1
|
Yang S, Su P, Li L, Liu S, Wang Y. Advances and mechanisms of traditional Chinese medicine and its active ingredients against antibiotic-resistant Escherichia coli infections. J Pharm Anal 2025; 15:101117. [PMID: 40026356 PMCID: PMC11871446 DOI: 10.1016/j.jpha.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 03/05/2025] Open
Abstract
In clinical practice, antibiotics have historically been utilized for the treatment of pathogenic bacteria. However, the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challenge to this approach. In 2022, Escherichia coli, a Gram-negative bacterium renowned for its widespread pathogenicity and high virulence, emerged as the predominant pathogenic bacterium in China. The rapid emergence of antibiotic-resistant E. coli strains has rendered antibiotics insufficient to fight E. coli infections. Traditional Chinese medicine (TCM) has made remarkable contributions to the health of Chinese people for thousands of years, and its significant therapeutic effects have been proven in clinical practice. In this paper, we provide a comprehensive review of the advances and mechanisms of TCM and its active ingredients against antibiotic-resistant E. coli infections. First of all, this review introduces the classification, antibiotic resistance characteristics and mechanisms of E. coli. Then, the TCM formulas and extracts are listed along with their active ingredients against E. coli, including extraction solution, minimum inhibitory concentration (MIC), and the antibacterial mechanisms. In addition, there is growing evidence supporting the synergistic therapeutic strategy of combining TCM with antibiotics for the treatment of antibiotic-resistant E. coli infections, and we provide a summary of this evidence and its underlying mechanisms. In conclusion, we present a comprehensive review of TCM and highlight its potential and advantages in the prevention and treatment of E. coli infections. We hold the opinion that TCM will play an important role in global health, pharmaceutical development, and livestock farming in the future.
Collapse
Affiliation(s)
- Shuo Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuang Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
2
|
Abdullah S, Mushtaq MA, Ullah K, Hassan B, Azam M, Zahoor MA, Wang J, Xu J, Toleman MA, Mohsin M. Dissemination of clinical Escherichia coli harboring the mcr-1 gene in Pakistan. Front Microbiol 2025; 15:1502528. [PMID: 39839122 PMCID: PMC11747048 DOI: 10.3389/fmicb.2024.1502528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
Background Colistin is an antibiotic used as a last resort to treat multidrug-resistant Gram-negative bacterial infections. Plasmid-mediated mobile colistin-resistant (mcr) genes in Escherichia coli (E. coli) are disseminated globally and are considered to be a major public health threat. This study aimed to determine the molecular characteristics of colistin-resistant Escherichia coli isolates in clinical settings in Pakistan. Methods A total of 240 clinical E. coli strains isolated from urine and pus cultures were collected from two hospitals in Faisalabad and analyzed for phenotypic resistance to colistin by cultivation on CHROMagar plates supplemented with colistin 2 ug/ml. Molecular characteristics of colistin-resistant isolates were analyzed using conventional PCR, whole genome sequencing, and bioinformatics analysis. Results PCR and whole genome analysis confirmed the presence of the mcr-1 gene in 10 E. coli isolates. The minimum inhibitory concentration for colistin ranged from 4 ug/ml to 32 ug/ml. ResFinder analysis revealed the presence of multiple resistance determinants conferring co-resistance to β-lactams, aminoglycosides, trimethoprim, sulfonamides, tetracycline, quinolones, florfenicol, and macrolides. Hybrid genomic assembly indicated that mcr-1 is carried on IncI2 plasmids. Plasmid replicon typing indicated that IncI2-type plasmids (n = 10) were the most prevalent plasmids in these strains, followed by IncFIB (n = 8), IncFIC (n = 7), IncFIA (n = 6), IncFII (4), IncQ1 (n = 3), IncI1 (n = 1), IncY (n = 1), and IncN (n = 1). The Achtman MLST typing scheme revealed a large diversity of STs among the mcr-1-positive E. coli. VirulenceFinder analysis revealed the presence of numerous virulence factors ranging from 4 to 19. Conclusion Our study revealed the emergence and dissemination of colistin-resistant E. coli isolates carrying mcr-1 in hospital settings, posing a potential risk to anti-infective therapy. More efforts should be taken to monitor the prevalence of mcr-1-carrying bacteria in Pakistan.
Collapse
Affiliation(s)
- Sabahat Abdullah
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | | | - Kalim Ullah
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Brekhna Hassan
- School of Medicine, Department of Medical Microbiology, Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Mariya Azam
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | | | - Juan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jianzhen Xu
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Mark A. Toleman
- School of Medicine, Department of Medical Microbiology, Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
3
|
Feng J, Jia M, Zhuang Y, Xu Z, Chen Y, Fei J, Xia J, Hong L, Zhang J, Wu H, Chen X, Chen M. Prevalence, transmission and genomic epidemiology of mcr-1-positive colistin-resistant Escherichia coli strains isolated from international airplane waste, local resident fecal and wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177556. [PMID: 39547379 DOI: 10.1016/j.scitotenv.2024.177556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The emergence and dissemination of mcr-1-positive Escherichia coli (MCRPEC) represent a critical public health threat. Here, we conducted a prospective analysis of MCRPEC isolates from wastewater treatment plants (WWTPs), local residents' fecal (LRF), and international airplane waste (IAW) to investigate their genetic characteristics and transmission patterns circulating in human-environment domains. The MCRPEC prevalence was 2.43 % in WWTPs, 1.37 % in IAW and 0.69 % in LRF. MCRPEC showed substantial genetic diversity, encompassing 61 sequence types (primarily ST1011, ST101, and ST2705), 7 plasmid types (primarily IncI2), 8 phylogroups (primarily A and B1), 9 mcr-1-flanked lineages (primarily L5), 6 clusters (primarily C2 and C4), diverse serotypes, and 61.95 % transposon-containing strains. The mcr-1 gene co-existed with 46 antibiotic resistance genes (ARGs) and 19 virulence factor genes (VFGs). Notably, 6 IncI2 plasmids carried the blaCTX-M, IS1380, and mcr-1 genes. MCRPEC from WWTPs harbored a greater number of ARGs (56.95 ± 5.99) but fewer VFGs (15.03 ± 6.40) compared to those from human-associated sources (LRF and IAW). ST1011, ST2705, IncHI2, and L7 were prevalent in WWTP-derived MCRPEC, whereas IncX4 and L3 were more common in human-derived MCRPEC. Genetic features such as ST101, ST48, IncI2, L4, L5, C2, and C4 were simultaneously present in strains from LRF, IAW, and WWTPs. Core genetic analyses also showed genetically similar MCRPEC strains across various geographic locations. The findings underscore the extensive dissemination, strong environmental adaptation, and clonal transmission of MCRPEC across diverse reservoirs, reinforcing the urgent need for coordinated multisectoral surveillance of human and environment interfaces to effectively mitigate further transmission.
Collapse
Affiliation(s)
- Jun Feng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Min Jia
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Zhen Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yong Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiayi Fei
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiahui Xia
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Liang Hong
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Jing Zhang
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Huanyu Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xin Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| |
Collapse
|
4
|
Vlad MA, Lixandru BE, Muntean AA, Trandafir I, Luncă C, Tuchiluş C. The First Report of mcr-1-Carrying Escherichia coli, Isolated from a Clinical Sample in the North-East of Romania. Microorganisms 2024; 12:2461. [PMID: 39770664 PMCID: PMC11679583 DOI: 10.3390/microorganisms12122461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Colistin resistance poses a significant clinical challenge, particularly in Gram-negative bacteria. This study investigates the occurrence of plasmid-mediated colistin resistance among Enterobacterales isolates (Escherichia coli, Klebsiella pneumoniae, and Enterobacter spp.) and non-fermentative rods (Acinetobacter baumannii and Pseudomonas aeruginosa). We analyzed 114 colistin-resistant isolates that were selected, based on resistance phenotypes, and isolated between 2019 and 2023. To achieve this, we used the rapid immunochromatographic test, NG-Test® MCR-1; multiplex PCR for mcr-1 to mcr-8, and real-time PCR for mcr-1 and mcr-2. One E. coli isolate was identified as carrying the mcr-1 gene, confirmed by NG-Test® MCR-1, multiplex PCR and whole-genome sequencing. This strain, belonging to ST69, harbored four plasmids, harboring different antimicrobial resistance genes, with mcr-1 being located on a 33,304 bp circular IncX4 plasmid. No mcr-2 to mcr-8-positive isolates were detected, prompting further investigation into alternative colistin resistance mechanisms. This is the first report of a mcr-1-positive, colistin-resistant E. coli isolated from a human clinical sample in the North-East of Romania.
Collapse
Affiliation(s)
- Mădălina-Alexandra Vlad
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania; (M.-A.V.); (C.L.); (C.T.)
- Medical Analysis Laboratory, “St. Spiridon” County Clinical Emergency Hospital Iași, 700111 Iași, Romania
| | - Brîndușa-Elena Lixandru
- Cantacuzino National Medical-Military Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania;
| | - Andrei-Alexandru Muntean
- Cantacuzino National Medical-Military Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania;
- Department of Microbiology II, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Bld. Eroilor Sanitari, 050474 Bucharest, Romania
| | - Irina Trandafir
- Regional Institute of Oncology (IRO), 2-4 G-ral Berthelot Street, 700483 Iași, Romania;
| | - Cătălina Luncă
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania; (M.-A.V.); (C.L.); (C.T.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iași, Romania
| | - Cristina Tuchiluş
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania; (M.-A.V.); (C.L.); (C.T.)
- Medical Analysis Laboratory, “St. Spiridon” County Clinical Emergency Hospital Iași, 700111 Iași, Romania
| |
Collapse
|
5
|
Liu Y, Wang Q, Qi T, Zhang M, Chen R, Si Z, Li J, Jin Y, Xu Q, Li P, Hao Y. Molecular Epidemiology of mcr-1-Positive Polymyxin B-Resistant Escherichia coli Producing Extended-Spectrum β-Lactamase (ESBL) in a Tertiary Hospital in Shandong, China. Pol J Microbiol 2024; 73:363-375. [PMID: 39268958 PMCID: PMC11395425 DOI: 10.33073/pjm-2024-032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Escherichia coli, a rod-shaped Gram-negative bacterium, is a significant causative agent of severe clinical bacterial infections. This study aimed to analyze the epidemiology of extended-spectrum β-lactamase (ESBL)-producing mcr-1 -positive E. coli in Shandong, China. We collected 668 non-duplicate ESBL-producing E. coli strains from clinical samples at Shandong Provincial Hospital between January and December 2018, and estimated their minimum inhibitory concentrations (MICs) using a VITEK® 2 compact system and broth microdilution. Next-generation sequencing and bioinformatic analyses identified the mcr-1 gene and other resistance genes in the polymyxin B-resistant strains. The conjugation experiment assessed the horizontal transfer capacity of the mcr-1 gene. Of the strains collected, 24 polymyxin B-resistant strains were isolated with a positivity rate of 3.59% and among the 668 strains, 19 clinical strains carried the mobile colistin resistance gene mcr-1, with a positivity rate of approximately 2.8%. All 19 clinical strains were resistant to ampicillin, cefazolin, ceftriaxone, ciprofloxacin, levofloxacin, and polymyxin B. Seventeen strains successfully transferred the mcr-1 gene into E. coli J53. All transconjugants were resistant to polymyxin B, and carried the drug resistance gene mcr-1. The 19 clinical strains had 14 sequence types (STs), with ST155 (n = 4) being the most common. The whole-genome sequencing results of pECO-POL-29_mcr1 revealed that no ISApl1 insertion sequences were found on either side of the mcr-1 gene. Our study uncovered the molecular epidemiology of mcr-1-carrying ESBL-producing E. coli in the region and suggested horizontal transmission mediated by plasmids as the main mode of mcr-1 transmission.
Collapse
Affiliation(s)
- Yue Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qian Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ting Qi
- Department of Clinical Laboratory, Jinan Gangcheng District People’s Hospital, Jinan, China
| | - Meng Zhang
- Department of Clinical Laboratory, Liaocheng Second People’s Hospital, Liaocheng, China
| | - Ran Chen
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zaifeng Si
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinmei Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Clinical Laboratory, Jinan Seventh People’s Hospital, Jinan, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qingbing Xu
- Central Laboratory of Liaocheng People’s Hospital, Liaocheng, China
| | - Ping Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Chen D, Xu W, Lu Y, Zhuo Y, Ji T, Long F. Rapid and sensitive parallel on-site detection of antibiotics and resistance genes in aquatic environments using evanescent wave dual-color fluorescence fiber-embedded optofluidic nanochip. Biosens Bioelectron 2024; 257:116281. [PMID: 38677021 DOI: 10.1016/j.bios.2024.116281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Environmental antibiotics and antibiotic resistance genes (ARGs) pose considerable threat to humans and animals; thus, the rapid and sensitive parallel detection of these pollutants from a single sample is urgently required. However, traditional multiplexed analytic technologies detect only one type of target (e.g., small molecules or nucleic acids) per assay. To address this issue, Evanescent wave Dual-color fluorescence Fiber-embedded Optofluidic Nanochip (EDFON) was fabricated by integrating a fiber-embedded optofluidic nanochip with evanescent wave dual-color fluorescence technology. The EDFON was used for the parallel quantitative detection of sulfamerazine (SMR) and MCR-1 with high sensitivity and specificity by combining a heterogeneous immunoassay with a homogenous hybridization chain reaction based on time-resolved effects. LODs of 0.032 μg/L and 35 pM was obtained for SMR and MCR-1, respectively, within 20 min. To our best knowledge, the EDFON is the first device for the simultaneous detection of two type of targets in each test, which is highly valuable to prevent the global threats of antibiotics and ARGs. Comparison with liquid chromatography-mass spectrometry showed a strong linear relationship (R2 = 0.998) for SMR pollution in the Qinghe River, with spiked SMR and MCR-1 negative surface and wastewater samples showing recovery rates of 91.8-113.4%. These results demonstrate the excellent accuracy and reliability of the EDFON, with features such as multi-analyte detection, field-deployment, and minimal-equipment, rendering it revolutionary for environmental monitoring, food safety, and medical diagnostics.
Collapse
Affiliation(s)
- Dan Chen
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Wenjuan Xu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Yongkai Lu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Yuxin Zhuo
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Tianxiang Ji
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
7
|
Li W, He Z, Di W, Xu W, Li Y, Sun B. Transposition mechanism of IS Apl1-the determinant of colistin resistance dissemination. Antimicrob Agents Chemother 2024; 68:e0123123. [PMID: 38289082 PMCID: PMC10916398 DOI: 10.1128/aac.01231-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/18/2023] [Indexed: 03/07/2024] Open
Abstract
Multidrug-resistant Enterobacteriaceae, a prominent family of gram-negative pathogenic bacteria, causes a wide range of severe diseases. Strains carrying the mobile colistin resistance (mcr-1) gene show resistance to polymyxin, the last line of defense against multidrug-resistant gram-negative bacteria. However, the transmission of mcr-1 is not well understood. In this study, genomes of mcr-1-positive strains were obtained from the NCBI database, revealing their widespread distribution in China. We also showed that ISApl1, a crucial factor in mcr-1 transmission, is capable of self-transposition. Moreover, the self-cyclization of ISApl1 is mediated by its own encoded transposase. The electrophoretic mobility shift assay experiment validated that the transposase can bind to the inverted repeats (IRs) on both ends, facilitating the cyclization of ISApl1. Through knockout or shortening of IRs at both ends of ISApl1, we demonstrated that the cyclization of ISApl1 is dependent on the sequences of the IRs at both ends. Simultaneously, altering the ATCG content of the bases at both ends of ISApl1 can impact the excision rate by modifying the binding ability between IRs and ISAPL1. Finally, we showed that heat-unstable nucleoid protein (HU) can inhibit ISApl1 transposition by binding to the IRs and preventing ISAPL1 binding and expression. In conclusion, the regulation of ISApl1-self-circling is predominantly controlled by the inverted repeat (IR) sequence and the HU protein. This molecular mechanism deepens our comprehension of mcr-1 dissemination.
Collapse
Affiliation(s)
- Wei Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhien He
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Di
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weifeng Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yujie Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
8
|
Feng J, Pan M, Zhuang Y, Luo J, Chen Y, Wu Y, Fei J, Zhu Y, Xu Z, Yuan Z, Chen M. Genetic epidemiology and plasmid-mediated transmission of mcr-1 by Escherichia coli ST155 from wastewater of long-term care facilities. Microbiol Spectr 2024; 12:e0370723. [PMID: 38353552 PMCID: PMC10913736 DOI: 10.1128/spectrum.03707-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 03/07/2024] Open
Abstract
Long-term care facilities (LTCFs) for older people play an important and unique role in multidrug-resistant organism transmission. Herein, we investigated the genetic characteristics of mobile colistin resistance gene (mcr-1)-carrying Escherichia coli strains isolated from wastewater of LTCFs in Shanghai. Antimicrobial susceptibility test was carried out by agar dilution methods. Whole-genome sequencing and plasmid sequencing were conducted, and resistance genes and sequence types of colistin in E. coli isolates were analyzed. Core genome multilocus sequence typing (cgMLST) analysis was performed by the Ridom SeqSphere+ software. Phylogenetic tree through the maximum likelihood method was constructed by MEGA X. Out of 306 isolates, only 1 E. coli named ECSJ33 was found, and the plasmid pECSJ33 from ECSJ33 harbored the mcr-1 gene that was located with 59,080 bp belonging to IncI2 type. The plasmid pECSJ33 was capable of conjugation with an efficiency of 2.9 × 10-2. Bioinformatic analysis indicated pECSJ33 shared backbone with the previously reported mcr-1-harboring pHNGDF93 isolated from fish source. Moreover, the cgMLST analysis revealed that ECSJ33 belongs to different lineages from those reported from previous E. coli strains but shared high similarity to NCTC11129 in cluster 11. The phylogenetic tree revealed MCR-1 of ECSJ33 in this study was mostly of animal food origin and that they were closely related. Our study firstly reports detection of genome sequence of a multidrug-resistant mcr-1-harboring E. coli ST155 from wastewater of LTCF source in China. The data may prove that the plasmid pECSJ33 belongs to food origin and help to understand the antimicrobial resistance mechanisms and genomic features of colistin resistance under One Health approach.IMPORTANCEOne Escherichia coli named ECSJ33 was found from wastewater of a long-term care facility (LTCF) and the plasmid pECSJ33 from ECSJ33 harbored the mobile colistin resistance gene (mcr-1) that was located with 59,080 bp belonging to IncI2 type, which was capable of conjugation with an efficiency of 2.9 × 10-2. This paper firstly reports an mcr-1-carrying E. coli strain ST155 isolated from LTCF in China. Comparative genomics analysis indicated pECSJ33 shared backbone with the previously reported mcr-1-harboring pHNGDF93 isolated from fish source. The phylogenetic tree revealed MCR-1 protein of ECSJ33 in this study was mostly of animal food origin and that they were closely related. Therefore, the pECSJ33 could be considered as food-origin transmission mcr-1-harboring plasmid.
Collapse
Affiliation(s)
- Jun Feng
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Miao Pan
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Jiayuan Luo
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yong Chen
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yitong Wu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Jiayi Fei
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yanqi Zhu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Zhen Xu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Zhengan Yuan
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Min Chen
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| |
Collapse
|
9
|
Feng J, Zhuang Y, Luo J, Xiao Q, Wu Y, Chen Y, Chen M, Zhang X. Prevalence of colistin-resistant mcr-1-positive Escherichia coli isolated from children patients with diarrhoea in Shanghai, 2016-2021. J Glob Antimicrob Resist 2023; 34:166-175. [PMID: 37355039 DOI: 10.1016/j.jgar.2023.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
OBJECTIVES The emergence of the plasmid-mediated colistin resistance 1 (mcr-1) of Escherichia coli has become a global health concern. This study reports the prevalence of mcr-1 among E. coli isolates from patients with diarrheal disease in Shanghai and the genetic characterization of mcr-1-harbouring plasmids. METHODS A total of 1723 E. coli strains were collected from the faeces of patients with diarrheal disease in all sentinel hospitals in Shanghai from 2016 to 2021. Antimicrobial susceptibility testing was performed by broth microdilution and plasmid conjunction transfer assay was carried out using E. coli C600 as the recipient. The mcr-1-positive E. coli strains (MCRPEC) were subjected to molecular characterization and bioinformatic analysis of the mcr-1-bearing plasmids that they harboured. RESULTS Only 5 (0.28%) strains were found to harbour the mcr-1 gene using PCR screening. Plasmid conjugation assay and whole-genome sequencing indicated that EC16500, one MCRPEC strain that co-exhibited mcr-1, blaTEM-1, blaOXA-1, qnrS1, qnrS2, arr-3, and catB3, could be conjugated to EC C600 by horizontal transfer with an average efficiency of 3.2 × 10-5. The plasmid pEC16500 harboured similar backbones as p70_2_15, pECGD-8-33, pNCYU-29-19-1_MCR1, and pIBMC_mcr1, and was shown to be encoded within a type IV secretion system (T4SS)-containing 32.6 kbp IncX4, next to the pap2-like membrane-associated gene, to form a 2.4-kb cassette. Furthermore, sequencing and phylogenetic analyses revealed a similarity between other MCR-1-homolog proteins, indicating that the five E. coli isolates were colistin-resistant. CONCLUSION Our data represents a significant snapshot of colistin resistance mcr-1 genes and highlights the need to increase active surveillance, especially among children under five years of age, in Shanghai. Great effort needs to be taken to avoid further dissemination of plasmid-mediated colistin resistance among clinically relevant Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Jun Feng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Yuan Zhuang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Jiayuan Luo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Quan Xiao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Yitong Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Yong Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Min Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China.
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Prava Rout B, Behera B, Kumar Sahu K, Praharaj I, Otta S. An overview of colistin resistance: A breach in last line defense. Med J Armed Forces India 2023; 79:516-525. [PMID: 37719908 PMCID: PMC10499634 DOI: 10.1016/j.mjafi.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/18/2023] [Indexed: 09/19/2023] Open
Abstract
Rising prevalence of antibiotic resistance and the unavailability of newer drugs to tackle this menace is one of the major hindrances to the goal of health and well-being set up by the General Assembly of the United Nations. The genes responsible for this resistance are often disseminated from hospitals to different environmental sources. In 2015, for the first time, resistance to Colistin was detected caused by chromosomal genetic mutations. Later, plasmid-mediated colistin resistance (MCR-1 to MCR-10) was detected, first from China and then from various other countries. As per Clinical and Laboratory Standards Institute (CLSI), commonly available diffusion techniques cannot detect colistin resistance appropriately. Even commercial susceptibility systems fail in this regard. Keeping in mind the importance of surveillance of colistin-resistant bugs, we present an update on the prevalence, mechanism of resistance, and detection.
Collapse
Affiliation(s)
- Bidyut Prava Rout
- Ph.D. Scholar in Biotechnology, IMS & SUM Hospital, Bhubaneswar, Odisha, India
| | - Birasen Behera
- Ph.D. Scholar in Biotechnology, IMS & SUM Hospital, Bhubaneswar, Odisha, India
| | - Kundan Kumar Sahu
- Professor & Head (Microbiology), IMS & SUM Hospital, Bhubaneswar, Odisha, India
| | - Ira Praharaj
- Scientist-E, ICMR- RMRC, Bhubaneswar, Odisha, India
| | - Sarita Otta
- Associate Professor (Microbiology), IMS & SUM Hospital, Bhubaneswar, Odisha, India
| |
Collapse
|
11
|
Feng J, Wu H, Zhuang Y, Luo J, Chen Y, Wu Y, Fei J, Shen Q, Yuan Z, Chen M. Stability and genetic insights of the co-existence of blaCTX-M-65, blaOXA-1, and mcr-1.1 harboring conjugative IncI2 plasmid isolated from a clinical extensively-drug resistant Escherichia coli ST744 in Shanghai. Front Public Health 2023; 11:1216704. [PMID: 37680274 PMCID: PMC10481164 DOI: 10.3389/fpubh.2023.1216704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Background Co-existence of colistin, β-lactam and carbapenem in multidrug-resistant Enterobacteriaceae isolates poses a serious threat to public health. In this study, we investigated and characterized the co-occurrence of blaCTX-M-65, blaOXA-1, and mcr-1.1 strain isolated from a clinical extensively-drug-resistant Escherichia coli ST744 in Shanghai. Methods Antimicrobial susceptibility test was carried out by agar dilution methods. Whole genome sequencing was conducted, and resistance genes, and sequence types of colistin in E. coli isolates were analyzed. Plasmid stability and amino acid mutations were assessed in E. coli isolates. Results A colistin resistant E. coli ST744, named ECPX221, was identified out of 145 fecal samples collected. The strain carries a 60,168 IncI2 plasmid with the mcr-1.1 gene. The strain also has blaCTX-M-65, blaOXA-1, dfrA14, qnrS1, cmlA5, arr2, ampC, aph(4)-Ia, sul1, and aadA5 resistance genes. The plasmid pECPX221 was capable of conjugation with an efficiency of 2.6 × 10-2. Notably, 45% of the transconjugants were determined as mcr-1.1-harboring in the colistin-free environment after 60 generation of passage. No mutations occurred in pmrB, mgrB, and phoPQ gene in the mcr-1.1-harboring transconjugants. Bioinformatic analysis indicated pECPX221 shared highly similar backbone with the previously reported mcr-1.1-harboring pAH62-1, pMFDS1339.1, pSCZE4, and p2018-10-2CC. Furthermore, sequencing and phylogenetic analyses revealed a similarity between other MCR-1-homolog proteins, indicating that ECPX221 was colistin resistant. Conclusion The stable transferable mcr-1.1-harboring plasmid found in the E. coli ST744 strain indicated the high risk to disseminate the extensively-drug-resistance phenotype among Enterobacteriaceae.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhengan Yuan
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
12
|
Ewers C, Göpel L, Prenger-Berninghoff E, Semmler T, Kerner K, Bauerfeind R. Occurrence of mcr-1 and mcr-2 colistin resistance genes in porcine Escherichia coli isolates (2010-2020) and genomic characterization of mcr-2-positive E. coli. Front Microbiol 2022; 13:1076315. [PMID: 36569100 PMCID: PMC9780603 DOI: 10.3389/fmicb.2022.1076315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction The global emergence of plasmid-mediated colistin resistance is threatening the efficacy of colistin as one of the last treatment options against multi-drug resistant Gram-negative bacteria. To date, ten mcr-genes (mcr-1 to mcr-10) were reported. While mcr-1 has disseminated globally, the occurrence of mcr-2 was reported scarcely. Methods and results We determined the occurrence of mcr-1 and mcr-2 genes among Escherichia coli isolates from swine and performed detailed genomic characterization of mcr-2-positive strains. In the years 2010-2017, 7,614 porcine E. coli isolates were obtained from fecal swine samples in Europe and isolates carrying at least one of the virulence associated genes predicting Shiga toxin producing E. coli (STEC), enterotoxigenic E. coli (ETEC) or enteropathogenic E. coli (EPEC) were stored. 793 (10.4%) of these isolates carried the mcr-1 gene. Of 1,477 additional E. coli isolates obtained from sheep blood agar containing 4 mg/L colistin between 2018 and 2020, 36 (2.4%) isolates were mcr-1-positive. In contrast to mcr-1, the mcr-2 gene occurred at a very low frequency (0.13%) among the overall 9,091 isolates. Most mcr-2-positive isolates originated from Belgium (n = 9), one from Spain and two from Germany. They were obtained from six different farms and revealed multilocus sequence types ST10, ST29, ST93, ST100, ST3057 and ST5786. While the originally described mcr-2.1 was predominant, we also detected a new mcr-2 variant in two isolates from Belgium, which was termed mcr-2.8. MCR-2 isolates were mostly classified as ETEC or ETEC-like, while one isolate from Spain represented an atypical enteropathogenic E. coli (aEPEC; eae+). The ST29-aEPEC isolate carried mcr-2 on the chromosome. Another eight isolates carried their mcr-2 gene on IncX4 plasmids that resembled the pKP37-BE MCR-2 plasmid originally described in Belgium in 2015. Three ST100 E. coli isolates from a single farm in Belgium carried the mcr-2.1 gene on a 47-kb self-transmissible IncP type plasmid of a new IncP-1 clade. Discussion This is the first report of mcr-2 genes in E. coli isolates from Germany. The detection of a new mcr-2 allele and a novel plasmid backbone suggests the presence of so far undetected mcr-2 variants and mobilizable vehicles.
Collapse
Affiliation(s)
- Christa Ewers
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany,*Correspondence: Christa Ewers,
| | - Lisa Göpel
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Ellen Prenger-Berninghoff
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Torsten Semmler
- NG1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Katharina Kerner
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Rolf Bauerfeind
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
13
|
Ievy S, Hoque MN, Islam MS, Sobur MA, Ballah FM, Rahman MS, Rahman MB, Hassan J, Khan MFR, Rahman MT. Genomic characteristics, virulence and antimicrobial resistance in avian pathogenic Escherichia coli MTR_BAU02 strain isolated from layer farms in Bangladesh. J Glob Antimicrob Resist 2022; 30:155-162. [PMID: 35671989 DOI: 10.1016/j.jgar.2022.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Colibacillosis, caused by avian pathogenic Escherichia coli (APEC), is one of the most significant infectious diseases affecting poultry worldwide. OBJECTIVE This study was aimed to determine the genomic diversity, virulence factor genes (VFGs) and antimicrobial resistance genes (ARGs) in the APEC MTR_BAU02 strain isolated from layer chickens using whole-genome sequencing (WGS). METHOD Paired-end (2 × 250) WGS was performed using Illumina MiSeq sequencer and de novo assembly was performed using SPAdes. Core genome MLST (cgMLST) analysis between APEC MTR_BAU02 and all of the ST1196 E. coli strains retrieved from the NCBI GenBank database was performed using BacWGSTdb 2.0 server. We further utilized different databases to detect ARGs, VFGs and genomic functional features of the APEC MTR_BAU02 strain. RESULTS The complete genome of APEC MTR_BAU02 consists of 94 contigs comprising 4,924,680 bp (51.1% GC content) including 4,681 protein-coding sequences, one chromosome, one plasmid, and was assigned to ST1196. The closest relatives of APEC MTR_BAU02 were another four isolates originating from human clinical (diarrhoeic stool) specimens in Bangladesh and two clinical isolates originating from chicken in India, which differed by 694 cgMLST alleles. One hundred twenty-two ARGs and 92 VFGs were identified in APEC MTR_BAU02 genome. Metabolic functional annotations detected 380 SEED subsystems including genes coding for carbohydrate metabolism, protein metabolism, cofactors, vitamins, prosthetic groups and pigments, respiration, membrane transport, stress response, motility and chemotaxis, and virulence, disease and defense. CONCLUSION This study reports the genome sequence of a multidrug resistant APEC strain isolated from layer birds in Bangladesh. The ARGs and VFGs, widespread in APEC MTR_BAU02, are similar to those found in human isolates, and highlight the growing threat of antimicrobial resistance in both poultry and humans.
Collapse
Affiliation(s)
- Samina Ievy
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - M Nazmul Hoque
- Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Saiful Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Abdus Sobur
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Fatimah Muhammad Ballah
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - M Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Bahanur Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jayedul Hassan
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Ferdousur Rahman Khan
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|