1
|
Azmat MA, Zaheer M, Shaban M, Arshad S, Hasan M, Ashraf A, Naeem M, Ahmad A, Munawar N. Autophagy: A New Avenue and Biochemical Mechanisms to Mitigate the Climate Change. SCIENTIFICA 2024; 2024:9908323. [PMID: 39430120 PMCID: PMC11490354 DOI: 10.1155/2024/9908323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 10/22/2024]
Abstract
Autophagy is a preserved process in eukaryotes that allows large material degeneration and nutrient recovery via vacuoles or lysosomes in cytoplasm. Autophagy starts from the moment of induction during the formation of a phagophore. Degradation may occur in the autophagosomes even without fusion with lysosome or vacuole, particularly in microautophagosomes. This process is arbitrated by the conserved machinery of basic autophagy-related genes (ATGs). In selective autophagy, specific materials are recruited by autophagosomes via receptors. Selective autophagy targets a vast variety of cellular components for degradation, i.e., old or damaged organelles, aggregates, and inactive or misfolded proteins. In optimal conditions, autophagy in plants ensures cellular homeostasis, proper plant growth, and fitness. Moreover, autophagy is essential during stress responses in plants and aids in survival of plants. Several biotic and abiotic stresses, i.e., pathogen infection, nutrient deficiency, plant senescence, heat stress, drought, osmotic stress, and hypoxia induce autophagy in plants. Cell death is not a stress, which induces autophagy but in contrast, sometimes it is a consequence of autophagy. In this way, autophagy plays a vital role in plant survival during harsh environmental conditions by maintaining nutrient concentration through elimination of useless cellular components. This review discussed the recent advances regarding regulatory functions of autophagy under normal and stressful conditions in plants and suggests future prospects in mitigating climate change. Autophagy in plants offers a viable way to increase plant resilience to climate change by increasing stress tolerance and nutrient usage efficiency.
Collapse
Affiliation(s)
- Muhammad Abubakkar Azmat
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Sub-Campus Burewala 61010, Vehari, Pakistan
| | - Malaika Zaheer
- Department of Agricultural Biotechnology, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Muhammad Shaban
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Sub-Campus Burewala 61010, Vehari, Pakistan
| | - Saman Arshad
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Sub-Campus Burewala 61010, Vehari, Pakistan
| | | | - Alyan Ashraf
- Pakistan Environmental Protection Agency (Pak-EPA), Ministry of Climate Change and Environmental Coordination, Islamabad, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Aftab Ahmad
- Biochemistry/Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al-Ain 15551, UAE
| |
Collapse
|
2
|
Wang Y, Xie D, Zheng X, Guo M, Qi Z, Yang P, Yu J, Zhou J. MAPK20-mediated ATG6 phosphorylation is critical for pollen development in Solanum lycopersicum L. HORTICULTURE RESEARCH 2024; 11:uhae069. [PMID: 38725462 PMCID: PMC11079483 DOI: 10.1093/hr/uhae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/25/2024] [Indexed: 05/12/2024]
Abstract
In flowering plants, male gametogenesis is tightly regulated by numerous genes. Mitogen-activated protein kinase (MAPK) plays a critical role in plant development and stress response, while its role in plant reproductive development is largely unclear. The present study demonstrated MAPK20 phosphorylation of ATG6 to mediate pollen development and germination in tomato (Solanum lycopersicum L.). MAPK20 was preferentially expressed in the stamen of tomato, and mutation of MAPK20 resulted in abnormal pollen grains and inhibited pollen viability and germination. MAPK20 interaction with ATG6 mediated the formation of autophagosomes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that ATG6 was phosphorylated by MAPK20 at Ser-265. Mutation of ATG6 in wild-type (WT) or in MAPK20 overexpression plants resulted in malformed and inviable pollens. Meanwhile, the number of autophagosomes in mapk20 and atg6 mutants was significantly lower than that of WT plants. Our results suggest that MAPK20-mediated ATG6 phosphorylation and autophagosome formation are critical for pollen development and germination.
Collapse
Affiliation(s)
- Yu Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Dongling Xie
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xuelian Zheng
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Mingyue Guo
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, Sanya 572000, China
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572000, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572000, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| |
Collapse
|
3
|
Huang L, Wen X, Jin L, Han H, Guo H. HOOKLESS1 acetylates AUTOPHAGY-RELATED PROTEIN18a to promote autophagy during nutrient starvation in Arabidopsis. THE PLANT CELL 2023; 36:136-157. [PMID: 37823521 PMCID: PMC10734606 DOI: 10.1093/plcell/koad252] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Acetylation is an important posttranslational modification (PTM) that regulates almost all core processes of autophagy in yeast and mammals. However, the role of protein acetylation in plant autophagy and the underlying regulatory mechanisms remain unclear. Here, we show the essential role of the putative acetyltransferase HOOKLESS1 (HLS1) in acetylation of the autophagy-related protein ATG18a, a key autophagy component that regulates autophagosome formation in Arabidopsis (Arabidopsis thaliana). Loss of HLS1 function suppressed starvation-induced autophagy and increased plant susceptibility to nutrient deprivation. We discovered that HLS1 physically interacts with and directly acetylates ATG18a both in vitro and in vivo. In contrast, mutating putative active sites in HLS1 inhibited ATG18a acetylation and suppressed autophagy upon nutrient deprivation. Accordingly, overexpression of ATG18a mutant variants with lower acetylation levels inhibited the binding activity of ATG18a to PtdIns(3)P and autophagosome formation under starvation conditions. Moreover, HLS1-modulated autophagy was uncoupled from its function in hook development. Taken together, these findings shed light on a key regulator of autophagy and further elucidate the importance of PTMs in modulating autophagy in plants.
Collapse
Affiliation(s)
- Li Huang
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xing Wen
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Lian Jin
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Huihui Han
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| |
Collapse
|
4
|
Zhang B, Huang S, Meng Y, Chen W. Gold nanoparticles (AuNPs) can rapidly deliver artificial microRNA (AmiRNA)-ATG6 to silence ATG6 expression in Arabidopsis. PLANT CELL REPORTS 2023:10.1007/s00299-023-03026-5. [PMID: 37160448 DOI: 10.1007/s00299-023-03026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/29/2023] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE We establish a fast and efficient transient silencing system that facilitates functional studies of some genes, whose knockout leads to plant lethality. In plants, the generation of loss-of-function mutants is crucial for studying gene function. Artificial microRNA (AmiRNA) technology is a more targeted and effective tool for gene silencing. Gold nanoparticles (AuNPs) can bind nucleic acids and deliver them into animal cells. Here, AuNPs are used in combination with AmiRNA technology in plants. We found that AmiRNA-autophagy-related proteins (ATG6) can be delivered to cells by AuNPs to achieve the effect of ATG6 silencing. It is worth noting that on the 10th day there is still a silencing effect. Similar to the atg5 lines, silencing of ATG6 significantly reduced plant resistance to Pseudomonas syringae pv.maculicola (Psm) ES4326/AvrRpt2. Interestingly, ATG6 silencing and ATG5 mutation in NPR1-GFP (nonexpressor of pathogenesis-related genes) lines significantly reduced plant resistance to Psm ES4326/AvrRpt2, suggesting that autophagy is also involved in NPR1-regulated plant immune responses. In summary, we establish a fast and efficient transient silencing system that facilitates functional studies of some genes, whose knockout leads to plant lethality.
Collapse
Affiliation(s)
- Baihong Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Shuqin Huang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yixuan Meng
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
5
|
Autophagy in the Lifetime of Plants: From Seed to Seed. Int J Mol Sci 2022; 23:ijms231911410. [PMID: 36232711 PMCID: PMC9570326 DOI: 10.3390/ijms231911410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy is a highly conserved self-degradation mechanism in eukaryotes. Excess or harmful intracellular content can be encapsulated by double-membrane autophagic vacuoles and transferred to vacuoles for degradation in plants. Current research shows three types of autophagy in plants, with macroautophagy being the most important autophagic degradation pathway. Until now, more than 40 autophagy-related (ATG) proteins have been identified in plants that are involved in macroautophagy, and these proteins play an important role in plant growth regulation and stress responses. In this review, we mainly introduce the research progress of autophagy in plant vegetative growth (roots and leaves), reproductive growth (pollen), and resistance to biotic (viruses, bacteria, and fungi) and abiotic stresses (nutrients, drought, salt, cold, and heat stress), and we discuss the application direction of plant autophagy in the future.
Collapse
|
6
|
Zhou X, Zhao P, Sun MX. Autophagy in sexual plant reproduction: new insights. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7658-7667. [PMID: 34338297 DOI: 10.1093/jxb/erab366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is a mechanism by which damaged or unwanted cells are degraded and their constituents recycled. Over the past decades, research focused on autophagy has expanded from yeast to mammals and plants, and the core machinery regulating autophagy appears to be conserved. In plants, autophagy has essential roles in responses to stressful conditions and also contributes to normal development, especially in the context of reproduction. Here, based on recent efforts to understand the roles and molecular mechanisms underlying autophagy, we highlight the specific roles of autophagy in plant reproduction and provide new insights for further studies.
Collapse
Affiliation(s)
- Xuemei Zhou
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Engineering Research Centre for the Protection and Utilization of Bioresource in Ethnic Area of Southern China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Yang Y, Xiang Y, Niu Y. An Overview of the Molecular Mechanisms and Functions of Autophagic Pathways in Plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1977527. [PMID: 34617497 PMCID: PMC9208794 DOI: 10.1080/15592324.2021.1977527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is an evolutionarily conserved pathway for the degradation of damaged or toxic components. Under normal conditions, autophagy maintains cellular homeostasis. It can be triggered by senescence and various stresses. In the process of autophagy, autophagy-related (ATG) proteins not only function as central signal regulators but also participate in the development of complex survival mechanisms when plants suffer from adverse environments. Therefore, ATGs play significant roles in metabolism, development and stress tolerance. In the past decade, both the molecular mechanisms of autophagy and a large number of components involved in the assembly of autophagic vesicles have been identified. In recent studies, an increasing number of components, mechanisms, and receptors have appeared in the autophagy pathway. In this paper, we mainly review the recent progress of research on the molecular mechanisms of plant autophagy, as well as its function under biotic stress and abiotic stress.
Collapse
Affiliation(s)
- Yang Yang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yun Xiang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yue Niu
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Autophagy in Plant Abiotic Stress Management. Int J Mol Sci 2021; 22:ijms22084075. [PMID: 33920817 PMCID: PMC8071135 DOI: 10.3390/ijms22084075] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Plants can be considered an open system. Throughout their life cycle, plants need to exchange material, energy and information with the outside world. To improve their survival and complete their life cycle, plants have developed sophisticated mechanisms to maintain cellular homeostasis during development and in response to environmental changes. Autophagy is an evolutionarily conserved self-degradative process that occurs ubiquitously in all eukaryotic cells and plays many physiological roles in maintaining cellular homeostasis. In recent years, an increasing number of studies have shown that autophagy can be induced not only by starvation but also as a cellular response to various abiotic stresses, including oxidative, salt, drought, cold and heat stresses. This review focuses mainly on the role of autophagy in plant abiotic stress management.
Collapse
|
9
|
Qi H, Xia FN, Xiao S. Autophagy in plants: Physiological roles and post-translational regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:161-179. [PMID: 32324339 DOI: 10.1111/jipb.12941] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/22/2020] [Indexed: 05/20/2023]
Abstract
In eukaryotes, autophagy helps maintain cellular homeostasis by degrading and recycling cytoplasmic materials via a tightly regulated pathway. Over the past few decades, significant progress has been made towards understanding the physiological functions and molecular regulation of autophagy in plant cells. Increasing evidence indicates that autophagy is essential for plant responses to several developmental and environmental cues, functioning in diverse processes such as senescence, male fertility, root meristem maintenance, responses to nutrient starvation, and biotic and abiotic stress. Recent studies have demonstrated that, similar to nonplant systems, the modulation of core proteins in the plant autophagy machinery by posttranslational modifications such as phosphorylation, ubiquitination, lipidation, S-sulfhydration, S-nitrosylation, and acetylation is widely involved in the initiation and progression of autophagy. Here, we provide an overview of the physiological roles and posttranslational regulation of autophagy in plants.
Collapse
Affiliation(s)
- Hua Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
10
|
Adhikari PB, Liu X, Wu X, Zhu S, Kasahara RD. Fertilization in flowering plants: an odyssey of sperm cell delivery. PLANT MOLECULAR BIOLOGY 2020; 103:9-32. [PMID: 32124177 DOI: 10.1007/s11103-020-00987-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/26/2020] [Indexed: 05/22/2023]
Abstract
In light of the available discoveries in the field, this review manuscript discusses on plant reproduction mechanism and molecular players involved in the process. Sperm cells in angiosperms are immotile and are physically distant to the female gametophytes (FG). To secure the production of the next generation, plants have devised a clever approach by which the two sperm cells in each pollen are safely delivered to the female gametophyte where two fertilization events occur (by each sperm cell fertilizing an egg cell and central cell) to give rise to embryo and endosperm. Each of the successfully fertilized ovules later develops into a seed. Sets of macromolecules play roles in pollen tube (PT) guidance, from the stigma, through the transmitting tract and funiculus to the micropylar end of the ovule. Other sets of genetic players are involved in PT reception and in its rupture after it enters the ovule, and yet other sets of genes function in gametic fusion. Angiosperms have come long way from primitive reproductive structure development to today's sophisticated, diverse, and in most cases flamboyant organ. In this review, we will be discussing on the intricate yet complex molecular mechanism of double fertilization and how it might have been shaped by the evolutionary forces focusing particularly on the model plant Arabidopsis.
Collapse
Affiliation(s)
- Prakash B Adhikari
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shaowei Zhu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ryushiro D Kasahara
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
11
|
Li S, Yan H, Mei WM, Tse YC, Wang H. Boosting autophagy in sexual reproduction: a plant perspective. THE NEW PHYTOLOGIST 2020; 226:679-689. [PMID: 31917864 DOI: 10.1111/nph.16414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
The key process of sexual reproduction is the successful fusion of the sperm and egg cell. Distinct from dynamic and flagellated animal sperm cells, higher flowering plant sperm cells are immotile. Therefore, plants have evolved a novel reproductive system to achieve fertilization and generate progenies. Plant sexual reproduction consists of multiple steps, mainly including gametophyte development, pollen-pistil recognition, pollen germination, double fertilization and postfertilization. During reproduction, active production, consumption and recycling of cellular components and energy are critically required to achieve fertilization. However, the underlying machinery of cellular degradation and turnover remains largely unexplored. Autophagy, the major catabolic pathway in eukaryotic cells, participates in regulating multiple aspects of plant activities, including abiotic and biotic stress resistance, pathogen response, senescence, nutrient remobilization and plant development. Nevertheless, a key unanswered question is how autophagy regulates plant fertilization and reproduction. Here, we focus on comparing and contrasting autophagy in several key reproductive processes of plant and animal systems to feature important distinctions and highlight future research directions of autophagy in angiosperm reproduction. We further discuss the potential crosstalk between autophagy and programmed cell death, which are often considered as two disconnected events in plant sexual reproduction.
Collapse
Affiliation(s)
- Shanshan Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - He Yan
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wei-Ming Mei
- Outpatient Department of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and Department of Biology, Southern University of Science and Technology, Shenzhen, 518005, China
| | - Hao Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
12
|
Norizuki T, Minamino N, Ueda T. Role of Autophagy in Male Reproductive Processes in Land Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:756. [PMID: 32625219 PMCID: PMC7311755 DOI: 10.3389/fpls.2020.00756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/12/2020] [Indexed: 05/02/2023]
Abstract
Autophagy is a highly conserved system for degrading and recycling cytoplasmic components. The identification of autophagy-related (ATG) genes, required for autophagosome formation, has led to numerous studies using atg mutants. These studies have revealed the physiological significance of autophagy in various functions of diverse organisms. In land plants, autophagy is required for higher-order functions such as stress responses and development. Although defective autophagy does not result in any marked defect in the reproductive processes of Arabidopsis thaliana under laboratory conditions, several studies have shown that autophagy plays a pivotal role in male reproduction in several land plants. In this review, we aim to summarize information on the role of autophagy in male reproductive processes in land plants.
Collapse
Affiliation(s)
- Takuya Norizuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
- *Correspondence: Takashi Ueda,
| |
Collapse
|
13
|
Zeng Y, Li B, Lin Y, Jiang L. The interplay between endomembranes and autophagy in plants. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:14-22. [PMID: 31344498 DOI: 10.1016/j.pbi.2019.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Autophagosomes are unique double-membrane organelles that enclose a portion of intracellular components for lysosome/vacuole delivery to maintain cellular homeostasis in eukaryotic cells. Genetic screening has revealed the requirement of autophagy-related proteins for autophagosome formation, although the origin of the autophagosome membrane remains elusive. The endomembrane system is a series of membranous organelles maintained by dynamic membrane flow between various compartments. In plants, there is accumulating evidence pointing to a link between autophagy and the endomembrane system, in particular between the endoplasmic reticulum and autophagosome. Here, we highlight and discuss about recent findings on plant autophagosome formation. We also look into the functional roles of endomembrane machineries in regard to the autophagy pathway in plants.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Baiying Li
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Youshun Lin
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
14
|
Physiological Functions of Phosphoinositide-Modifying Enzymes and Their Interacting Proteins in Arabidopsis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30499079 DOI: 10.1007/5584_2018_295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The integrity of cellular membranes is maintained not only by structural phospholipids such as phosphatidylcholine and phosphatidylethanolamine, but also by regulatory phospholipids, phosphatidylinositol phosphates (phosphoinositides). Although phosphoinositides constitute minor membrane phospholipids, they exert a wide variety of regulatory functions in all eukaryotic cells. They act as key markers of membrane surfaces that determine the biological integrity of cellular compartments to recruit various phosphoinositide-binding proteins. This review focuses on recent progress on the significance of phosphoinositides, their modifying enzymes, and phosphoinositide-binding proteins in Arabidopsis.
Collapse
|
15
|
Yuan R, Lan J, Fang Y, Yu H, Zhang J, Huang J, Qin G. The Arabidopsis USL1 controls multiple aspects of development by affecting late endosome morphology. THE NEW PHYTOLOGIST 2018; 219:1388-1405. [PMID: 29897620 PMCID: PMC6099276 DOI: 10.1111/nph.15249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/21/2018] [Indexed: 05/07/2023]
Abstract
The polar transport of auxin controls many aspects of plant development. However, the molecular mechanisms underlying auxin tranport regulation remain to be further elucidated. We identified a mutant named as usl1 (unflattened and small leaves) in a genetic screen in Arabidopsis thaliana. The usl1 displayed multiple aspects of developmental defects in leaves, embryogenesis, cotyledons, silique phyllotaxy and lateral roots in addition to abnormal leaves. USL1 encodes a protein orthologous to the yeast vacuolar protein sorting (Vps) 38p and human UV RADIATION RESISTANCE-ASSOCIATED GENE (UVRAG). Cell biology, Co-IP/MS and yeast two-hybrid were used to identify the function of USL1. USL1 colocalizes at the subcellular level with VPS29, a key factor of the retromer complex that controls auxin transport. The morphology of the VPS29-associated late endosomes (LE) is altered from small dots in the wild-type to aberrant enlarged circles in the usl1 mutants. The usl1 mutant synergistically interacts with vps29. We also found that USL1 forms a complex with AtVPS30 and AtVPS34. We propose that USL1 controls multiple aspects of plant development by affecting late endosome morphology and by regulating the PIN1 polarity. Our findings provide a new layer of the understanding on the mechanisms of plant development regulation.
Collapse
Affiliation(s)
- Rongrong Yuan
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
- The Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Yuxing Fang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Jinzhe Zhang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Jiaying Huang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| |
Collapse
|
16
|
Zhuang X, Chung KP, Luo M, Jiang L. Autophagosome Biogenesis and the Endoplasmic Reticulum: A Plant Perspective. TRENDS IN PLANT SCIENCE 2018; 23:677-692. [PMID: 29929776 DOI: 10.1016/j.tplants.2018.05.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/19/2018] [Accepted: 05/01/2018] [Indexed: 05/20/2023]
Abstract
The autophagosome is a double-membrane compartment formed during autophagy that sequesters and delivers cargoes for their degradation or recycling into the vacuole. Analyses of the AuTophaGy-related (ATG) proteins have unveiled dynamic mechanisms for autophagosome biogenesis. Recent advances in plant autophagy research highlight a complex interplay between autophagosome biogenesis and the endoplasmic reticulum (ER): on the one hand ER serves as a membrane source for autophagosome initiation and a signaling platform for autophagy regulation; on the other hand ER turnover is connected to selective autophagy. We provide here an integrated view of ER-based autophagosome biogenesis in plants in comparison with the newest findings in yeast and mammals, with an emphasis on the hierarchy of the core ATG proteins, ATG9 trafficking, and ER-resident regulators in autophagy.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- Center for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; These authors contributed equally to this work.
| | - Kin Pan Chung
- Center for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Current address: Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1 14476, Potsdam-Golm, Germany; These authors contributed equally to this work
| | - Mengqian Luo
- Center for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Center for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
17
|
Liu F, Hu W, Vierstra RD. The Vacuolar Protein Sorting-38 Subunit of the Arabidopsis Phosphatidylinositol-3-Kinase Complex Plays Critical Roles in Autophagy, Endosome Sorting, and Gravitropism. FRONTIERS IN PLANT SCIENCE 2018; 9:781. [PMID: 29967628 PMCID: PMC6016017 DOI: 10.3389/fpls.2018.00781] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/23/2018] [Indexed: 05/02/2023]
Abstract
The family of phosphatidylinositols (PtdIns) plays essential roles in membrane identity and intracellular trafficking events. In animals and yeast, PtdIn-3-phosphate, which is particularly important for endosomal sorting, lysosomal/vacuolar transport and autophagy, is assembled by two conserved kinase complexes comprised of the catalytic VACUOLAR PROTEIN SORTING (VPS)-34 subunit, along with VPS15, AUTOPHAGY-RELATED (ATG)-6, and either ATG14 (complex I) or VPS38 (complex II). Here, we describe the Arabidopsis ortholog of VPS38 and show by interaction assays that it assembles into a tetrameric PtdIn-3 kinase complex II. Plants missing VPS38 are viable but have dampened pollen germination and heightened seed abortion, and display a dwarf rosette phenotype, with defects in leaf and vascular development and sucrose sensing. vps38 seeds accumulate irregular protein storage vesicles and suppress processing of storage proteins into their mature forms. Consistent with a role for PtdIn-3-phosphate in autophagy, vps38 mutants are hypersensitive to nitrogen and fixed-carbon starvation and show reduced autophagic transport of cargo into vacuoles. vps38 seedlings also have dampened root gravitropism, which is underpinned by aberrant vectoral auxin transport likely caused by defects in plasma membrane/endosome cycling of the PIN-FORMED family of auxin transporters necessary for asymmetric cell elongation. Collectively, this study places VPS38 and its class-III PtdIn-3 kinase complex at the nexus of numerous endosomal trafficking events important to plant growth and development.
Collapse
Affiliation(s)
- Fen Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Weiming Hu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Richard D. Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Richard D. Vierstra,
| |
Collapse
|
18
|
Ugalde JM, Rodriguez-Furlán C, Rycke RD, Norambuena L, Friml J, León G, Tejos R. Phosphatidylinositol 4-phosphate 5-kinases 1 and 2 are involved in the regulation of vacuole morphology during Arabidopsis thaliana pollen development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:10-19. [PMID: 27457979 DOI: 10.1016/j.plantsci.2016.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
The pollen grains arise after meiosis of pollen mother cells within the anthers. A series of complex structural changes follows, generating mature pollen grains capable of performing the double fertilization of the female megasporophyte. Several signaling molecules, including hormones and lipids, have been involved in the regulation and appropriate control of pollen development. Phosphatidylinositol 4-phophate 5-kinases (PIP5K), which catalyze the biosynthesis of the phosphoinositide PtdIns(4,5)P2, are important for tip polar growth of root hairs and pollen tubes, embryo development, vegetative plant growth, and responses to the environment. Here, we report a role of PIP5Ks during microgametogenesis. PIP5K1 and PIP5K2 are expressed during early stages of pollen development and their transcriptional activity respond to auxin in pollen grains. Early male gametophytic lethality to certain grade was observed in both pip5k1(-/-) and pip5k2(-/-) single mutants. The number of pip5k mutant alleles is directly related to the frequency of aborted pollen grains suggesting the two genes are involved in the same function. Indeed PIP5K1 and PIP5K2 are functionally redundant since homozygous double mutants did not render viable pollen grains. The loss of function of PIP5K1 and PIP5K2results in defects in vacuole morphology in pollen at the later stages and epidermal root cells. Our results show that PIP5K1, PIP5K2 and phosphoinositide signaling are important cues for early developmental stages and vacuole formation during microgametogenesis.
Collapse
Affiliation(s)
- José-Manuel Ugalde
- Laboratorio de Reproducción y Desarrollo de Plantas, Centro de Biotecnología Vegetal, Universidad Andrés Bello, 8370146 Santiago, Chile
| | - Cecilia Rodriguez-Furlán
- Centro de Biologia Molecular Vegetal, Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | - Riet De Rycke
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Lorena Norambuena
- Centro de Biologia Molecular Vegetal, Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Gabriel León
- Laboratorio de Reproducción y Desarrollo de Plantas, Centro de Biotecnología Vegetal, Universidad Andrés Bello, 8370146 Santiago, Chile
| | - Ricardo Tejos
- Centro de Biologia Molecular Vegetal, Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile; Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
19
|
Paul P, Röth S, Schleiff E. Importance of organellar proteins, protein translocation and vesicle transport routes for pollen development and function. PLANT REPRODUCTION 2016; 29:53-65. [PMID: 26874709 DOI: 10.1007/s00497-016-0274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/18/2016] [Indexed: 05/27/2023]
Abstract
Protein translocation. Cellular homeostasis strongly depends on proper distribution of proteins within cells and insertion of membrane proteins into the destined membranes. The latter is mediated by organellar protein translocation and the complex vesicle transport system. Considering the importance of protein transport machineries in general it is foreseen that these processes are essential for pollen function and development. However, the information available in this context is very scarce because of the current focus on deciphering the fundamental principles of protein transport at the molecular level. Here we review the significance of protein transport machineries for pollen development on the basis of pollen-specific organellar proteins as well as of genetic studies utilizing mutants of known organellar proteins. In many cases these mutants exhibit morphological alterations highlighting the requirement of efficient protein transport and translocation in pollen. Furthermore, expression patterns of genes coding for translocon subunits and vesicle transport factors in Arabidopsis thaliana are summarized. We conclude that with the exception of the translocation systems in plastids-the composition and significance of the individual transport systems are equally important in pollen as in other cell types. Apparently for plastids only a minimal translocon, composed of only few subunits, exists in the envelope membranes during maturation of pollen. However, only one of the various transport systems known from thylakoids seems to be required for the function of the "simple thylakoid system" existing in pollen plastids. In turn, the vesicle transport system is as complex as seen for other cell types as it is essential, e.g., for pollen tube formation.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany.
- Cluster of Excellence Frankfurt, Goethe University, 60438, Frankfurt Am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt Am Main, Germany.
| |
Collapse
|
20
|
The molecular mechanism of sporocyteless/nozzle in controlling Arabidopsis ovule development. Cell Res 2014; 25:121-34. [PMID: 25378179 PMCID: PMC4650584 DOI: 10.1038/cr.2014.145] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/09/2022] Open
Abstract
Ovules are essential for plant reproduction and develop into seeds after fertilization. Sporocyteless/nozzle (SPL/NZZ) has been known for more than 15 years as an essential factor for ovule development in Arabidopsis, but the biochemical nature of SPL function has remained unsolved. Here, we demonstrate that SPL functions as an adaptor-like transcriptional repressor. We show that SPL recruits topless/topless-related (TPL/TPR) co-repressors to inhibit the Cincinnata (CIN)-like Teosinte branched1/cycloidea/PCF (TCP) transcription factors. We reveal that SPL uses its EAR motif at the C-terminal end to recruit TPL/TPRs and its N-terminal part to bind and inhibit the TCPs. We demonstrate that either disruption of TPL/TPRs or overexpression of TCPs partially phenocopies the defects of megasporogenesis in spl. Moreover, disruption of TCPs causes phenotypes that resemble spl-D gain-of-function mutants. These results define the action mechanism for SPL, which along with TPL/TPRs controls ovule development by repressing the activities of key transcription factors. Our findings suggest that a similar gene repression strategy is employed by both plants and fungi to control sporogenesis.
Collapse
|
21
|
Tao Q, Guo D, Wei B, Zhang F, Pang C, Jiang H, Zhang J, Wei T, Gu H, Qu LJ, Qin G. The TIE1 transcriptional repressor links TCP transcription factors with TOPLESS/TOPLESS-RELATED corepressors and modulates leaf development in Arabidopsis. THE PLANT CELL 2013; 25:421-37. [PMID: 23444332 PMCID: PMC3608769 DOI: 10.1105/tpc.113.109223] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 05/18/2023]
Abstract
Leaf size and shape are mainly determined by coordinated cell division and differentiation in lamina. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors are key regulators of leaf development. However, the mechanisms that control TCP activities during leaf development are largely unknown. We identified the TCP Interactor containing EAR motif protein1 (TIE1), a novel transcriptional repressor, as a major modulator of TCP activities during leaf development. Overexpression of TIE1 leads to hyponastic and serrated leaves, whereas disruption of TIE1 causes epinastic leaves. TIE1 is expressed in young leaves and encodes a transcriptional repressor containing a C-terminal EAR motif, which mediates interactions with the TOPLESS (TPL)/TOPLESS-RELATED (TPR) corepressors. In addition, TIE1 physically interacts with CIN-like TCPs. We propose that TIE1 regulates leaf size and morphology by inhibiting the activities of TCPs through recruiting the TPL/TPR corepressors to form a tertiary complex at early stages of leaf development.
Collapse
Affiliation(s)
- Qing Tao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Dongshu Guo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Baoye Wei
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Fan Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Changxu Pang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Hao Jiang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Jinzhe Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Tong Wei
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Hongya Gu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- The National Plant Gene Research Center, Beijing 100101, People’s Republic of China
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- The National Plant Gene Research Center, Beijing 100101, People’s Republic of China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- Address correspondence to
| |
Collapse
|
22
|
Luo G, Gu H, Liu J, Qu LJ. Four closely-related RING-type E3 ligases, APD1-4, are involved in pollen mitosis II regulation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:814-27. [PMID: 22897245 DOI: 10.1111/j.1744-7909.2012.01152.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ubiquitination of proteins is one of the critical regulatory mechanisms in eukaryotes. In higher plants, protein ubiquitination plays an essential role in many biological processes, including hormone signaling, photomorphogenesis, and pathogen defense. However, the roles of protein ubiquitination in the reproductive process are not clear. In this study, we identified four plant-specific RING-finger genes designated Aberrant Pollen Development 1 (APD1) to APD4, as regulators of pollen mitosis II (PMII) in Arabidopsis thaliana (L.). The apd1 apd2 double mutant showed a significantly increased percentage of bicellular-like pollen at the mature pollen stage. Further downregulation of the APD3 and APD4 transcripts in apd1 apd2 by RNA interference (RNAi) resulted in more severe abnormal bicellular-like pollen phenotypes than in apd1 apd2, suggesting that cell division was defective in male gametogenesis. All of the four genes were expressed in multiple stages at different levels during male gametophyte development. Confocal analysis using green florescence fusion proteins (GFP) GFP-APD1 and GFP-APD2 showed that APDs are associated with intracellular membranes. Furthermore, APD2 had E2-dependent E3 ligase activity in vitro, and five APD2-interacting proteins were identified. Our results suggest that these four genes may be involved, redundantly, in regulating the PMII process during male gametogenesis.
Collapse
Affiliation(s)
- Guo Luo
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking-Tsinghua Center of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|