1
|
Fadda HM, Shin A, Waseem MR, Camilleri M. Vitamin C reduces gastric pH in pharmacologically induced hypochlorhydria: a potential approach for mitigating pH-dependent drug-drug interactions of weak-base drugs. J Pharm Sci 2025:103809. [PMID: 40324687 DOI: 10.1016/j.xphs.2025.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Orally administered, poorly soluble, weak-base drugs are subject to gastric pH-dependent drug-drug interactions which can be clinically significant. Proton pump inhibitors (PPIs) have been shown to reduce the bioavailability of kinase inhibitors, antivirals and triazole antifungals, through elevation of gastric pH. The objective of this study was to determine if chewable ascorbic acid (AA) tablets can induce a transient reduction in gastric pH. Healthy volunteers were pretreated with 20 mg omeprazole to induce hypochlorhydria. On the study day, gastric pH was continuously monitored using a catheter-based pH monitoring system. A pH electrode was transnasally placed in the stomach fundus and pH data was collected in real time. 1000 mg AA chewable tablets were ingested by the study participants with 240 mL of water. In five out of six subjects, a significant drop in gastric pH was observed. A mean (± SD) drop in pH of 3.7 (± 1.8) upon AA intake was observed and time taken to reach lowest gastric pH was 91.2 (± 64) min. Area under the pH versus time curve (AUCpH), below median pH over 15 min duration before AA intake, was determined to be 86.8 ± 136.7 (ΔpH.min). This pilot study demonstrates that 1000 mg of AA tablets can significantly reduce gastric pH in individuals receiving treatment with PPIs, providing a potential approach for mitigating pH-dependent drug-drug interactions of weak-base drugs.
Collapse
Affiliation(s)
- Hala M Fadda
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Butler University, IN, United States.
| | - Andrea Shin
- Indiana University Division of Gastroenterology and Hepatology, Indianapolis, Indiana, United States; Vatche and Tamar Manoukian Division of Digestive Diseases at the University of California Los Angeles, Los Angeles, CA, United States
| | - Mohammed Rayyan Waseem
- Indiana University Division of Gastroenterology and Hepatology, Indianapolis, Indiana, United States
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
2
|
Fernandes SQ, Kothare MV, Mahmoudi B. A novel compartmental approach for modeling stomach motility and gastric emptying. Comput Biol Med 2024; 181:109035. [PMID: 39213708 PMCID: PMC11493153 DOI: 10.1016/j.compbiomed.2024.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The stomach, a central organ in the Gastrointestinal (GI) tract, regulates the processing of ingested food through gastric motility and emptying. Understanding the stomach function is crucial for treating gastric disorders. Experimental studies in this field often face difficulties due to limitations and invasiveness of available techniques and ethical concerns. To counter this, researchers resort to computational and numerical methods. However, existing computational studies often isolate one aspect of the stomach function while neglecting the rest and employ computationally expensive methods. This paper proposes a novel cost-efficient multi-compartmental model, offering a comprehensive insight into gastric function at an organ level, thus presenting a promising alternative. The proposed approach divides the spatial geometry of the stomach into four compartments: Proximal/Middle/Terminal antrum and Pyloric sphincter. Each compartment is characterized by a set of ordinary differential equations (ODEs) with respect to time to characterize the stomach function. Electrophysiology is represented by simplified equations reflecting the "slow wave behavior" of Interstitial Cells of Cajal (ICC) and Smooth Muscle Cells (SMC) in the stomach wall. An electro-mechanical coupling model translates SMC "slow waves" into smooth muscle contractions. Muscle contractions induce peristalsis, affecting gastric fluid flow velocity and subsequent emptying when the pyloric sphincter is open. Contraction of the pyloric sphincter initiates a retrograde flow jet at the terminal antrum, modeled by a circular liquid jet flow equation. The results from the proposed model for a healthy human stomach were compared with experimental and computational studies on electrophysiology, muscle tissue mechanics, and fluid behavior during gastric emptying. These findings revealed that each "ICC" slow wave corresponded to a muscle contraction due to electro-mechanical coupling behavior. The rate of gastric emptying and mixing efficiency decreased with increasing viscosity of gastric liquid but remained relatively unchanged with gastric liquid density variations. Utilizing different ODE solvers in MATLAB, the model was solved, with ode15s demonstrating the fastest computation time, simulating 180 s of real-time stomach response in just 2.7 s. This multi-compartmental model signifies a promising advancement in understanding gastric function, providing a cost-effective and comprehensive approach to study complex interactions within the stomach and test innovative therapies like neuromodulation for treating gastric disorders.
Collapse
Affiliation(s)
- Shannon Q Fernandes
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA.
| | - Mayuresh V Kothare
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA.
| | - Babak Mahmoudi
- Department of Biomedical Informatics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Park SJ, Gil MC, Lee BS, Jung M, Lee BJ. Effects of Postprandial Factors and Second Meal Intake Time on Bioequivalence Investigation of Tadalafil-Loaded Orodispersible Films in Human Volunteers. Pharmaceutics 2024; 16:915. [PMID: 39065611 PMCID: PMC11280306 DOI: 10.3390/pharmaceutics16070915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Tadalafil (TD) has poor water solubility but is well absorbed without affecting food intake when administered orally. Owing to patient adherence and therapeutic characteristics, a TD-loaded orodispersible film (TDF) is preferable. However, the mechanistic role of dietary status on the clinical pharmacokinetic analysis of TDF in human volunteers should be investigated because the gastrointestinal environment varies periodically according to meal intervals, although commercial 20 mg TD-loaded tablets (TD-TAB, Cialis® tablet) may be taken with or without food. TDF was prepared by dispersing TD in an aqueous solution and polyethylene glycol 400 to ensure good dispersibility of the TD particles. In the fasting state, each T/R of Cmax and AUC between TD-TAB and TDF showed bioequivalence with 0.936-1.105 and 1.012-1.153, respectively, and dissolution rates in 1000 mL water containing 0.5% SLS were equivalent. In contrast, TDF was not bioequivalent to TD-TAB under the fed conditions by the Cmax T/R of 0.610-0.798. The increased dissolution rate of TDF via the micronization of drug particles and the reduced viscosity of the second meal content did not significantly affect the bioequivalence. Interestingly, an increase in second meal intake time from 4 h to 6 h resulted in the bioequivalence by the Cmax T/R of 0.851-0.998 of TD-TAB and TDF. The predictive diffusion direction model for physical digestion of TD-TAB and TDF in the stomach after the first and second meal intake was successfully simulated using computational fluid dynamics modeling, accounting for the delayed drug diffusion of TDF caused by prolonged digestion of stomach contents under postprandial conditions.
Collapse
Affiliation(s)
- Su-Jun Park
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon-si 16499, Republic of Korea;
- CTCBIO Inc., Hwaseong-si 18576, Republic of Korea
| | - Myung-Chul Gil
- PLUTO Inc., Seongnam-si 13453, Republic of Korea; (M.-C.G.); (B.-S.L.)
| | - Bong-Sang Lee
- PLUTO Inc., Seongnam-si 13453, Republic of Korea; (M.-C.G.); (B.-S.L.)
| | - Minji Jung
- Department of Urology, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Beom-Jin Lee
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon-si 16499, Republic of Korea;
- Institute of Pharmaceutical Science and Technology, Ajou University, Suwon-si 16499, Republic of Korea
| |
Collapse
|
4
|
Liu X, Fletcher DF, Bornhorst GM. A review of the use of numerical analysis in stomach modeling. J Food Sci 2024; 89:3894-3916. [PMID: 38865250 DOI: 10.1111/1750-3841.17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
Food digestion is important for human health. Advances have been made using in vitro models to study food digestion, but there is considerable potential for numerical approaches in stomach modeling, as they can provide a comprehensive understanding of the complex flow and chemistry in the stomach. The focus of this study is to provide a concise review of the developed numerical stomach models over the past two decades. The gastric physiological parameters that are required for a computational model to represent the human gastric digestion process are discussed, including the stomach geometry, gastric motility, gastric emptying, and gastric secretions. Computational methods used to model gastric digestion are introduced and compared, including different computational fluid dynamics as well as solid mechanics methods. The challenges and limitations of current studies are discussed, as well as the areas for future research that need to be addressed. There has been progress in simulating gastric fluid flow with stomach wall motion, but much work remains to be done. The complex food breakdown mechanisms and a comprehensive chemical digestion process have not been implemented in any developed models. Numerical method that was once computationally expensive will be revolutionized as computing power continues to improve. Ultimately, the advancement of modeling of gastric food digestion will allow for additional hypothesis testing to streamline the development of food products that are beneficial to human health.
Collapse
Affiliation(s)
- Xinying Liu
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - David F Fletcher
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Gail M Bornhorst
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
- Riddet Institute, Palmerston North, New Zealand
| |
Collapse
|
5
|
Li C, Chen XD, Xiao J, Deng R, Jin Y. Impact of reduced gravity on food mixing and emptying in human stomach: A numerical simulation study. PHYSICS OF FLUIDS 2024; 36. [DOI: 10.1063/5.0208898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Gravitational conditions in space diverge significantly from those experienced on Earth, and these alterations may have significant effects on gastric digestion, ultimately affecting the health of astronauts. To understand these effects, the behavior of mixing and emptying in the human stomach under both reduced and normal gravity is investigated numerically. The solver utilized in this study is developed based on the open-source toolbox OpenFOAM. The gastric contents consist of water and a soluble food bolus characterized by a density of 1100 kg m−3, viscosity of 10−5 m2 s−1, and diffusivity of 3.09 × 10−9 m2 s−1. The effects of gravity magnitude, initial food bolus location, and terminal antral contractions (TACs) are studied. The numerical results demonstrate that the food retention rate can be increased by up to ∼20% in the initial 6 min as normal gravity is reduced to zero gravity. The numerical results support that gravity favors the emptying of the food through the pylorus. The distributions of food concentrations and pH are also significantly influenced by the gravity condition. Under zero gravity conditions, food in the distal stomach is quickly emptied due to the strong flow dynamics in the antrum. A delay of approximately 6 min is observed when the food bolus is initially located in the proximal stomach. TACs efficiently enhance the emptying and mixing of the food in the distal stomach, while their effects on the proximal stomach are marginal.
Collapse
|
6
|
Kuhar S, Seo JH, Pasricha PJ, Mittal R. In silico modelling of the effect of pyloric intervention procedures on gastric flow and emptying in a stomach with gastroparesis. J R Soc Interface 2024; 21:20230567. [PMID: 38263890 PMCID: PMC10824103 DOI: 10.1098/rsif.2023.0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Pyloric interventions are surgical procedures employed to increase the gastric emptying rate in gastroparesis patients. In this study, we use an in silico model to investigate the consequences of pyloric intervention on gastric flow and emptying for two phenotypes of gastroparesis: antral hypomotility and decreased gastric tone. The transpyloric pressure gradient predicted by the in silico model, based on viscous fluid flow equations, is compared against in vivo measurements. Both phenotypes exhibit a similar pre-procedural emptying rate reduction, but after pyloric surgery, antral hypomotility case with preserved gastric tone shows significant improvements in emptying rates, up to 131%, accompanied by bile reflux from the duodenum into the stomach. Conversely, severely reduced gastric tone cases exhibited a post-procedural reduction in the net emptying rate due to the relatively larger bile reflux. In cases with a combination of antral hypomotility and reduced gastric tone, post-procedural improvements were observed only when both conditions were mild. Our findings highlight the pivotal role of the relative increase in pyloric orifice diameter in determining post-operative emptying rates. The study suggests a possible explanation for the selective response of patients toward these procedures and underscores the potential of in silico modelling to generate valuable insights to inform gastric surgery.
Collapse
Affiliation(s)
- Sharun Kuhar
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jung-Hee Seo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Rajat Mittal
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Kuhar S, Mittal R. Computational Models of the Fluid Mechanics of the Stomach. J Indian Inst Sci 2024; 104:65-76. [DOI: 10.1007/s41745-024-00421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 01/04/2025]
|
8
|
Toniolo I, Berardo A, Gagner M, Foletto M, Carniel EL. Unveiling the effects of key factors in enhancing gastroesophageal reflux: A fluid-structure analysis before and after laparoscopic sleeve gastrectomy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107409. [PMID: 36780716 DOI: 10.1016/j.cmpb.2023.107409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVES Gastro-oesophageal reflux disease (GERD) consists in the passage of gastric acid content from the stomach to the oesophagus, causing burns and deteriorating the quality of life. Laparoscopic Sleeve Gastrectomy (LSG) could induce de novo GERD and worsen pre-existing GERD because of the higher gastric pressurisation, reduction of stomach volume and a wider His-angle. In the proposed work, various computational gastric 2D models were developed to understand the effects of variables such as the His-angle, the antral dimension, and the bolus viscosity on the reflux increase. METHODS Fluid-Structure Interaction (FSI) computational models which couple the solid mechanics of the gastric wall, and the fluid domain of the bolus, have been developed to shed light on biomechanical aspects of GERD after LSG. A closure was imposed to the lower oesophageal sphincter (LES) mimicking what happens physiologically after food intake. RESULTS Results showed that the configuration prone to higher reflux flow was the post-surgical 65° model with a staple line starting directly from the pylorus without antral preservation, for all considered viscosities. Increasing viscosity, reflux flow decreased. Post-surgical refluxes were higher than pre-ones and decreased with increasing antrum preservation. CONCLUSIONS These results could be a starting point for analysis of anatomical features, bariatric surgery and GERD occurrence. Further studies based on 3D geometries need to be performed.
Collapse
Affiliation(s)
- Ilaria Toniolo
- Department of Industrial Engineering, University of Padova, Italy; Centre for Mechanics of Biological Materials, University of Padova, Italy
| | - Alice Berardo
- Centre for Mechanics of Biological Materials, University of Padova, Italy; Department of Civil, Environmental and Architectural Engineering, University of Padova, Italy; Department of Biomedical Sciences, University of Padova, Italy.
| | - Michel Gagner
- Department of Surgery, Hôpital du Sacré-Coeur de Montréal, Canada
| | - Mirto Foletto
- Centre for Mechanics of Biological Materials, University of Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy; IFSO Bariatric Centre of Excellence, Policlinico Universitario, University of Padova, Italy
| | - Emanuele Luigi Carniel
- Department of Industrial Engineering, University of Padova, Italy; Centre for Mechanics of Biological Materials, University of Padova, Italy
| |
Collapse
|
9
|
Zhao D, Liu J, Zhou Y, Zhang L, Zhong Y, Yang Y, Zhao B, Yang M, Wang Y. Penetrating the Blood-Brain Barrier for Targeted Treatment of Neurotoxicant Poisoning by Nanosustained-Released 2-PAM@VB1-MIL-101-NH 2(Fe). ACS APPLIED MATERIALS & INTERFACES 2023; 15:12631-12642. [PMID: 36867458 DOI: 10.1021/acsami.2c18929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is very important to establish a sustained-release pralidoxime chloride (2-PAM) drug system with brain targeting function for the treatment of neurotoxicant poisoning. Herein, Vitamin B1 (VB1), also known as thiamine, which can specifically bind to the thiamine transporter on the surface of the blood-brain barrier, was incorporated onto the surface of MIL-101-NH2(Fe) nanoparticles with a size of ∼100 nm. Pralidoxime chloride was further loaded within the interior of the above resulted composite by soaking, and a resulting composite drug (denoted as 2-PAM@VB1-MIL-101-NH2(Fe)) with a loading capacity of 14.8% (wt) was obtained. The results showed that the drug release rate of the composite drug was increased in PBS solution with the increase of pH (2-7.4) and a maximum drug release rate of 77.5% at pH 4. Experiments on the treatment of poisoning by gavage with the nerve agent sarin in mice combined with atropine revealed that sustained release of 2-PAM from the composite drug was achieved for more than 72 h. Sustained and stable reactivation of poisoned acetylcholinesterase (AChE) was observed with an enzyme reactivation rate of 42.7% in the ocular blood samples at 72 h. By using both zebrafish brain and mouse brain as models, we found that the composite drug could effectively cross the blood-brain barrier and restore the AChE activity in the brain of poisoned mice. The composite drug is expected to be a stable therapeutic drug with brain targeting and prolonged drug release properties for nerve agent intoxication in the middle and late stages of treatment.
Collapse
Affiliation(s)
- Dianfa Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Jie Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Yang Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Baoquan Zhao
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Mengru Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yong'an Wang
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| |
Collapse
|
10
|
Ebara R, Ishida S, Miyagawa T, Imai Y. Effects of peristaltic amplitude and frequency on gastric emptying and mixing: a simulation study. J R Soc Interface 2023; 20:20220780. [PMID: 36596453 PMCID: PMC9810435 DOI: 10.1098/rsif.2022.0780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
The amplitude and frequency of peristaltic contractions are two major parameters for assessing gastric motility. However, it is not fully understood how these parameters affect the important functions of the stomach, such as gastric mixing and emptying. This study aimed to quantify the effects of peristaltic amplitude and frequency on gastric mixing and emptying using computational fluid dynamics simulation of gastric flow with an anatomically realistic model of the stomach. Our results suggest that both the increase and decrease in peristaltic amplitude have a significant impact on mixing strength and emptying rate. For example, when the peristaltic amplitude was 1.2 times higher than normal, the emptying rate was 2.7 times faster, whereas when the amplitude was half, the emptying rate was 4.2 times slower. Moreover, the emptying rate increased more than proportionally with the peristaltic frequency. The nearest contraction wave to the pylorus and the subsequent waves promoted gastric emptying. These results suggest the importance of maintaining parameters within normal ranges to achieve healthy gastric function.
Collapse
Affiliation(s)
- Rika Ebara
- Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Shunichi Ishida
- Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Taimei Miyagawa
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Japan
| | - Yohsuke Imai
- Graduate School of Engineering, Kobe University, Kobe, Japan
| |
Collapse
|
11
|
Kuhar S, Lee JH, Seo JH, Pasricha PJ, Mittal R. Effect of stomach motility on food hydrolysis and gastric emptying: Insight from computational models. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2022; 34:111909. [PMID: 36407285 PMCID: PMC9667910 DOI: 10.1063/5.0120933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The peristaltic motion of stomach walls combines with the secretion of digestive enzymes to initiate the process that breaks down food. In this study, the mixing, breakdown, and emptying of a liquid meal containing protein is simulated in a model of a human stomach. In this model, pepsin, the gastric enzyme responsible for protein hydrolysis, is secreted from the proximal region of the stomach walls and allowed to react with the contents of the stomach. The velocities of the retropulsive jet induced by the peristaltic motion, the emptying rate, and the extent of hydrolysis are quantified for a control case as well as for three other cases with reduced motility of the stomach, which may result from conditions such as diabetes mellitus. This study quantifies the effect of stomach motility on the rate of food breakdown and its emptying into the duodenum and we correlate these observations with the mixing in the stomach induced by the wall motion.
Collapse
Affiliation(s)
- Sharun Kuhar
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | - Pankaj J Pasricha
- Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Rajat Mittal
- Author to whom correspondence should be addressed:
| |
Collapse
|
12
|
Li Y, Kong F. Simulating human gastrointestinal motility in dynamic in vitro models. Compr Rev Food Sci Food Saf 2022; 21:3804-3833. [PMID: 35880687 DOI: 10.1111/1541-4337.13007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/26/2022] [Accepted: 06/22/2022] [Indexed: 01/28/2023]
Abstract
The application of dynamic in vitro gastrointestinal (GI) models has grown in popularity to understand the impact of food structure and composition on human health. Given that GI motility is integral to digestion and absorption, a predictive in vitro model should faithfully replicate the motility patterns and motor functions in vivo. In this review, typical characteristics of gastric and small intestinal motility in humans as well as the biomechanical and hydrodynamic events pertinent to gut motility are summarized. The simulation of GI motility in the presently existing dynamic in vitro models is discussed from an engineering perspective and categorized into hydraulic, piston/probe-driven, roller-driven, pneumatic, and other systems. Each system and its representative models are evaluated in terms of their motility patterns, the key hydrodynamic characteristics concerning gut motility, their performance in simulating the key physiological events, and their ability to establish in vitro-in vivo correlations. Practical Application: The review paper provided useful information in the design of dynamic GI models and the simulation of human gastric and small intestinal motility which are important for understanding food and health.
Collapse
Affiliation(s)
- Yiwen Li
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Fanbin Kong
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
13
|
Lee JH, Kuhar S, Seo JH, Pasricha PJ, Mittal R. Computational modeling of drug dissolution in the human stomach: Effects of posture and gastroparesis on drug bioavailability. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2022; 34:081904. [PMID: 35971381 PMCID: PMC9372820 DOI: 10.1063/5.0096877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 05/25/2023]
Abstract
The oral route is the most common choice for drug administration because of several advantages, such as convenience, low cost, and high patient compliance, and the demand and investment in research and development for oral drugs continue to grow. The rate of dissolution and gastric emptying of the dissolved active pharmaceutical ingredient (API) into the duodenum is modulated by gastric motility, physical properties of the pill, and the contents of the stomach, but current in vitro procedures for assessing dissolution of oral drugs are limited in their ability to recapitulate this process. This is particularly relevant for disease conditions, such as gastroparesis, that alter the anatomy and/or physiology of the stomach. In silico models of gastric biomechanics offer the potential for overcoming these limitations of existing methods. In the current study, we employ a biomimetic in silico simulator based on the realistic anatomy and morphology of the stomach (referred to as "StomachSim") to investigate and quantify the effect of body posture and stomach motility on drug bioavailability. The simulations show that changes in posture can potentially have a significant (up to 83%) effect on the emptying rate of the API into the duodenum. Similarly, a reduction in antral contractility associated with gastroparesis can also be found to significantly reduce the dissolution of the pill as well as emptying of the API into the duodenum. The simulations show that for an equivalent motility index, the reduction in gastric emptying due to neuropathic gastroparesis is larger by a factor of about five compared to myopathic gastroparesis.
Collapse
Affiliation(s)
| | - S. Kuhar
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | - P. J. Pasricha
- Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - R. Mittal
- Author to whom correspondence should be addressed:
| |
Collapse
|
14
|
Rivera del Rio A, van der Wielen N, Gerrits WJ, Boom RM, Janssen AE. In silico modelling of protein digestion: A case study on solid/liquid and blended meals. Food Res Int 2022; 157:111271. [DOI: 10.1016/j.foodres.2022.111271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022]
|
15
|
MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition. Sci Rep 2021; 11:17151. [PMID: 34433847 PMCID: PMC8387370 DOI: 10.1038/s41598-021-95857-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
The current study treats the magnetic field impacts on the mixed convection flow within an undulating cavity filled by hybrid nanofluids and porous media. The local thermal non-equilibrium condition below the implications of heat generation and thermal radiation is conducted. The corrugated vertical walls of an involved cavity have \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${T}_{c}$$\end{document}Tc and the plane walls are adiabatic. The heated part is put in the bottom wall and the left-top walls have lid velocities. The controlling dimensionless equations are numerically solved by the finite volume method through the SIMPLE technique. The varied parameters are scaled as a partial heat length (B: 0.2 to 0.8), heat generation/absorption coefficient (Q: − 2 to 2), thermal radiation parameter (Rd: 0–5), Hartmann number (Ha: 0–50), the porosity parameter (ε: 0.4–0.9), inter-phase heat transfer coefficient (H*: 0–5000), the volume fraction of a hybrid nanofluid (ϕ: 0–0.1), modified conductivity ratio (kr: 0.01–100), Darcy parameter \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left(Da: 1{0}^{-1}\,\mathrm{ to }\,1{0}^{-5}\right)$$\end{document}Da:10-1to10-5, and the position of a heat source (D: 0.3–0.7). The major findings reveal that the length and position of the heater are effective in improving the nanofluid movements and heat transfer within a wavy cavity. The isotherms of a solid part are significantly altered by the variations on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q$$\end{document}Q, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${R}_{d}$$\end{document}Rd, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${H}^{*}$$\end{document}H∗ and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${k}_{r}$$\end{document}kr. Increasing the heat generation/absorption coefficient and thermal radiation parameter is improving the isotherms of a solid phase. Expanding in the porous parameter \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon$$\end{document}ε enhances the heat transfer of the fluid/solid phases.
Collapse
|