1
|
Yang T, Li H, Yu R, Yu X, Li Y, Duan Z, Yang J, Tao G, Huang A, Shi Y. Lactoferrin-alginate-pectin composite hydrogel: Enhancing Lactobacillus plantarum B072 survival, density and biofilm formation. Int J Biol Macromol 2025; 308:141983. [PMID: 40081688 DOI: 10.1016/j.ijbiomac.2025.141983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This research established a novel ternary composite hydrogel matrix composed of lactoferrin (Lf), sodium alginate (SA), and high ester pectin (HEP) for encapsulation Lactobacillus plantarum B072. The synergy of these components creates a robust, stable, and protective environment for the encapsulation of L. plantarum B072. The hydrogel beads exhibited high a encapsulation efficiency of 76.43 %, excellent mechanical strength, and thermal stability, while promoting biofilm formation, significantly increasing bacterial density to 9.57 log CFU/mL, and enhancing acid resistance, thereby providing an effective physical barrier against gastrointestinal stress. Hydrogen bonds and electrostatic repulsion play a critical role in maintaining the compact structure of the hydrogel, while hydrogen bonds and hydrophobic interactions further enhance its structural stability. Molecular docking analysis demonstrated that Lf-SA forms stable complexes with HEP by binding to specific active sites, including LEU-708, GLY-342, ARG-268, LEU-266, ARG-361, ASN-349, LEU-404, MET-622, and PRO-153. In simulated gastrointestinal digestion, the encapsulated L. plantarum B072 achieved a survival of 7.42 log CFU/mL, outperforming free bacteria. This work provides a new strategy for the development of probiotic delivery systems and the improvement of product stability.
Collapse
Affiliation(s)
- Tingting Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China; School of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Hong Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China; Yunnan College of Modern Coffee Industry, Kunming 650201, Yunnan, China
| | - Rongxian Yu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiaoyan Yu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yi Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Zuyan Duan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiarui Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guanhua Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
2
|
Liu A, Wu H, Dong Z, Fan Q, Huang J, Jin Z, Xiao N, Liu H, Li Z, Ming L. Recent trends in nanocellulose: Metabolism-related, gastrointestinal effects, and applications in probiotic delivery. Carbohydr Polym 2024; 343:122442. [PMID: 39174123 DOI: 10.1016/j.carbpol.2024.122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Nanocellulose, a versatile and sustainable nanomaterial derived from cellulose fibers, has attracted considerable attention in various fields due to its unique properties. Similar to dietary fibers, nanocellulose is difficult to digest in the human gastrointestinal tract. The indigestible nanocellulose is fermented by gut microbiota, producing metabolites and potentially exhibiting prebiotic activity in intestinal diseases. Additionally, nanocellulose can serve as a matrix material for probiotic protection and show promising prospects for probiotic delivery. In this review, we summarize the classification of nanocellulose, including cellulose nanocrystals (CNC), cellulose nanofibers (CNF), and bacterial nanocellulose (BNC), highlighting their distinct characteristics and applications. We discuss the metabolism-related characteristics of nanocellulose from oral ingestion to colon fermentation and introduce the prebiotic activity of nanocellulose in intestinal diseases. Furthermore, we provide an overview of commonly used nanocellulose-based encapsulation techniques, such as emulsification, extrusion, freeze drying, and spray drying, as well as the delivery systems employing nanocellulose matrix materials, including microcapsules, emulsions, and hydrogels. Finally, we discuss the challenges associated with nanocellulose metabolism, prebiotic functionality, encapsulation techniques, and delivery systems using nanocellulose matrix material for probiotics. This review will provide new insight into the application of nanocellulose in the treatment of intestinal diseases and probiotic delivery.
Collapse
Affiliation(s)
- Ao Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zishu Dong
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Jia Huang
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zhengji Jin
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Nan Xiao
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| |
Collapse
|
3
|
Passannanti F, Gallo M, Lentini G, Colucci Cante R, Nigro F, Nigro R, Budelli A. Alginate Capsules: Versatile Applications and Production Techniques. Macromol Biosci 2024; 24:e2400202. [PMID: 39233662 DOI: 10.1002/mabi.202400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Indexed: 09/06/2024]
Abstract
Alginate is a natural polysaccharide commonly obtained from brown algae and is usually used in the food industry as an additive, specifically as a thickening, gelling, and emulsifying agent. Due to its polyanionic nature, it can crosslink in the presence of divalent or trivalent cations. This crosslinking process involves the formation of chemical bonds between the carboxylic groups of parallel chains, resulting in a solid structure. In this way, compounds of interest can be enclosed in a capsule or a bead. Thanks to this ability, possible applications of alginate capsules are countless: it is possible to range from the pharmaceutical to the nutritional fields, from the agri-food industry to the textile or cosmetic sectors. These capsules can protect the encapsulated ingredients, promote their delivery or controlled release, or be imagined as small-scale reactors. The present review describes the main techniques used to produce alginate capsules, and several examples of possible application fields are shown.
Collapse
Affiliation(s)
- Francesca Passannanti
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia, 68, Naples, 80121, Italy
| | - Marianna Gallo
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia, 68, Naples, 80121, Italy
- Department of Industrial Engineering, University of Niccolò Cusano, Via Don Carlo Gnocchi 3, Rome, 00166, Italy
| | - Giulia Lentini
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
| | - Rosa Colucci Cante
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
| | - Federica Nigro
- I. T. P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia, 68, Naples, 80121, Italy
| | - Roberto Nigro
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
| | - Andrea Budelli
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
- Heinz Innovation Center, Nieuwe Dukenburgseweg 19 6534 AD Nijmegen Postbus 57, Nijmegen, NL-6500, Netherlands
| |
Collapse
|
4
|
Hughes MH, Brugnoni LI, Genovese DB. Mixed κ/ι-carrageenan - LM pectin gels: Relating the rheological and mechanical properties with the capacity for probiotic encapsulation. Int J Biol Macromol 2024; 273:133009. [PMID: 38852727 DOI: 10.1016/j.ijbiomac.2024.133009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
The rheological and mechanical properties of mixed κ/ι-carrageenan - LM pectin gels were determined, and the potential of these gels for the formation of beads using the extrusion method and for the encapsulation of Lacticaseibacillus rhamnosus ATCC 53103 (LGG) was evaluated. Self-standing gels were obtained with all formulations evaluated. Carrageenan-rich gels, with carrageenan fraction (XC) ≥ 0.75, exhibited the highest storage modulus, but they were also brittle, while pectin-rich gels (XC ≤ 0.25) presented the highest hardness and cohesiveness. Pectin-rich formulations formed beads with the smallest initial diameter (2.40-2.45 mm), and the addition of carrageenan produced significantly more spherical beads compared to pure-pectin ones. As pectin-rich beads were the formulations that resisted simulated gastrointestinal conditions, these were selected for the encapsulation of LGG. These beads showed high encapsulation yields (87-96 %), and the percentage reduction of CFU/g during storage and simulated gastrointestinal conditions was not significantly different among formulations, the latter being significantly lower for encapsulated cells (8.64-15.03 %) compared to free cells (71.20 %). These results indicate that carrageenan-pectin gel beads with XC ≤ 0.25 were successful in encapsulating probiotic bacteria, and this capacity was related to the rheological and mechanical properties of the gels.
Collapse
Affiliation(s)
- Melanie H Hughes
- Planta Piloto de Ingeniería Química - PLAPIQUI (UNS-CONICET), Camino La Carrindanga 7000, B8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000 Bahía Blanca, Argentina.
| | - Lorena I Brugnoni
- Instituto de Ciencias Biológicas y Biomédicas del Sur - INBIOSUR (UNS-CONICET), San Juan 671, B8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000 Bahía Blanca, Argentina
| | - Diego B Genovese
- Planta Piloto de Ingeniería Química - PLAPIQUI (UNS-CONICET), Camino La Carrindanga 7000, B8000 Bahía Blanca, Argentina; Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Alem 1253, B8000 Bahía Blanca, Argentina
| |
Collapse
|
5
|
Lin Q, Si Y, Zhou F, Hao W, Zhang P, Jiang P, Cha R. Advances in polysaccharides for probiotic delivery: Properties, methods, and applications. Carbohydr Polym 2024; 323:121414. [PMID: 37940247 DOI: 10.1016/j.carbpol.2023.121414] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 11/10/2023]
Abstract
Probiotics are essential to improve the health of the host, whereas maintaining the viability of probiotics in harsh environments remains a challenge. Polysaccharides have non-toxicity, excellent biocompatibility, and outstanding biodegradability, which can protect probiotics by forming a physical barrier and show a promising prospect for probiotic delivery. In this review, we summarize polysaccharides commonly used for probiotic microencapsulation and introduce the microencapsulation technologies, including extrusion, emulsion, spray drying, freeze drying, and electrohydrodynamics. We discuss strategies for better protection of probiotics and introduce the applications of polysaccharides-encapsulated probiotics in functional food, oral formulation, and animal feed. Finally, we propose the challenges of polysaccharides-based delivery systems in industrial production and application. This review will help provide insight into the advances and challenges of polysaccharides in probiotic delivery.
Collapse
Affiliation(s)
- Qianqian Lin
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China; Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| | - Yanxue Si
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Pai Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Peng Jiang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| |
Collapse
|
6
|
Agriopoulou S, Tarapoulouzi M, Varzakas T, Jafari SM. Application of Encapsulation Strategies for Probiotics: From Individual Loading to Co-Encapsulation. Microorganisms 2023; 11:2896. [PMID: 38138040 PMCID: PMC10745938 DOI: 10.3390/microorganisms11122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Consumers are increasingly showing a preference for foods whose nutritional and therapeutic value has been enhanced. Probiotics are live microorganisms, and their existence is associated with a number of positive effects in humans, as there are many and well-documented studies related to gut microbiota balance, the regulation of the immune system, and the maintenance of the intestinal mucosal barrier. Hence, probiotics are widely preferred by consumers, causing an increase in the corresponding food sector. As a consequence of this preference, food industries and those involved in food production are strongly interested in the occurrence of probiotics in food, as they have proven beneficial effects on human health when they exist in appropriate quantities. Encapsulation technology is a promising technique that aims to preserve probiotics by integrating them with other materials in order to ensure and improve their effectiveness. Encapsulated probiotics also show increased stability and survival in various stages related to their processing, storage, and gastrointestinal transit. This review focuses on the applications of encapsulation technology in probiotics in sustainable food production, including controlled release mechanisms and encapsulation techniques.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| | - Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran;
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran 14158-45371, Iran
| |
Collapse
|
7
|
Machado D, Fonseca M, Vedor R, Sousa S, Barbosa JC, Gomes AM. Akkermansia muciniphila Encapsulated in Calcium-Alginate Hydrogelated Matrix: Viability and Stability over Aerobic Storage and Simulated Gastrointestinal Conditions. Gels 2023; 9:869. [PMID: 37998959 PMCID: PMC10670611 DOI: 10.3390/gels9110869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Akkermansia muciniphila is considered a next-generation probiotic to be incorporated in new food and pharmaceutical formulations. Effective delivery systems are required to ensure high probiotic viability and stability during product manufacture, shelf-life, and post-consumption, namely, throughout digestion. Hydrogelated matrices have demonstrated promising potential in this dominion. Hence, this work aimed to evaluate the effect of a calcium-alginate hydrogelated matrix on A. muciniphila viability during 28-days refrigerated aerobic storage and when exposed to simulated gastrointestinal conditions, in comparison with that of free cells. Akkermansia muciniphila was successfully encapsulated in the calcium-alginate matrix via extrusion (60% encapsulation yield). Furthermore, encapsulated A. muciniphila exhibited high stability (a loss in viability lower than 0.2 log-cycle) after 28-days of refrigerated aerobic storage, maintaining its viability around 108 CFU/g. Prominently, as the storage time increased, encapsulated A. muciniphila revealed higher viability and stability regarding in vitro gastrointestinal conditions than free cells. This suggests that this encapsulation method may attenuate the detrimental effects of prolonged aerobic storage with a subsequent gastrointestinal passage. In conclusion, encapsulation via extrusion using a calcium-alginate hydrogelated matrix seems to be a promising and adequate strategy for safeguarding A. muciniphila from adverse conditions encountered during refrigerated aerobic storage and when exposed to the gastrointestinal passage.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.M.); (M.F.); (R.V.); (S.S.); (J.C.B.)
| |
Collapse
|
8
|
Frakolaki G, Giannou V, Tzia C. Encapsulation of Bifidobacterium animalis subsp. lactis Through Emulsification Coupled with External Gelation for the Development of Synbiotic Systems. Probiotics Antimicrob Proteins 2023; 15:1424-1435. [PMID: 36173590 PMCID: PMC10491698 DOI: 10.1007/s12602-022-09993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
Aim of this work was the development of integrated and complex encapsulating systems that will provide more efficient protection to the probiotic strain Bifidobacterium animalis subsp. lactis (BB-12) in comparison to the conventional plain alginate beads. Within the scope of this study, the encapsulation of BB-12 through emulsification followed by external gelation was performed. For this purpose, a variety of alginate-based blends, composed of conventional and novel materials, were used. The results demonstrated that alginate beads incorporating 1% carrageenan or 2% nanocrystalline cellulose provided great protection to the viability of the probiotic bacteria during refrigerated storage (survival rates of 50.3% and 51.1%, respectively), as well as in vitro simulation of the gastrointestinal tract (survival rates of 38.7 and 42.0%, respectively). The incorporation of glycerol into the formulation of the beads improved the protective efficiency of the beads to the BB-12 cells during frozen storage, increasing significantly their viability compared to the plain alginate beads. Beads made of milk, alginate 1%, glucose 5%, and inulin 2% provided the best results in all cases. The microstructure of beads was assessed through SEM analysis and showed absence of free bacteria on the surface of the produced beads. Consequently, the encapsulation of BB-12 through emulsification in a complex encapsulating system was proved successful and effective.
Collapse
Affiliation(s)
- Georgia Frakolaki
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Virginia Giannou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
9
|
Chen Y, Yang B, Zhao J, Ross RP, Stanton C, Zhang H, Chen W. Exploiting lactic acid bacteria for colorectal cancer: a recent update. Crit Rev Food Sci Nutr 2022; 64:5433-5449. [PMID: 36530047 DOI: 10.1080/10408398.2022.2154742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world. Currently, chemotherapy and radiotherapy used to treat CRC exhibit many side effects, hence, it is an urgent need to design effective therapies to prevent and treat CRC. Lactic acid bacteria (LAB) can regulate gut microbiota, intestinal immunity, and intestinal mechanical barrier, which is becoming a hot product for the prevention and treatment of CRC, whereas comprehensive reviews of their anti-CRC mechanisms are limited. This review systematically reveals the latest incidence, mortality, risk factors, and molecular mechanisms of CRC, then summarizes the roles of probiotics in alleviating CRC in animal and clinical studies and critically reviews the possible mechanisms by which these interventions exert their activities. It then shows the limitations in mechanisms and clinical studies, and the suggestions for future research are also put forward, which will play an important role in guiding and promoting the basic and clinical research of remising CRC by LAB and the development of LAB products.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Ni F, Luo X, Zhao Z, Yuan J, Song Y, Liu C, Huang M, Dong L, Xie H, Cai L, Ren G, Gu Q. Enhancing viability of Lactobacillus plantarum encapsulated by alginate-gelatin hydrogel beads during gastrointestinal digestion, storage and in the mimic beverage systems. Int J Biol Macromol 2022; 224:94-104. [DOI: 10.1016/j.ijbiomac.2022.10.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
11
|
Yuan Y, Yin M, Chen L, Liu F, Chen M, Zhong F. Effect of calcium ions on the freeze-drying survival of probiotic encapsulated in sodium alginate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Isomaltulose: From origin to application and its beneficial properties – A bibliometric approach. Food Res Int 2022; 155:111061. [DOI: 10.1016/j.foodres.2022.111061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 01/03/2023]
|
13
|
Advances in extrusion-dripping encapsulation of probiotics and omega-3 rich oils. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Immobilization Techniques on Bioprocesses: Current Applications Regarding Enzymes, Microorganisms, and Essential Oils. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Gao Y, Wang X, Xue C, Wei Z. Latest developments in food-grade delivery systems for probiotics: A systematic review. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34748451 DOI: 10.1080/10408398.2021.2001640] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tremendous progress in the inseparable relationships between probiotics and human health has enabled advances in probiotic functional foods. To ensure the vitality of sensitive probiotics against multiple harsh conditions, rising food-grade delivery systems for probiotics have been developed. This review gives a summary of recently reported delivery vehicles for probiotics, analyzes their respective merits and drawbacks and makes comparisons among them. Subsequently, the applications and future prospects are discussed. According to the types of encapsulating probiotics, food-grade delivery systems for probiotics can be classified into "silkworm cocoons" and "spider webs", which are put forward in this paper. The former, which surrounds the inner probiotics with the outer protective layers, includes particles, emulsions, beads, hybrid electrospun nanofibers and microcapsules. While hydrogels and bigels belong to the latter, which protects probiotics with the aid of network structures. The future prospects include preferable viability and stability of probiotics, co-delivery systems, targeted gut release of probiotics, delivery of multiple strains, more scientific experimental verification and more diversified food products, which will enlighten further studies on delivering probiotics for human health. Taken together, delivery vehicles for probiotics are-or will soon be-in the field of food science, with further applications under development.
Collapse
Affiliation(s)
- Yuxing Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
16
|
Frakolaki G, Kekes T, Lympaki F, Giannou V, Tzia C. Use of encapsulated
Bifidobacterium animalis
subsp.
lactis
through extrusion or emulsification for the production of probiotic yogurt. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Georgia Frakolaki
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering National Technical University of Athens Zografou Greece
| | - Tryfon Kekes
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering National Technical University of Athens Zografou Greece
| | - Foteini Lympaki
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering National Technical University of Athens Zografou Greece
| | - Virginia Giannou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering National Technical University of Athens Zografou Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering National Technical University of Athens Zografou Greece
| |
Collapse
|
17
|
Premjit Y, Mitra J. Optimization of Electrospray-Assisted Microencapsulation of Probiotics (Leuconostoc lactis) in Soy Protein Isolate-Oil Particles Using Box-Behnken Experimental Design. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02670-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|