1
|
Navidifar T, Zare Banadkouki A, Parvizi E, Mofid M, Golab N, Beig M, Sholeh M. Global prevalence of macrolide-resistant Staphylococcus spp.: a comprehensive systematic review and meta-analysis. Front Microbiol 2025; 16:1524452. [PMID: 40182286 PMCID: PMC11967404 DOI: 10.3389/fmicb.2025.1524452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/22/2025] [Indexed: 04/05/2025] Open
Abstract
Background Staphylococcus is a genus of bacteria responsible for various infections ranging from mild skin to severe systemic diseases. Methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (CoNS) are significant challenges owing to their resistance to multiple antibiotics, including macrolides, such as erythromycin, clarithromycin, and azithromycin. Objective This study aimed to systematically review and synthesize data on the prevalence of macrolide resistance in Staphylococcus spp., identify trends and changes in resistance patterns over time, and assess how testing methods and guidelines affect reported resistance rates. Methods The study conducted a systematic search of the Scopus, PubMed, Web of Science, and EMBASE databases. Studies have reported the proportion of macrolide-resistant Staphylococcus spp. Two authors independently extracted and analyzed the data using a random-effects model. Heterogeneity was assessed, and subgroup analyses were performed based on country, continent, species, AST guidelines, methods, and period. Results In total, 223 studies from 76 countries were included. The pooled prevalence of resistance to erythromycin, clarithromycin, and azithromycin were 57.3, 52.6, and 57.9%, respectively. Significant heterogeneity was observed across studies (I2 > 95%, p < 0.001). Oceania (72%) had the highest erythromycin resistance, whereas Europe had the lowest (40.7%). Subgroup analyses revealed variations in resistance based on the species, with higher resistance in MRSA than in MSSA and CoNS than in other species. Over time, a slight decrease in erythromycin resistance has been observed (59.6% from 2015-2019 to 55% from 2020-2023). Conclusion This study emphasizes the high prevalence of macrolide resistance in Staphylococcus spp. and its notable regional variation. These findings highlight the necessity for standardized methodologies and global surveillance to manage macrolide resistance effectively. Controlling antibiotic resistance should prioritize enhancing public health measures and updating treatment guidelines. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=557756, CRD42024557756.
Collapse
Affiliation(s)
- Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Abbas Zare Banadkouki
- Department of Microbiology, Shahid Beheshti University, Tehran, Iran
- Quality Control Department of Temad Mfg, Co., Tehran, Iran
| | - Elnaz Parvizi
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Mofid
- School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Narges Golab
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Xiu L, Liu H, Xie Y, Hu Q, Li H, Chen F, Wang C, Zhang Y, Hou L, Yin K. Alternations of antibiotic resistance genes and microbial community dynamics on shared bicycles before and after pandemic lockdown. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169625. [PMID: 38157892 DOI: 10.1016/j.scitotenv.2023.169625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The prevalence of shared bicycles has raised concerns over their potential to transmit pathogens and microbes harboring antibiotic resistance genes (ARGs), which pose significant human health risks. This study investigated the impact of anthropogenic activities on the composition of ARGs and microbial communities on shared bicycles during the COVID-19 pandemic and subsequent lockdown when shared bicycle usage was altered. A total of 600 swab samples from shared bicycle surfaces were collected in Shanghai before and during COVID-19 lockdown periods. Even during lockdown, 12 out of 14 initially detected ARG subtypes persisted, indicating their tenacity in the face of reduced anthropogenic activities. These ARGs displayed significantly higher absolute and relative abundance levels before the lockdown. In addition, the percentage of potential pathogens in the total microbial abundance remained at 0.029 % during the lockdown, which was lower than the pre-lockdown percentage of 0.035 % and suggested that these risks persist within shared bicycle systems. Interestingly, although microbial abundance decreased without the consecutive use of shared bicycles during lockdown, the microbial diversity increased under the impact of restricted anthropogenic activities (p < 0.001). This emphasizes the need for continuous monitoring and research to comprehend microbial community behaviors in various environments. This study uncovered the underlying impacts of the COVID-19 lockdown on the microbial and ARG communities of shared bicycles, providing comprehensive insights into the health management of shared transportation. Although lockdown can decrease the abundance of ARGs and potential pathogens, additional interventions are needed to prevent their continued spread.
Collapse
Affiliation(s)
- Leshan Xiu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China; One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai, China.
| | - Haodong Liu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China; One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Yi Xie
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China; One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Qinqin Hu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China; One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Huimin Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China; One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Fumin Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China; One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Chenxi Wang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China; One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Yuqian Zhang
- Department of Surgery, Division of Surgery Research, Mayo Clinic, Rochester, MN 55905, USA; Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, UT 84322, USA; Utah Water Research Laboratory, 1600 Canyon Road, Logan, UT 84321, USA.
| | - Kun Yin
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China; One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China.
| |
Collapse
|
3
|
Crippa BL, de Matos LG, Souza FN, Silva NCC. Non- aureus staphylococci and mammaliicocci (NASM): their role in bovine mastitis and One Health. J DAIRY RES 2024; 91:44-56. [PMID: 38584301 DOI: 10.1017/s0022029924000165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Non-aureus staphylococci (NAS) are gaining importance in mastitis and public health, and some NAS have been reclassified as mammaliicocci (NASM). Bovine milk production has a major influence on the world economy, being an essential source of income for small, medium and large producers, and bovine mastitis caused by NASM can cause an economic impact. Mastitis generates financial losses due to reduced revenue, increased veterinary costs and expenses associated with animal slaughter. However, it is also a public health issue involving animal health and welfare, human health and the ecosystem. Furthermore, it is an increasingly common infection caused by NASM, including antimicrobial-resistant strains. Despite all these adverse effects that NASM can cause, some studies also point to its protective role against mastitis. Therefore, this review article addresses the negative and positive aspects that NASM can cause in bovine mastitis, the virulence of the disease and resistance factors that make it difficult to treat and, through the One Health approach, presents a holistic view of how mastitis caused by NASM can affect both animal and human health at one and the same time.
Collapse
Affiliation(s)
- Bruna Lourenço Crippa
- Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Luiz Gustavo de Matos
- Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Lombardia, Italy
| | - Fernando Nogueira Souza
- Department of Clinical Science, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, Brazil
- Department of Veterinary Medicine, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Nathália Cristina Cirone Silva
- Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| |
Collapse
|
4
|
El-Deeb W, Cave R, Fayez M, Alhumam N, Quadri S, Mkrtchyan HV. Methicillin Resistant Staphylococci Isolated from Goats and Their Farm Environments in Saudi Arabia Genotypically Linked to Known Human Clinical Isolates: a Pilot Study. Microbiol Spectr 2022; 10:e0038722. [PMID: 35913203 PMCID: PMC9431424 DOI: 10.1128/spectrum.00387-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/09/2022] [Indexed: 11/20/2022] Open
Abstract
We conducted a pilot whole genome sequencing (WGS) study to characterize the genotypes of nine methicillin resistant staphylococci (MRS) isolates recovered from goats and their farm environments in Eastern Province, Saudi Arabia, between November 2019 to August 2020. Seven out of nine isolates were methicillin resistant Staphylococcus aureus (MRSA), and two were methicillin resistant Staphylococcus epidermidis (MRSE). All MRSA isolates possessed genotypes previously identified to infect humans, including isolates harboring ST6-SCCmec IV-t304 (n = 4), ST5-SCCmec VI- t688 (n = 2) and ST5-SCCmec V-t311 (n = 1). 2 MRSA isolates possessed plasmids that were genetically similar to those identified in S. aureus isolates recovered from humans and poultry. In contrast, plasmids found in three MRSA isolates and one MRSE isolate were genetically similar to those recovered from humans. All MRSA isolates harbored the host innate modulate genes sak and scn previously associated with human infections. The genotypes of MRSE isolates were determined as ST35, a well-known zoonotic sequence type and ST153, which has been associated with humans. However, the MRSE isolates were untypeable due to extra ccr complexes identified in their SCCmec elements. Moreover, we identified in ST153 isolate SCCmec element also harbored the Arginine Catabolic Mobile Element (ACME) IV. All MRS isolates were phenotypically resistant to trimethoprim-sulfamethoxazole, an antibiotic for the decolonization of MRS. Three isolates carried antibiotic resistance genes in their SCCmec elements that were not previously described, including those encoding fusidic acid resistance (fusC) and trimethoprim resistance (dfrC) incorporated in the MRSA SCCmec VI. IMPORTANCE Our findings demonstrate a possible cross-transmission of methicillin resistant staphylococci between goats and their local environments and between goats and humans. Due to ever increasing resistance to multiple antibiotics, the burden of MRS has a significant impact on livestock farming, public health, and the economy worldwide. This study highlights that implementing a holistic approach to whole genome sequencing surveillance in livestock and farm environments would aid our understanding of the transmission of methicillin resistant staphylococci and, most importantly, allow us to implement appropriate infection control and hygiene practices.
Collapse
Affiliation(s)
- Wael El-Deeb
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Department of Internal Medicine, Infectious Diseases and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rory Cave
- School of Biomedical Sciences, University of West London, London, United Kingdom
| | - Mahmoud Fayez
- Al Ahsa Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Veterinary Serum and Vaccine Research Institute, Ministry of Agriculture, Cairo, Egypt
| | - Naser Alhumam
- Department of Microbiology and parasitology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Sayed Quadri
- Division of Microbiology and Immunology, Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, Kingdom of Saudi Arabia
| | - Hermine V. Mkrtchyan
- School of Biomedical Sciences, University of West London, London, United Kingdom
| |
Collapse
|
5
|
Chen Q, Zou Z, Cai C, Li H, Wang Y, Lei L, Shao B. Characterization of blaNDM-5-and blaCTX-M-199-Producing ST167 Escherichia coli Isolated from Shared Bikes. Antibiotics (Basel) 2022; 11:antibiotics11081030. [PMID: 36009901 PMCID: PMC9404906 DOI: 10.3390/antibiotics11081030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Shared bikes as a public transport provide convenience for short-distance travel. Whilst they also act as a potential vector for antimicrobial resistant (AR) bacteria and antimicrobial resistance genes (ARGs). However, the understanding of the whole genome sequence of AR strains and ARGs-carrying plasmids collected from shared bikes is still lacking. Here, we used the HiSeq platform to sequence and analyze 24 Escherichia coli isolated from shared bikes around Metro Stations in Beijing. The isolates from shared bikes showed 14 STs and various genotypes. Two blaNDM-5 and blaCTX-M-199-producing ST167 E. coli have 16 resistance genes, four plasmid types and show >95% of similarities in core genomes compared with the ST167 E. coli strains from different origins. The blaNDM-5- or blaCTX-M-199-carrying plasmids sequencing by Nanopore were compared to plasmids with blaNDM-5- or blaCTX-M-199 originated from humans and animals. These two ST167 E. coli show high similarities in core genomes and the plasmid profiles with strains from hospital inpatients and farm animals. Our study indicated that ST167 E. coli is retained in diverse environments and carried with various plasmids. The analysis of strains such as ST167 can provide useful information for preventing or controlling the spread of AR bacteria between animals, humans and environments.
Collapse
Affiliation(s)
- Qiyan Chen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Q.C.); (Z.Z.); (Y.W.)
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
| | - Zhiyu Zou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Q.C.); (Z.Z.); (Y.W.)
| | - Chang Cai
- College of Arts, Business, Law and Social Sciences, Murdoch University, Perth, WA 6150, Australia;
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Q.C.); (Z.Z.); (Y.W.)
| | - Lei Lei
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (L.L.); (B.S.)
| | - Bing Shao
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Q.C.); (Z.Z.); (Y.W.)
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
- Correspondence: (L.L.); (B.S.)
| |
Collapse
|
6
|
Kaliyeva SS, Lavrinenko AV, Tishkambayev Y, Zhussupova G, Issabekova A, Begesheva D, Simokhina N. Microbial Landscape and Antibiotic Susceptibility Dynamics of Skin and Soft Tissue Infections in Kazakhstan 2018–2020. Antibiotics (Basel) 2022; 11:antibiotics11050659. [PMID: 35625303 PMCID: PMC9137831 DOI: 10.3390/antibiotics11050659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Skin and soft tissue inflammatory diseases of bacterial origin occupy a significant part of hospitalizations to emergency departments. One of the most common causes of sepsis is soft tissue infection, which accounts for about a quarter of all nosocomial infections. The aim of this study was to determine the differences in microbial landscape and antibiotic susceptibility of soft tissue infection pathogens among adults and children during the period 2018–2020. We studied 110 samples of pus admitted to the Scientific Research laboratory of the Karaganda Medical University from 2018 to 2020. Each sample was studied using the standard and express methods. The antibiotic susceptibility was determined by using the diffuse disk method in accordance with the CLSI 2018 recommendations. As such, 50% of S. epidermidis strains in children and 30% in adults were methicillin resistant. Differences in the resistance of S. aureus strains in children and adults were insignificant. Thus, methicillin-resistant S. aureus (MRSA) was not detected in children, but in adults, on the other hand, their percentage was 12.5%. The third cause of infection in adults was E. coli (13.72%), among which 75% were multidrug resistant. A. baumanii was found in 4.9% of adult patients’ samples, of which 60% were multidrug resistant. The effectiveness of the most prescribed antibiotics decreased due to the isolated strain resistance.
Collapse
Affiliation(s)
- Sholpan S. Kaliyeva
- Department of Clinical Pharmacology and Evidence-Based Medicine, NCJSC Karaganda Medical University, Karaganda 100000, Kazakhstan; (S.S.K.); (N.S.)
| | - Alyona V. Lavrinenko
- Scientific Research Laboratory, NCJSC Karaganda Medical University, Karaganda 100000, Kazakhstan;
| | - Yerbol Tishkambayev
- Department of Surgery, NCJSC Karaganda Medical University, Karaganda 100000, Kazakhstan;
| | - Gulzira Zhussupova
- Salidat Kairbekova National Research Center for Health Development, Nur-Sultan 010000, Kazakhstan
- Correspondence: (G.Z.); (A.I.); Tel.: +77-(07)-953-8148 (G.Z.); +77-(08)-625-4901 (A.I.)
| | - Aissulu Issabekova
- Department of Clinical Pharmacology and Evidence-Based Medicine, NCJSC Karaganda Medical University, Karaganda 100000, Kazakhstan; (S.S.K.); (N.S.)
- Correspondence: (G.Z.); (A.I.); Tel.: +77-(07)-953-8148 (G.Z.); +77-(08)-625-4901 (A.I.)
| | - Dinara Begesheva
- National Center for Rational Use of Medicines, Nur-Sultan 010000, Kazakhstan;
| | - Natalya Simokhina
- Department of Clinical Pharmacology and Evidence-Based Medicine, NCJSC Karaganda Medical University, Karaganda 100000, Kazakhstan; (S.S.K.); (N.S.)
| |
Collapse
|
7
|
Vassallo A, Kett S, Purchase D, Marvasi M. The Bacterial Urban Resistome: Recent Advances. Antibiotics (Basel) 2022; 11:512. [PMID: 35453263 PMCID: PMC9030810 DOI: 10.3390/antibiotics11040512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cities that are densely populated are reservoirs of antibiotic resistant genes (ARGs). The overall presence of all resistance genes in a specific environment is defined as a resistome. Spatial proximity of surfaces and different hygienic conditions leads to the transfer of antibiotic resistant bacteria (ARB) within urban environments. Built environments, public transportation, green spaces, and citizens' behaviors all support persistence and transfer of antimicrobial resistances (AMR). Various unique aspects of urban settings that promote spread and resilience of ARGs/ARB are discussed: (i) the role of hospitals and recreational parks as reservoirs; (ii) private and public transportation as carriers of ARGs/ARB; (iii) the role of built environments as a hub for horizontal gene transfer even though they support lower microbial biodiversity than outdoor environments; (iv) the need to employ ecological and evolutionary concepts, such as modeling the fate of a specific ARG/ARB, to gain enhanced health risk assessments. Our understanding and our ability to control the rise of AMR in an urban setting is linked to our knowledge of the network connecting urban reservoirs and the environment.
Collapse
Affiliation(s)
- Alberto Vassallo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Steve Kett
- Department of Natural Sciences, Middlesex University London, London NW4 4BT, UK; (S.K.); (D.P.)
| | - Diane Purchase
- Department of Natural Sciences, Middlesex University London, London NW4 4BT, UK; (S.K.); (D.P.)
| | | |
Collapse
|
8
|
Xu Z, Chen L, Chen X, Tang A, Huang D, Pan Q, Fang Z. Prevalence and Molecular Characterization of Methicillin-Resistant Staphylococci Recovered from Public Shared Bicycles in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084492. [PMID: 35457359 PMCID: PMC9027712 DOI: 10.3390/ijerph19084492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022]
Abstract
Millions of public shared bicycles (PSBs) have been launched in China, and PSBs are a potential reservoir of antimicrobial-resistant staphylococci. However, no national data to elucidate the dissemination, antimicrobial resistance and genotypes of staphylococci has been recovered from public shared bicycles located in different cities in China. Antimicrobial susceptibility, SCCmec types and sequence types of staphylococci were determined. A total of 146 staphylococci were recovered in this study, and 87% staphylococcal isolates were resistant to at least one antibiotic. In total, 29 (20%) staphylococcal isolates harbored mecA gene, and SCCmec types were determined as follows: SCCmec type II (n = 1), IV(n = 3), V (n = 4), VI (n = 1), VIII (n = 2), A/1 (n = 6), A/5 (n = 2), C/1 (n = 2), C/2 (n = 1), C/3 (n = 1), (n = 5) and Pseudo (ψ)-SCCmec (n = 1). Sequence types of 16 Staphylococcus epidermidis were determined, including ST10, ST17, ST59, ST60, ST65, ST130, ST184, ST262, ST283, ST337, ST360, ST454, ST567, ST820, ST878 and ST934. PSBs are a reservoir of diverse antimicrobial-resistant staphylococci, and staphylococcal species differences were observed in isolates that were recovered from public shared bicycles in the south and north of China. PSBs are a source of antimicrobial resistance and genetic diverse staphylococci.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China; (L.C.); (X.C.); (A.T.); (D.H.); (Q.P.)
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China
- Correspondence: (Z.X.); (Z.F.); Tel.: +86-83336608 (Z.X.)
| | - Liqin Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China; (L.C.); (X.C.); (A.T.); (D.H.); (Q.P.)
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China
| | - Xiaowei Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China; (L.C.); (X.C.); (A.T.); (D.H.); (Q.P.)
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China
| | - Amei Tang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China; (L.C.); (X.C.); (A.T.); (D.H.); (Q.P.)
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China
| | - Dengmin Huang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China; (L.C.); (X.C.); (A.T.); (D.H.); (Q.P.)
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China
| | - Qin Pan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China; (L.C.); (X.C.); (A.T.); (D.H.); (Q.P.)
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China
| | - Zhongze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China; (L.C.); (X.C.); (A.T.); (D.H.); (Q.P.)
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Qixiang Road No. 22, Tianjin 300070, China
- Correspondence: (Z.X.); (Z.F.); Tel.: +86-83336608 (Z.X.)
| |
Collapse
|
9
|
Marincola G, Liong O, Schoen C, Abouelfetouh A, Hamdy A, Wencker FDR, Marciniak T, Becker K, Köck R, Ziebuhr W. Antimicrobial Resistance Profiles of Coagulase-Negative Staphylococci in Community-Based Healthy Individuals in Germany. Front Public Health 2021; 9:684456. [PMID: 34222184 PMCID: PMC8247762 DOI: 10.3389/fpubh.2021.684456] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are common opportunistic pathogens, but also ubiquitous human and animal commensals. Infection-associated CoNS from healthcare environments are typically characterized by pronounced antimicrobial resistance (AMR) including both methicillin- and multidrug-resistant isolates. Less is known about AMR patterns of CoNS colonizing the general population. Here we report on AMR in commensal CoNS recovered from 117 non-hospitalized volunteers in a region of Germany with a high livestock density. Among the 69 individuals colonized with CoNS, 29 had reported contacts to either companion or farm animals. CoNS were selectively cultivated from nasal swabs, followed by species definition by 16S rDNA sequencing and routine antibiotic susceptibility testing. Isolates displaying phenotypic AMR were further tested by PCR for presence of selected AMR genes. A total of 127 CoNS were isolated and Staphylococcus epidermidis (75%) was the most common CoNS species identified. Nine isolates (7%) were methicillin-resistant (MR) and carried the mecA gene, with seven individuals (10%) being colonized with at least one MR-CoNS isolate. While resistance against gentamicin, phenicols and spectinomycin was rare, high resistance rates were found against tetracycline (39%), erythromycin (33%) and fusidic acid (24%). In the majority of isolates, phenotypic resistance could be associated with corresponding AMR gene detection. Multidrug-resistance (MDR) was observed in 23% (29/127) of the isolates, with 33% (23/69) of the individuals being colonized with MDR-CoNS. The combined data suggest that MR- and MDR-CoNS are present in the community, with previous animal contact not significantly influencing the risk of becoming colonized with such isolates.
Collapse
Affiliation(s)
- Gabriella Marincola
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Olivia Liong
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Christoph Schoen
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, AlAlamein International University, AlAlamein, Egypt
| | - Aisha Hamdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Freya D R Wencker
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Tessa Marciniak
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Robin Köck
- Deutsches Rotes Kreuz (DRK) Kliniken Berlin, Berlin, Germany.,Institute of Hygiene, University Hospital Münster, Münster, Germany
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Gu J, Xie XJ, Liu JX, Shui JR, Zhang HY, Feng GY, Liu XY, Li LC, Lan QW, Jin QH, Li R, Peng L, Lei CW, Zhang AY. Prevalence and transmission of antimicrobial-resistant Staphylococci and Enterococci from shared bicycles in Chengdu, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139735. [PMID: 32531590 DOI: 10.1016/j.scitotenv.2020.139735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/27/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Shared bicycles are prevailing in China but the extent to which they contribute to maintaining and transmitting pathogens and antibiotic-resistant bacteria remain largely unknown. To fill the knowledge gap, herein, swab samples (n = 963) were collected from handlebars of shared bicycles in areas of hospital, school, metro station (n = 887) and riders (n = 76) in Chengdu, China. Staphylococci (n = 241) and Enterococci (n = 69) were widely distributed across sampling locations at a frequency of 2.3%-12.9%, and 0.08%-5.5%, respectively. Bicycle or rider-borne Gram-positive bacteria were frequently resistant to clinically important antibiotics including linezolid, fosfomycin, and vancomycin, and a significant portion of these isolates (3.4%-16.6% for Staphylococci and 0.1%-13.8% for Enterococci) indicated multidrug resistance. Nineteen Staphylococcus aureus isolates were identified in this collection and 52.6% of which were considered as methicillin-resistant S. aureus. Whole genome sequencing further characterized 26 antimicrobial resistance genes (ARGs) including fosB, fusB, and lnu(G) in S. aureus and 21 ARGs including optrA in Enterococci. Leveraging a complementary approach with conventional MLST, whole genome SNP and MLST analyses, we present that genetically closely-related bacteria were found in bicycles and riders across geographical-distinct locations suggesting bacterial transmission. Further, five new ST types 5697-5701 were firstly characterized in S. aureus. ST 942 and ST 1640 are new ST types observed in E. faecalis, and E. faecium, respectively. Our results highlighted the risk of shared bicycle system in disseminating pathogens and antibiotic resistance which warrants effective disinfections.
Collapse
Affiliation(s)
- Ju Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xian-Jun Xie
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jin-Xin Liu
- Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Jun-Rui Shui
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Hao-Yu Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Gan-Yu Feng
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xiao-Yu Liu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Lin-Can Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Qi-Wei Lan
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Qi-Han Jin
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Rui Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Li Peng
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Chang-Wei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - An-Yun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|