1
|
Maeda H, Morimoto K. Global distribution and characteristics of pneumococcal serotypes in adults. Hum Vaccin Immunother 2025; 21:2469424. [PMID: 40015240 PMCID: PMC11869777 DOI: 10.1080/21645515.2025.2469424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
The introduction of pneumococcal conjugate vaccines (PCVs) into pediatric national immunization programs (NIP) has significantly reduced invasive pneumococcal diseases and pneumococcal pneumonia caused by PCV serotypes in adults due to herd immunity. However, diseases caused by PCV13 serotypes persist, mainly serotype 3, known for its severity. With the reduction in PCV13 serotypes, diseases caused by non-PCV13 serotypes increased. Residual and emerging serotypes vary regionally; serotype 8 in Europe and South Africa, and serotype 4 in the US and Canada. PCV20 and PCV21 were recently developed, which can prevent residual and emerging pneumococcal diseases where herd immunity is well-established. In countries that have not introduced PCV into pediatric NIP, the pneumococcal disease burden due to PCV serotypes is still marked. Given that serotype distribution varies by region and evolves over time, this review aimed to discuss serotype distribution and disease severity in adults across countries to support future pneumococcal vaccine strategies.
Collapse
Affiliation(s)
- Haruka Maeda
- Department of Respiratory Infections, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Konosuke Morimoto
- Department of Respiratory Infections, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
2
|
Lei Z, Liu Q, Ma Y, Yang X, Zu H, Li Z, Zhang F, Pu D, Zhang Y, Lu B. In-vitro antimicrobial activity of new antimicrobial agents against Streptococcus pneumoniae and potential resistance mechanisms: a multicenter study. BMC Microbiol 2025; 25:255. [PMID: 40295931 PMCID: PMC12036140 DOI: 10.1186/s12866-025-03967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a major cause of invasive and non-invasive diseases, particularly in children and immunocompromised individuals, with an annual mortality of approximately 800,000 children worldwide. The rise of antibiotic-resistant strains complicates treatment, especially with increasing resistance to penicillin, macrolides, and fluoroquinolones. The study on the resistance of newly developed antimicrobial agents against S. pneumoniae was rarely reported. Furthermore, understanding the relationship between serotypes, resistance mechanisms, and virulence in S. pneumoniae is essential for disease management and vaccine development. METHODS A total of 208 S. pneumoniae isolates were collected across nine hospitals in seven Chinese cities/provinces from January 2023 to June 2024. Molecular characteristics were analyzed using whole-genome sequencing to identify serotypes, sequence types, virulence genes, and potential resistance mechanisms. Antibiotic susceptibility test (AST) was performed against 14 agents, involving new antibiotics (eravacycline, omadacycline, nemonoxacin, and contezolid). RESULTS Serotypes 19 F (24.6%) and 23 F (11.1%) predominated, with vaccine coverage rates of PCV13 at 66.8%. High resistance rates in S. pneumoniae were observed for erythromycin (208/208, 100%), clindamycin (197/208, 94.7%), and tetracycline (192/208, 92.3%). 13.5% (28/208) and 2.9% (6/208) strains were intermediate and resistant to penicillin, respectively. The new antibiotics showed low resistance, namely, 1.9% (4/208), 0.5% (1/208), 1.9% (4/208), and 7.2% (15/208) resistant to eravacycline, omadacycline, contezolid, and nemonoxacin, respectively. Resistance mechanisms included mutations in 23S rRNA for oxazolidinones, tet genes for tetracyclines, and gyrA/parC for fluoroquinolones. CONCLUSIONS S. pneumoniae in China exhibits high genetic diversity and significant antibiotic resistance, underscoring the need for continuous surveillance and updated vaccines. New antibiotics remain effective against multidrug-resistant strains, offering potential treatment options in clinical settings.
Collapse
Affiliation(s)
- Zichen Lei
- China-Japan Friendship Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Liu
- China-Japan Friendship Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yiqun Ma
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xinrui Yang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Zu
- Capital Medical University-YanJing Medical School, Beijing, China
| | - Ziyao Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feilong Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongya Pu
- China-Japan Friendship Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yulin Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Binghuai Lu
- China-Japan Friendship Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
| |
Collapse
|
3
|
Ben Ayed N, Gargouri O, Mhimdi S, Smaoui F, Mhiri E, Kanzari L, Zribi M, Maalej Mezghanni S, Ktari S, Meftah K, Mohamed N, Zaghden H, Bahri O, Besbes S, Achour W, Slim L, Boutiba I, Smaoui H, Hammami A. The Evolution of the Antimicrobial Resistance of Streptococcus pneumoniae in Tunisia: A Multicentric Analysis over Two Decades (2000-2019). Antibiotics (Basel) 2025; 14:171. [PMID: 40001415 PMCID: PMC11851641 DOI: 10.3390/antibiotics14020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Streptococcus pneumoniae is a leading respiratory pathogen responsible for significant morbidity and mortality, particularly among vulnerable populations. Understanding its antimicrobial resistance patterns and serotype distribution is crucial for guiding treatment and prevention strategies. This study aims to examine these trends in S. pneumoniae isolates from Tunisia over a two-decade period (2000-2019). Methods: A retrospective time series analysis was conducted on data (n = 4284) gathered from eight university hospital centers across Tunisia. Antimicrobial susceptibility testing was performed according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. Pneumococcal serotypes were determined for a subset of samples from 2012 to 2019 (n = 903) using multiplex PCR and latex agglutination. Results: Penicillin G resistance decreased from 9-13.7% during 2000-2002 to 4.3% by 2019, while amoxicillin resistance increased until reaching 10% in 2019. Erythromycin resistance initially increased before stabilizing between 61.9% and 66.3% during 2014-2019, whereas tetracycline resistance declined from 2000 to 2008 and fluctuated around 40% during 2009-2019. Levofloxacin resistance did not exceed 1.2% throughout the study period. The most prevalent serotypes were 14, 19F, 19A, 23F, 3, 6B, 6A, and 9V. Among them, serotype 3 was the most susceptible overall. Serotypes 23F, 14, 9V, and 6B displayed the highest levels of multi-drug resistance. Conclusions: Penicillin G (high-dosage), cefotaxime, and levofloxacin are still effective against most S. pneumoniae strains in Tunisia, while erythromycin and tetracycline are not reliable options for treating pneumococcal infections. Alarming resistance rates among prevalent serotypes, except serotype 3, underscore the need for preventive measures, rational antibiotic use, and ongoing surveillance.
Collapse
Affiliation(s)
- Nourelhouda Ben Ayed
- Laboratory of Microbiology, Habib Bourguiba University Hospital Center, Sfax 3000, Tunisia; (N.B.A.); (O.G.); (S.M.M.)
- Research Laboratory LR03SP03 “Micro-Organisme et Pathologie Humaine”, Faculty of Medicine, University of Sfax, Sfax 3029, Tunisia; (F.S.); (S.K.)
| | - Omar Gargouri
- Laboratory of Microbiology, Habib Bourguiba University Hospital Center, Sfax 3000, Tunisia; (N.B.A.); (O.G.); (S.M.M.)
- Research Laboratory LR03SP03 “Micro-Organisme et Pathologie Humaine”, Faculty of Medicine, University of Sfax, Sfax 3029, Tunisia; (F.S.); (S.K.)
| | - Samar Mhimdi
- Laboratory of Microbiology, Bechir Hamza Children’s Hospital, Tunis 1006, Tunisia; (S.M.); (K.M.); (H.S.)
| | - Fahmi Smaoui
- Research Laboratory LR03SP03 “Micro-Organisme et Pathologie Humaine”, Faculty of Medicine, University of Sfax, Sfax 3029, Tunisia; (F.S.); (S.K.)
| | - Emna Mhiri
- Laboratory of Microbiology, Abderrahmen Mami Hospital, Ariana 2080, Tunisia; (E.M.); (L.S.)
| | - Lamia Kanzari
- National Reference Laboratory on Antimicrobial Resistance Surveillance, Tunis 1007, Tunisia; (L.K.); (I.B.)
- Microbiology Laboratory, Charles Nicolle Hospital, Tunis 1006, Tunisia
- Research Laboratory “Antimicrobial Resistance” LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
| | - Meriam Zribi
- Laboratory of Microbiology, La Rabta Hospital, Tunis 1007, Tunisia;
| | - Senda Maalej Mezghanni
- Laboratory of Microbiology, Habib Bourguiba University Hospital Center, Sfax 3000, Tunisia; (N.B.A.); (O.G.); (S.M.M.)
- Research Laboratory LR03SP03 “Micro-Organisme et Pathologie Humaine”, Faculty of Medicine, University of Sfax, Sfax 3029, Tunisia; (F.S.); (S.K.)
| | - Sonia Ktari
- Research Laboratory LR03SP03 “Micro-Organisme et Pathologie Humaine”, Faculty of Medicine, University of Sfax, Sfax 3029, Tunisia; (F.S.); (S.K.)
| | - Khaoula Meftah
- Laboratory of Microbiology, Bechir Hamza Children’s Hospital, Tunis 1006, Tunisia; (S.M.); (K.M.); (H.S.)
| | | | | | - Olfa Bahri
- Laboratory of Clinical Biology, Aziza Othmana Hospital, Tunis 1008, Tunisia;
| | - Sophie Besbes
- Laboratory of Microbiology, Mohamed Kassab Orthopaedics Institute, Manouba 2010, Tunisia;
| | - Wafa Achour
- Laboratory Department, Bone and Marrow Transplantation Center, Tunis 1029, Tunisia;
| | - Leila Slim
- Laboratory of Microbiology, Abderrahmen Mami Hospital, Ariana 2080, Tunisia; (E.M.); (L.S.)
| | - Ilhem Boutiba
- National Reference Laboratory on Antimicrobial Resistance Surveillance, Tunis 1007, Tunisia; (L.K.); (I.B.)
- Microbiology Laboratory, Charles Nicolle Hospital, Tunis 1006, Tunisia
- Research Laboratory “Antimicrobial Resistance” LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
| | - Hanen Smaoui
- Laboratory of Microbiology, Bechir Hamza Children’s Hospital, Tunis 1006, Tunisia; (S.M.); (K.M.); (H.S.)
| | - Adnene Hammami
- Laboratory of Microbiology, Habib Bourguiba University Hospital Center, Sfax 3000, Tunisia; (N.B.A.); (O.G.); (S.M.M.)
- Research Laboratory LR03SP03 “Micro-Organisme et Pathologie Humaine”, Faculty of Medicine, University of Sfax, Sfax 3029, Tunisia; (F.S.); (S.K.)
| |
Collapse
|
4
|
Fletcher MA, Daigle D, Siapka M, Baay M, Hanquet G, del Carmen Morales G. Serotype distribution of invasive pneumococcal disease from countries of the WHO Africa, Americas, Eastern Mediterranean, South-East Asia, and Western Pacific regions: a systematic literature review from 2010 to 2021. Front Public Health 2024; 12:1402795. [PMID: 39050608 PMCID: PMC11266301 DOI: 10.3389/fpubh.2024.1402795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Background Most publications on invasive pneumococcal disease (IPD) serotype distribution are from about 20 countries (Australia, Canada, China, European Union members, Japan, New Zealand, South Korea, and USA). Here, we reviewed the literature among underrepresented countries in the Americas (AMRO), Africa (AFRO), Eastern Mediterranean (EMRO), South-East Asia (SEARO), and Western Pacific (WPRO) WHO regions. Methods We performed a systematic review of the most recent IPD serotype surveillance publications (from 01/01/2010 to 31/12/2021, Medline/Embase) in those WHO regions. Selection criteria were delineated by contemporality, within-country geographical scope, and number of samples. Reported serotype distributions for each country were stratified by age group, pneumococcal conjugate vaccine (PCV) serotype category (considering undifferentiated serotypes), and PCV program period (pre-PCV, intermediate, or PCVhv [higher valency PCV formulation]). Pre-PCV period pooled data estimated PCV serotype category distribution by age group across WHO regions, while for the PCVhv period, country-level dataset tables were prepared. Results Of 2,793 publications screened, 107 were included (58 pediatric, 11 adult, 37 all ages, and one comprising every age group). One-third of eligible countries (51/135) published serotype distribution, ranging from 30 to 43% by WHO region. Considering number of samples per WHO region, a few countries prevailed: AMRO (Brazil), AFRO (South Africa, Malawi, and Burkina Faso), and WPRO (Taiwan). In the pre-PCV period, PCV13 formulation serotypes predominated: ranging from 74 to 85% in children and 58-86% in adults in the different WHO regions. The PCVhv period represented half of the most recent IPD surveillance by countries (26/51). Undifferentiated serotypes represented >20% of IPD from most countries (34/51). Conclusion Ubiquity of undifferentiated serotypes among the publications could constrain estimates of PCV program impact and of serotype coverage for newer PCVhv formulations; consequently, we recommend that countries favor techniques that identify serotypes specifically and, rather than reporting PCV formulation serotype distributions, provide serotype results individually. Systematic review registration The protocol has been prospectively registered at PROSPERO, identifier: CRD42021278501. https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=278501.
Collapse
Affiliation(s)
- Mark A. Fletcher
- Pfizer Vaccines Emerging Markets, Medical Affairs, Paris, France
| | - Derek Daigle
- Pfizer Vaccines Emerging Markets, Medical Affairs, New York, NY, United States
| | | | - Marc Baay
- P95 Epidemiology & Pharmacovigilance, Leuven, Belgium
| | | | | |
Collapse
|
5
|
Cergole-Novella MC, Matsuda EM, de Souza MB, Colpas DR, Carmo AMDS, Daros VDSMG, Campos IB. Recurrent community-acquired pneumococcal meningitis in adults with and without identified predisposing factors. Braz J Microbiol 2024; 55:1339-1348. [PMID: 38438832 PMCID: PMC11153432 DOI: 10.1007/s42770-024-01292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Bacterial meningitis is still a significant public health concern, with high morbidity and mortality rates. Despite this, it is still a rare event that requires the bacterial invasion of the meninges. However, some predisposing factors can trigger recurrent episodes of meningitis. This study is aimed at determining the clinical characteristics and the molecular epidemiology of episodes of recurrent community-acquired meningitis with and without predisposing factors. For this purpose, we performed a retrospective study of our laboratory database during the period of 2010 to 2020. Additionally, using molecular tools developed in our previous works, the epidemiology of the pathogens causing these episodes was analyzed using cerebrospinal fluid samples, especially in the absence of isolated strains. We observed a total of 1,779 meningitis cases and 230 were caused by Streptococcus pneumoniae. Of those, 16 were recurrent meningitis episodes (16/1,779; 0.9%) from seven patients. Pneumococcus was the main agent responsible in these recurrent episodes and only two episodes were caused by Haemophilus influenzae. The mean age of these patients was 20 years old and three had predisposing factors which could have led to contracting meningitis. The samples presented different pneumococcal serotypes. Most of them were non-vaccine-covered serotypes and antibiotic susceptible strains. Therefore, it was demonstrated how the practical employment of molecular tools, developed for research, when applied in the routine of diagnosis, can provide important information for epidemiological surveillance. Furthermore, it was shown how pneumococcus was the leading cause of recurrent community-acquired meningitis without predisposing factors, suggesting that pneumococcal vaccination may be necessary, even in those groups of individuals considered to be less susceptible.
Collapse
Affiliation(s)
- Maria Cecilia Cergole-Novella
- Adolfo Lutz Institute, Santo André Regional Center, Avenida Ramiro Colleoni, 240 - Vila Dora, Santo André, SP, 09040-160, Brazil
| | - Elaine Monteiro Matsuda
- City Hall of Santo André, Santo André Health Secretary, Rua Primeiro de Maio, 133 - Centro, Santo André, SP, 09015-030, Brazil
| | - Mariana Brena de Souza
- Adolfo Lutz Institute, Santo André Regional Center, Avenida Ramiro Colleoni, 240 - Vila Dora, Santo André, SP, 09040-160, Brazil
| | - Daniela Rodrigues Colpas
- Adolfo Lutz Institute, Santo André Regional Center, Avenida Ramiro Colleoni, 240 - Vila Dora, Santo André, SP, 09040-160, Brazil
| | - Andréia Moreira Dos Santos Carmo
- Adolfo Lutz Institute, Santo André Regional Center, Avenida Ramiro Colleoni, 240 - Vila Dora, Santo André, SP, 09040-160, Brazil
| | | | - Ivana Barros Campos
- Adolfo Lutz Institute, Santo André Regional Center, Avenida Ramiro Colleoni, 240 - Vila Dora, Santo André, SP, 09040-160, Brazil.
| |
Collapse
|
6
|
Huang PY, Hsu CK, Tang HJ, Lai CC. Eravacycline: a comprehensive review of in vitro activity, clinical efficacy, and real-world applications. Expert Rev Anti Infect Ther 2024; 22:387-398. [PMID: 38703093 DOI: 10.1080/14787210.2024.2351552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION The escalating threat of multidrug-resistant organisms necessitates constant exploration for novel antimicrobial agents. Eravacycline has emerged as a promising solution due to its unique chemical structure, which enhances potency and expands its spectrum of activity. AREA COVERED This review provides a thorough examination of eravacycline, encompassing its in vitro activity against Gram-positive and Gram-negative aerobes, carbapenem-non-susceptible organisms, anaerobes, and other bacterial strains. Additionally, it evaluates evidence from clinical studies to establish its clinical effect and safety. EXPERT OPINION Eravacycline, a synthetic fluorocycline, belongs to the tetracyclines class. Similar to other tetracycline, eravacycline exerts its antibacterial action by reversibly binding to the bacterial ribosomal 30S subunit. Eravacycline demonstrates potent in vitro activity against many Gram-positive and Gram-negative aerobes, anaerobes, and multidrug-resistant organisms. Randomized controlled trials and its associated meta-analysis affirm eravacycline's efficacy in treating complicated intra-abdominal infections. Moreover, real-world studies showcase eravacycline's adaptability and effectiveness in diverse clinical conditions, emphasizing its utility beyond labeled indications. Despite common gastrointestinal adverse events, eravacycline maintains an overall favorable safety profile, reinforcing its status as a tolerable antibiotic. However, ongoing research is essential for refining eravacycline's role, exploring combination therapy, and assessing its performance against biofilms, in combating challenging bacterial infections.
Collapse
Affiliation(s)
- Po-Yu Huang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chi-Kuei Hsu
- Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Hung-Jen Tang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chih-Cheng Lai
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Kovacevic A, Smith DRM, Rahbé E, Novelli S, Henriot P, Varon E, Cohen R, Levy C, Temime L, Opatowski L. Exploring factors shaping antibiotic resistance patterns in Streptococcus pneumoniae during the 2020 COVID-19 pandemic. eLife 2024; 13:e85701. [PMID: 38451256 PMCID: PMC10923560 DOI: 10.7554/elife.85701] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Non-pharmaceutical interventions implemented to block SARS-CoV-2 transmission in early 2020 led to global reductions in the incidence of invasive pneumococcal disease (IPD). By contrast, most European countries reported an increase in antibiotic resistance among invasive Streptococcus pneumoniae isolates from 2019 to 2020, while an increasing number of studies reported stable pneumococcal carriage prevalence over the same period. To disentangle the impacts of the COVID-19 pandemic on pneumococcal epidemiology in the community setting, we propose a mathematical model formalizing simultaneous transmission of SARS-CoV-2 and antibiotic-sensitive and -resistant strains of S. pneumoniae. To test hypotheses underlying these trends five mechanisms were built into the model and examined: (1) a population-wide reduction of antibiotic prescriptions in the community, (2) lockdown effect on pneumococcal transmission, (3) a reduced risk of developing an IPD due to the absence of common respiratory viruses, (4) community azithromycin use in COVID-19 infected individuals, (5) and a longer carriage duration of antibiotic-resistant pneumococcal strains. Among 31 possible pandemic scenarios involving mechanisms individually or in combination, model simulations surprisingly identified only two scenarios that reproduced the reported trends in the general population. They included factors (1), (3), and (4). These scenarios replicated a nearly 50% reduction in annual IPD, and an increase in antibiotic resistance from 20% to 22%, all while maintaining a relatively stable pneumococcal carriage. Exploring further, higher SARS-CoV-2 R0 values and synergistic within-host virus-bacteria interaction mechanisms could have additionally contributed to the observed antibiotic resistance increase. Our work demonstrates the utility of the mathematical modeling approach in unraveling the complex effects of the COVID-19 pandemic responses on AMR dynamics.
Collapse
Affiliation(s)
- Aleksandra Kovacevic
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE) unitParisFrance
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, Inserm U1018, CESP, Anti-infective evasion and pharmacoepidemiology teamMontigny-Le-BretonneuxFrance
| | - David RM Smith
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE) unitParisFrance
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, Inserm U1018, CESP, Anti-infective evasion and pharmacoepidemiology teamMontigny-Le-BretonneuxFrance
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiersParisFrance
- Health Economics Research Centre, Nuffield Department of Health, University of OxfordOxfordUnited Kingdom
| | - Eve Rahbé
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE) unitParisFrance
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, Inserm U1018, CESP, Anti-infective evasion and pharmacoepidemiology teamMontigny-Le-BretonneuxFrance
| | - Sophie Novelli
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, Inserm U1018, CESP, Anti-infective evasion and pharmacoepidemiology teamMontigny-Le-BretonneuxFrance
| | - Paul Henriot
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiersParisFrance
- PACRI unit, Institut Pasteur, Conservatoire national des arts et métiersParisFrance
| | - Emmanuelle Varon
- Centre National de Référence des Pneumocoques, Centre Hospitalier Intercommunal de CréteilCréteilFrance
| | - Robert Cohen
- Institut Mondor de Recherche Biomédicale-Groupe de Recherche Clinique Groupe d’Etude des Maladies Infectieuses Néonatales et Infantiles (IMRB-GRC GEMINI), Université Paris Est, 94000CréteilFrance
- Groupe de Pathologie Infectieuse Pédiatrique (GPIP), 06200NiceFrance
- Unité Court Séjour, Petits Nourrissons, Service de Néonatologie, Centre Hospitalier, Intercommunal de CréteilCréteilFrance
- Association Clinique et Thérapeutique Infantile du Val-de-Marne (ACTIV), 94000CréteilFrance
- Association Française de Pédiatrie Ambulatoire (AFPA), 45000OrléansFrance
| | - Corinne Levy
- Institut Mondor de Recherche Biomédicale-Groupe de Recherche Clinique Groupe d’Etude des Maladies Infectieuses Néonatales et Infantiles (IMRB-GRC GEMINI), Université Paris Est, 94000CréteilFrance
- Groupe de Pathologie Infectieuse Pédiatrique (GPIP), 06200NiceFrance
- Association Clinique et Thérapeutique Infantile du Val-de-Marne (ACTIV), 94000CréteilFrance
- Association Française de Pédiatrie Ambulatoire (AFPA), 45000OrléansFrance
| | - Laura Temime
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiersParisFrance
- PACRI unit, Institut Pasteur, Conservatoire national des arts et métiersParisFrance
| | - Lulla Opatowski
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE) unitParisFrance
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, Inserm U1018, CESP, Anti-infective evasion and pharmacoepidemiology teamMontigny-Le-BretonneuxFrance
| |
Collapse
|
8
|
Haranaka M, Young Song J, Huang KC, de Solom R, Yamaji M, McElwee K, Kline M, Aizawa M, Peng Y, Scully I, Kogawara O, Gruber WC, Scott DA, Watson W. A phase 3 randomized trial of the safety and immunogenicity of 20-valent pneumococcal conjugate vaccine in adults ≥ 60 years of age in Japan, South Korea, and Taiwan. Vaccine 2024; 42:1071-1077. [PMID: 38267330 DOI: 10.1016/j.vaccine.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Pneumococcal infections are associated with high disease burden in older individuals in Japan, South Korea, and Taiwan. The 20-valent pneumococcal conjugate vaccine (PCV20) was developed to extend protection beyond earlier pneumococcal vaccines. METHODS This phase 3 randomized, double-blind study investigated the safety and immunogenicity of PCV20 in participants ≥ 60 years of age from Japan, South Korea, and Taiwan. Participants were randomized to receive PCV20 or 13-valent pneumococcal conjugate vaccine (PCV13). One month after vaccination, PCV20 recipients received a saline injection and PCV13 recipients received 23-valent polysaccharide vaccine (PPSV23). Primary immunogenicity objectives were to demonstrate noninferiority of PCV20 to PCV13 (13 matched serotypes) or PPSV23 (7 additional serotypes) for serotype-specific opsonophagocytic activity (OPA) geometric mean titers (GMTs) 1 month after vaccination with PCV20, PCV13, or PPSV23. Noninferiority for each serotype was declared if the lower bound of the 2-sided 95% CI for OPA geometric mean ratio (GMR) was > 0.5. Safety endpoints included local reactions, systemic events, adverse events (AEs), and serious AEs. RESULTS Overall, 1421 participants were vaccinated (median age [range]: 65 [60-85] years). PCV20 was noninferior to PCV13 for all 13 matched serotypes and to PPSV23 for 6 of 7 additional serotypes. Although statistical noninferiority was missed for serotype 8 (lower bound of the 2-sided 95% CI for OPA GMR = 0.5, thus not meeting the statistical noninferiority criterion of > 0.5), secondary immunogenicity endpoints for serotype 8 were supportive of a robust immune response. The incidence of AEs and the frequency and severity of local reactions and systemic events were generally similar after PCV20 and PCV13. No safety concerns were identified. CONCLUSION PCV20 generated robust immune responses to all vaccine serotypes in older adults in Japan, South Korea, and Taiwan. The safety and tolerability profile was similar to PCV13. PCV20 is expected to help protect against all 20 vaccine serotypes. NCT04875533.
Collapse
Affiliation(s)
| | | | | | - Richard de Solom
- Vaccine Clinical Research & Development, Pfizer Australia, Sydney, NSW, Australia
| | | | - Kathleen McElwee
- Vaccine Research and Development, Pfizer Inc, Collegeville, PA, USA
| | - Mary Kline
- Vaccine Research and Development, Pfizer Inc, Collegeville, PA, USA
| | | | - Yahong Peng
- Vaccine Research and Development, Pfizer Inc, Collegeville, PA, USA
| | - Ingrid Scully
- Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | | | - William C Gruber
- Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | - Daniel A Scott
- Vaccine Research and Development, Pfizer Inc, Collegeville, PA, USA
| | - Wendy Watson
- Vaccine Research and Development, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
9
|
Smith DRM, Shirreff G, Temime L, Opatowski L. Collateral impacts of pandemic COVID-19 drive the nosocomial spread of antibiotic resistance: A modelling study. PLoS Med 2023; 20:e1004240. [PMID: 37276186 DOI: 10.1371/journal.pmed.1004240] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Circulation of multidrug-resistant bacteria (MRB) in healthcare facilities is a major public health problem. These settings have been greatly impacted by the Coronavirus Disease 2019 (COVID-19) pandemic, notably due to surges in COVID-19 caseloads and the implementation of infection control measures. We sought to evaluate how such collateral impacts of COVID-19 impacted the nosocomial spread of MRB in an early pandemic context. METHODS AND FINDINGS We developed a mathematical model in which Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and MRB cocirculate among patients and staff in a theoretical hospital population. Responses to COVID-19 were captured mechanistically via a range of parameters that reflect impacts of SARS-CoV-2 outbreaks on factors relevant for pathogen transmission. COVID-19 responses include both "policy responses" willingly enacted to limit SARS-CoV-2 transmission (e.g., universal masking, patient lockdown, and reinforced hand hygiene) and "caseload responses" unwillingly resulting from surges in COVID-19 caseloads (e.g., abandonment of antibiotic stewardship, disorganization of infection control programmes, and extended length of stay for COVID-19 patients). We conducted 2 main sets of model simulations, in which we quantified impacts of SARS-CoV-2 outbreaks on MRB colonization incidence and antibiotic resistance rates (the share of colonization due to antibiotic-resistant versus antibiotic-sensitive strains). The first set of simulations represents diverse MRB and nosocomial environments, accounting for high levels of heterogeneity across bacterial parameters (e.g., rates of transmission, antibiotic sensitivity, and colonization prevalence among newly admitted patients) and hospital parameters (e.g., rates of interindividual contact, antibiotic exposure, and patient admission/discharge). On average, COVID-19 control policies coincided with MRB prevention, including 28.2% [95% uncertainty interval: 2.5%, 60.2%] fewer incident cases of patient MRB colonization. Conversely, surges in COVID-19 caseloads favoured MRB transmission, resulting in a 13.8% [-3.5%, 77.0%] increase in colonization incidence and a 10.4% [0.2%, 46.9%] increase in antibiotic resistance rates in the absence of concomitant COVID-19 control policies. When COVID-19 policy responses and caseload responses were combined, MRB colonization incidence decreased by 24.2% [-7.8%, 59.3%], while resistance rates increased by 2.9% [-5.4%, 23.2%]. Impacts of COVID-19 responses varied across patients and staff and their respective routes of pathogen acquisition. The second set of simulations was tailored to specific hospital wards and nosocomial bacteria (methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase producing Escherichia coli). Consequences of nosocomial SARS-CoV-2 outbreaks were found to be highly context specific, with impacts depending on the specific ward and bacteria evaluated. In particular, SARS-CoV-2 outbreaks significantly impacted patient MRB colonization only in settings with high underlying risk of bacterial transmission. Yet across settings and species, antibiotic resistance burden was reduced in facilities with timelier implementation of effective COVID-19 control policies. CONCLUSIONS Our model suggests that surges in nosocomial SARS-CoV-2 transmission generate selection for the spread of antibiotic-resistant bacteria. Timely implementation of efficient COVID-19 control measures thus has 2-fold benefits, preventing the transmission of both SARS-CoV-2 and MRB, and highlighting antibiotic resistance control as a collateral benefit of pandemic preparedness.
Collapse
Affiliation(s)
- David R M Smith
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiers, Paris, France
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - George Shirreff
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiers, Paris, France
| | - Laura Temime
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiers, Paris, France
- PACRI unit, Institut Pasteur, Conservatoire national des arts et métiers, Paris, France
| | - Lulla Opatowski
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France
| |
Collapse
|
10
|
Aydin MA, Janapatla RP, Chen CL, Li HC, Su LH, Chiu CH. Microbiological and clinical characteristics of Streptococcus pneumoniae serotype 3 infection and risk factors for severe outcome: A multicenter observational study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023:S1684-1182(23)00013-0. [PMID: 36774315 DOI: 10.1016/j.jmii.2023.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND/PURPOSE Serotype 3 has persisted to be an important cause of invasive pneumococcal disease in adults in the post-vaccine era. We aimed to investigate clinical and microbiological characteristics of Streptococcus pneumoniae serotype 3 infection in Taiwan and identify the risk factors associated with severe clinical outcome. METHODS A multicenter observational study was conducted to analyze serotype 3 isolates collected between 2012 and 2021. Demographics, comorbidities, and risk categories were statistically compared with clinical outcome. Antimicrobial susceptibility testing and multilocus sequence typing were performed. RESULTS A total of 146 isolates were collected, including 12 isolates regarded as colonizers. Among 134 infected cases, 54 (40.3%) were aged 65 and older. Mortality was significantly associated with diabetes mellitus, immunosuppression, immunodeficiency, high-risk status, and older age. Susceptibility rates were high to levofloxacin (98.9%), moxifloxacin (100%), vancomycin (100%), and ceftriaxone (97.3%). 25.3% (37/146) of the isolates showed intermediate susceptibility and 0.7% (1/146) showed resistance to penicillin. ST180 was the dominant sequence type. ST13 and ST9625 isolates were less susceptible to penicillin and ceftriaxone. CONCLUSIONS Serotype 3 infection showed a high mortality rate, especially in patients with older ages and comorbidities. Although the incidence rates decreased during the COVID-19 pandemic, serotype 3 remained as an important cause of infection after the implementation of PCV13. Developing a more effective vaccine against serotype 3 and monitoring the antimicrobial-resistant sequence types are necessary.
Collapse
Affiliation(s)
- Merve Arslan Aydin
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Rajendra Prasad Janapatla
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Microbiology and Immunology, College of Medicine, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Microbiology and Immunology, College of Medicine, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Chieh Li
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lin-Hui Su
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Trend change of nasopharyngeal colonization with Streptococcus pneumoniae and non-typeable Haemophilus influenzae in children attending daycare centres: nationwide population-based study, South Korea 2014 and 2019. Int J Infect Dis 2021; 111:328-332. [PMID: 34508859 DOI: 10.1016/j.ijid.2021.08.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Nasopharyngeal (NP) colonization with Streptococcus pneumoniae and non-typeable Haemophilus influenzae (NTHi) is common in children, and may evolve as the source of invasive infections. In Korea, the pneumococcal conjugate vaccines (PCVs) were introduced >10 years ago, enabling the authors to study the effect of the vaccine in preventing carriage. METHODS NP swabs were taken and a household survey was conducted at daycare centres located in different regions of Korea in 2014 and 2019. Pneumococcal serotypes were identified using the Quellung method and sequencing. NTHi were identified based on pilA and bexA genes. RESULTS In total, 1460 NP swabs were obtained with pneumococcal carriage rates of 36.4-42.1% and NTHi carriage rates of 36.5-26.7%. Among children carrying pneumococci, a significant increase was seen in serotype 23A between 2014 and 2019 (from 12.6% to 22.0%; P=0.005). Children who had received PCV were at lower risk of vaccine-type carriage (2.9% vs 0.8%; P=0.005). CONCLUSIONS Between 2014 and 2019, the proportion of children carrying serotype 23A increased significantly, while the carriage rate of NTHi decreased. Continuous surveillance is needed to assess the long-term effects of the PCVs on carriage dynamics of pneumococcus and NTHi.
Collapse
|