spherical geometry. The effective diffusion coefficient on each particle was computed from the dye intensity during the rehydration process. The results showed that effective diffusion coefficients for water increased linearly with increasing powder particle size and are in agreement with previously used methods. In summary, the models provide two independent machine measurements of effective diffusion coefficient based on the same set of micrographs and may be useful in a wide variety of high-protein powders.
Collapse
Affiliation(s)
- Valentyn A. Maidannyk
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland; (N.A.M.); (Q.T.H.)
| | - Yuriy Simonov
- Independent Researcher, 6511 Nijmegen, The Netherlands;
| | - Noel A. McCarthy
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland; (N.A.M.); (Q.T.H.)
| | - Quang Tri Ho
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland; (N.A.M.); (Q.T.H.)
- Institute of Marine Research, 5003–5268 Bergen, Norway
| |
Collapse
|
3
|
Gong Q, Liu C, Tian Y, Zheng Y, Wei L, Cheng T, Wang Z, Guo Z, Zhou L. Effect of cavitation jet technology on instant solubility characteristics of soymilk flour: Based on the change of protein conformation in soymilk. ULTRASONICS SONOCHEMISTRY 2023; 96:106421. [PMID: 37137245 PMCID: PMC10176257 DOI: 10.1016/j.ultsonch.2023.106421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
The protein conformation of soymilk is the key to affecting the instant solubility of soymilk flour. This study aimed to evaluate the effect of cavitation jet treatment time (0, 2, 4, 6, and 8 min) on the instant solubility of soymilk flour based on the conformational changes of protein in soymilk. The results showed that the cavitation jet treatment for 0-4 min significantly unfolded the protein structure of soymilk and increased the content of soluble protein, which reduced the particle size and increased the electrostaticrepulsion and the viscosity of soymilk. This was beneficial for soymilk droplets fully atomized and repolymerized in the spray drying tower, forming soymilk flour particles with large size, smooth surface, and uniform distribution. When the cavitation jet treatment time was 4 min, the wettability (from 127.3 ± 2.5 s to 84.7 ± 2.1 s), dispersibility (from 70.0 ± 2.0 s to 55.7 ± 2.1 s), and solubility (from 56.54% to 78.10%) of soymilk flour were significantly improved. However, when the time of the cavitation jet treatment was extended to 8 min, the protein of soymilk aggregated and the stability of soymilk decreased, which reduced the particle size and hurt the surfacecharacteristics of soymilk flour after spraydrying. It resulted in a decrease in the instant solubility of soymilk flour. Therefore, the cavitationjet treatment with proper time increases the instant solubility of soymilk flour by improving the protein conformation of soymilk.
Collapse
Affiliation(s)
- Qi Gong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Caihua Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yachao Tian
- College of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250300, China
| | - Yuxuan Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Libin Wei
- Suzhou Taicang Science And Technology Bureau Productivity Promotion Center, Suzhou, Jiangsu 215411, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Beidahuang Green and Healthy Food Co., Ltd., Jiamusi, Heilongjiang 154007, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Haidian, Beijing 100048, China.
| |
Collapse
|
4
|
Babu KS, Amamcharla JK. Influence of Bulk Nanobubbles Generated by Acoustic Cavitation on Powder Microstructure and Rehydration Characteristics of Spray-Dried Milk Protein Concentrate Powders. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1093. [PMID: 36985987 PMCID: PMC10054697 DOI: 10.3390/nano13061093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Bulk nanobubbles (BNBs) have widespread applications in various fields of science due to numerous peculiar characteristics. Despite significant applications, only limited investigations are available on the application of BNBs in food processing. In the present study, a continuous acoustic cavitation technique was used to generate bulk nanobubbles (BNBs). The aim of this study was to evaluate the influence of BNB incorporation on the processability and spray drying of milk protein concentrate (MPC) dispersions. MPC powders were reconstituted to the desired total solids and incorporated with BNBs using acoustic cavitation as per the experimental design. The control MPC (C-MPC) and BNB-incorporated MPC (BNB-MPC) dispersions were analyzed for rheological, functional, and microstructural properties. The viscosity significantly decreased (p < 0.05) at all the amplitudes studied. The microscopic observations of BNB-MPC dispersions showed less aggregated microstructures and greater structural differences compared with C-MPC dispersions, therefore lowering the viscosity. The viscosity of BNB incorporated (90% amplitude) MPC dispersions at 19% total solids at a shear rate of 100 s-1 significantly decreased to 15.43 mPa·s (C-MPC: 201 mPa·s), a net decrease in viscosity by ~90% with the BNB treatment. The control and BNB incorporated MPC dispersions were spray-dried, and the resultant powders were characterized in terms of powder microstructure and rehydration characteristics. Focused beam reflectance measurement of the BNB-MPC powders indicated higher counts of fine particles (<10 μm) during dissolution, signifying that BNB-MPC powders exhibited better rehydration properties than the C-MPC powders. The enhanced powder rehydration with the BNB incorporation was attributed to the powder microstructure. Overall, reducing the viscosity of feed by BNB incorporation can enhance the performance of the evaporator. This study, therefore, recommends the possibility of using BNB treatment for more efficient drying while improving the functional properties of the resultant MPC powders.
Collapse
|
5
|
Dudi K, Khatkar SK. Development of highly soluble and functional buffalo milk protein concentrate 60 by modifying ionic environment and characterisation thereof. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kuldeep Dudi
- By‐products Utilization Lab, Department of Dairy Technology, College of Dairy Science and Technology Guru Angad Dev Veterinary and Animal Sciences University (GADVASU) Ludhiana Punjab India
| | - Sunil Kumar Khatkar
- By‐products Utilization Lab, Department of Dairy Technology, College of Dairy Science and Technology Guru Angad Dev Veterinary and Animal Sciences University (GADVASU) Ludhiana Punjab India
| |
Collapse
|
6
|
Zhang Y, Pandiselvam R, Liu Y. Understanding the factors affecting the surface chemical composition of dairy powders: a systematic review. Crit Rev Food Sci Nutr 2022; 64:241-255. [PMID: 35916834 DOI: 10.1080/10408398.2022.2105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dairy powder, with abundant chemical components such as protein, fat, and lactose possessing diverse physical and chemical structures, can exhibit a surface composition distinct from its bulk content during the conversion of liquid milk into dry powder. Surface chemical composition is a significant parameter in the dairy industry, as it is directly associated with the techno-functional properties of dairy powder products. The current work provides an overview of the factors influencing the surface composition of dairy powders such as the bulk composition of raw milk (animal source and formulation), liquid dairy processing (homogenization, thermal treatment, and evaporation), the drying process (drying methods as well as operating conditions during the most commonly used spray drying), and storage conditions (temperature, relative humidity, and duration). The underlying mechanisms involved in the variations of particle surface composition include the mechanical properties of emulsion, milk fat globules redistribution caused by mechanical forces, adsorption competition and interactions of ingredients at the water/air interface, dehydration-induced alterations in particle structure, corresponding solid/solutes segregation differentiation during spray drying, and lactose crystallization-induced increase in surface fat during storage. Additionally, future research is suggested to explore the effects of emerging processing technologies on the surface composition modification of dairy powders.
Collapse
Affiliation(s)
- Yue Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - R Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Yanhong Liu
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
T. V, V. S, A. M. NL, O. U. MI, Kothakota A. Effect of Aeration Techniques on Flow Properties of Spray-Dried Sugar Powders — Process Optimization Studies. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Babu KS, Amamcharla JK. Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: a review and future perspective. Crit Rev Food Sci Nutr 2022; 63:9262-9281. [PMID: 35467989 DOI: 10.1080/10408398.2022.2067119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanobubble (NB) technologies have received considerable attention for various applications due to their low cost, eco-friendliness, scale-up potential, process control, and unique physical characteristics. NB stands for nanoscopic gaseous cavities, typically <1 μm in diameter. NBs can exist on surfaces (surface or interfacial NBs) and be dispersed in a bulk liquid phase (bulk NBs). Compared to the microbubbles, NBs exhibit high specific surface area, negative surface charge, and better adsorption. Bulk NBs can be generated by hydrodynamic/acoustic cavitation, electrolysis, water-solvent mixing, nano-membrane filtration, and so on. NBs exhibit extraordinary longevity compared to microbubbles, prompting the interest of the scientific community aiming for potential applications including medicine, agriculture, food, wastewater treatment, surface cleaning, and so on. Based on the limited amount of research work available regarding the influence of NBs on food matrices, further research, however, needs to be done to provide more insights into its applications in food industries. This review provides an overview of the generation methods for NBs, techniques to evaluate them, and a discussion of their stability and several applications in various fields of science were discussed. However, recent studies have revealed that, despite the many benefits of NB technologies, several NB generating approaches are still limited in their application in specific agro-food industries. Further study should focus on process optimization, integrating various NB generation techniques/combining with other emerging technologies in order to achieve rapid technical progress and industrialization of NB-based technologies.HighlightsNanobubbles (NBs) are stable spherical entities of gas within liquid and are operationally defined as having diameters less than 1 µm.Currently, various reported theories still lack the ability to explain the evidence and stability of NBs in water, numerous NB applications have emerged due to the unique properties of NBs.NB technologies can be applied to various food and dairy products (e.g. yogurt and ice cream) and other potential applications, including agriculture (e.g. seed germination and plant growth), wastewater treatment, surface cleaning, and so on.
Collapse
Affiliation(s)
- Karthik S Babu
- Department of Animal Sciences and Industry/Food Science Institute, Kansas State University, Manhattan, Kansas, USA
| | - Jayendra K Amamcharla
- Department of Animal Sciences and Industry/Food Science Institute, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
9
|
Babu K, Amamcharla J. Application of micro- and nano-bubbles in spray drying of milk protein concentrates. J Dairy Sci 2022; 105:3911-3925. [DOI: 10.3168/jds.2021-21341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/21/2022] [Indexed: 11/19/2022]
|
10
|
Maidannyk VA, McSweeney DJ, Montgomery S, Cenini VL, O’Hagan BMG, Gallagher L, Miao S, McCarthy NA. The Effect of High Protein Powder Structure on Hydration, Glass Transition, Water Sorption, and Thermomechanical Properties. Foods 2022; 11:292. [PMID: 35159444 PMCID: PMC8834494 DOI: 10.3390/foods11030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Poor solubility of high protein milk powders can be an issue during the production of nutritional formulations, as well as for end-users. One possible way to improve powder solubility is through the creation of vacuoles and pores in the particle structure using high pressure gas injection during spray drying. The aim of this study was to determine whether changes in particle morphology effect physical properties, such as hydration, water sorption, structural strength, glass transition temperature, and α-relaxation temperatures. Four milk protein concentrate powders (MPC, 80%, w/w, protein) were produced, i.e., regular (R) and agglomerated (A) without nitrogen injection and regular (RN) and agglomerated (AN) with nitrogen injection. Electron microscopy confirmed that nitrogen injection increased powder particles' sphericity and created fractured structures with pores in both regular and agglomerated systems. Environmental scanning electron microscopy (ESEM) showed that nitrogen injection enhanced the moisture uptake and solubility properties of RN and AN as compared with non-nitrogen-injected powders (R and A). In particular, at the final swelling at over 100% relative humidity (RH), R, A, AN, and RN powders showed an increase in particle size of 25, 20, 40, and 97% respectively. The injection of nitrogen gas (NI) did not influence calorimetric glass transition temperature (Tg), which could be expected as there was no change to the powder composition, however, the agglomeration of powders did effect Tg. Interestingly, the creation of porous powder particles by NI did alter the α-relaxation temperatures (up to ~16 °C difference between R and AN powders at 44% RH) and the structural strength (up to ~11 °C difference between R and AN powders at 44% RH). The results of this study provide an in-depth understanding of the changes in the morphology and physical-mechanical properties of nitrogen gas-injected MPC powders.
Collapse
Affiliation(s)
- Valentyn A. Maidannyk
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland; (V.A.M.); (D.J.M.); (S.M.); (S.M.)
| | - David J. McSweeney
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland; (V.A.M.); (D.J.M.); (S.M.); (S.M.)
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Co. Cork, Ireland
| | - Sharon Montgomery
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland; (V.A.M.); (D.J.M.); (S.M.); (S.M.)
| | - Valeria L. Cenini
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK; (V.L.C.); (B.M.G.O.); (L.G.)
| | - Barry M. G. O’Hagan
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK; (V.L.C.); (B.M.G.O.); (L.G.)
| | - Lucille Gallagher
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK; (V.L.C.); (B.M.G.O.); (L.G.)
| | - Song Miao
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland; (V.A.M.); (D.J.M.); (S.M.); (S.M.)
| | - Noel A. McCarthy
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland; (V.A.M.); (D.J.M.); (S.M.); (S.M.)
| |
Collapse
|
11
|
Khalesi M, FitzGerald RJ. Physicochemical properties and water interactions of milk protein concentrate with two different levels of undenatured whey protein. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
|
13
|
Khalesi M, FitzGerald RJ. Insolubility in milk protein concentrates: potential causes and strategies to minimize its occurrence. Crit Rev Food Sci Nutr 2021; 62:6973-6989. [PMID: 33856251 DOI: 10.1080/10408398.2021.1908955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Milk protein concentrates (MPCs), which are produced from skim milk following a series of manufacturing steps including pasteurization, membrane filtration, evaporation and spray drying, represent a relatively new category of dairy ingredients. MPC powders mainly comprise caseins and whey proteins in the same ratio of occurrence as in milk. While bovine MPCs have applications as an ingredient in several protein enriched food products, technofunctional concerns, e.g., reduced solubility and emulsification properties, especially after long-term storage, limit their widespread and consistent utilization in many food products. Changes in the surface and internal structure of MPC powder particles during manufacture and storage occur via casein-casein and casein-whey protein interactions and also via the formation of casein crosslinks in the presence of calcium ions which are associated with diminishment of MPCs functional properties. The aggregation of micellar caseins as a result of these interactions has been considered as the main cause of insolubility in MPCs. In addition, the occurrence of lactose-protein interactions as a result of the promotion of the Maillard reaction mainly during storage of MPC may lead to greater insolubility. This review focuses on the solubility of MPC with an emphasis on understanding the factors involved in its insolubility along with approaches which may be employed to overcome MPC insolubility. Several strategies have been developed based on manipulation of the manufacturing process, along with composition, physical, chemical and enzymatic modifications to overcome MPC insolubility. Despite many advances, dairy ingredient manufacturers are still investigating technical solutions to resolve the insolubility issues associated with the large-scale manufacture of MPC.
Collapse
|