1
|
Dedigama-Arachchige PM, Acharige NPN, Zhang X, Bremer HJ, Yi Z, Pflum MKH. Identification of PP1c-PPP1R12A Substrates Using Kinase-Catalyzed Biotinylation to Identify Phosphatase Substrates. ACS OMEGA 2023; 8:35628-35637. [PMID: 37810667 PMCID: PMC10552495 DOI: 10.1021/acsomega.3c01944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/21/2023] [Indexed: 10/10/2023]
Abstract
Protein phosphatase 1 regulatory subunit 12A (PPP1R12A) interacts with the catalytic subunit of protein phosphatase 1 (PP1c) to form the myosin phosphatase complex. In addition to a well-documented role in muscle contraction, the PP1c-PPP1R12A complex is associated with cytoskeleton organization, cell migration and adhesion, and insulin signaling. Despite the variety of biological functions, only a few substrates of the PP1c-PPP1R12A complex are characterized, which limit a full understanding of PP1c-PPP1R12A activities in muscle contraction and cytoskeleton regulation. Here, the chemoproteomics method Kinase-catalyzed Biotinylation to Identify Phosphatase Substrates (K-BIPS) was used to identify substrates of the PP1c-PPP1R12A complex in L6 skeletal muscle cells. K-BIPS enriched 136 candidate substrates with 14 high confidence hits. One high confidence hit, AKT1 kinase, was validated as a novel PP1c-PPP1R12A substrate. Given the previously documented role of AKT1 in PPP1R12A phosphorylation and cytoskeleton organization, the data suggest that PP1c-PPP1R12A regulates its own phosphatase activity through an AKT1-dependent feedback mechanism to influence cytoskeletal arrangement in muscle cells.
Collapse
Affiliation(s)
| | - Nuwan P N Acharige
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit 48202-3489, Michigan, United States
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit 48201, Michigan, United States
| | - Hannah J Bremer
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit 48202-3489, Michigan, United States
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit 48201, Michigan, United States
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit 48202-3489, Michigan, United States
| |
Collapse
|
2
|
Cheng J, Li G, Wang W, Stovall DB, Sui G, Li D. Circular RNAs with protein-coding ability in oncogenesis. Biochim Biophys Acta Rev Cancer 2023; 1878:188909. [PMID: 37172651 DOI: 10.1016/j.bbcan.2023.188909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
As ubiquitously expressed transcripts in eukaryotes, circular RNAs (circRNAs) are covalently closed and lack a 5'-cap and 3'-polyadenylation (poly (A)) tail. Initially, circRNAs were considered non-coding RNA (ncRNA), and their roles as sponging molecules to adsorb microRNAs have been extensively reported. However, in recent years, accumulating evidence has demonstrated that circRNAs could encode functional polypeptides through the initiation of translation mediated by internal ribosomal entry sites (IRESs) or N6-methyladenosine (m6A). In this review, we collectively discuss the biogenesis, cognate mRNA products, regulatory mechanisms, aberrant expression and biological phenotypes or clinical relevance of all currently reported, cancer-relevant protein-coding circRNAs. Overall, we provide a comprehensive overview of circRNA-encoded proteins and their physiological and pathological functions.
Collapse
Affiliation(s)
- Jiahui Cheng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guangyue Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wenmeng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC 29733, United States
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
3
|
Liu C, Shi Y, Li J, Liu X, Xiahou Z, Tan Z, Chen X, Li J. O-GlcNAcylation of myosin phosphatase targeting subunit 1 (MYPT1) dictates timely disjunction of centrosomes. J Biol Chem 2020; 295:7341-7349. [PMID: 32295844 PMCID: PMC7247298 DOI: 10.1074/jbc.ra119.012401] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/01/2020] [Indexed: 01/10/2023] Open
Abstract
The role of O-linked N-acetylglucosamine (O-GlcNAc) modification in the cell cycle has been enigmatic. Previously, both O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) disruptions have been shown to derail the mitotic centrosome numbers, suggesting that mitotic O-GlcNAc oscillation needs to be in concert with mitotic progression to account for centrosome integrity. Here, using both chemical approaches and biological assays with HeLa cells, we attempted to address the underlying molecular mechanism and observed that incubation of the cells with the OGA inhibitor Thiamet-G strikingly elevates centrosomal distances, suggestive of premature centrosome disjunction. These aberrations could be overcome by inhibiting Polo-like kinase 1 (PLK1), a mitotic master kinase. PLK1 inactivation is modulated by the myosin phosphatase targeting subunit 1 (MYPT1)-protein phosphatase 1cβ (PP1cβ) complex. Interestingly, MYPT1 has been shown to be abundantly O-GlcNAcylated, and the modified residues have been detected in a recent O-GlcNAc-profiling screen utilizing chemoenzymatic labeling and bioorthogonal conjugation. We demonstrate here that MYPT1 is O-GlcNAcylated at Thr-577, Ser-585, Ser-589, and Ser-601, which antagonizes CDK1-dependent phosphorylation at Ser-473 and attenuates the association between MYPT1 and PLK1, thereby promoting PLK1 activity. We conclude that under high O-GlcNAc levels, PLK1 is untimely activated, conducive to inopportune centrosome separation and disruption of the cell cycle. We propose that too much O-GlcNAc is equally deleterious as too little O-GlcNAc, and a fine balance between the OGT/OGA duo is indispensable for successful mitotic divisions.
Collapse
Affiliation(s)
- Caifei Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yingxin Shi
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jie Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xuewen Liu
- Department of Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410006, China; Key Laboratory of Translational Radiation Oncology, Hunan 410006, China
| | - Zhikai Xiahou
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhongping Tan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
4
|
Nai S, Shi Y, Ru H, Ding Y, Geng Q, Li Z, Dong MQ, Xu X, Li J. Chk2-dependent phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) regulates centrosome maturation. Cell Cycle 2019; 18:2651-2659. [PMID: 31416392 PMCID: PMC6773232 DOI: 10.1080/15384101.2019.1654795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/17/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
Checkpoint kinase 2 (Chk2) is a pivotal effector kinase in the DNA damage response, with an emerging role in mitotic chromosome segregation. In this study, we show that Chk2 interacts with myosin phosphatase targeting subunit 1 (MYPT1), the targeting subunit of protein phosphatase 1cβ (PP1cβ). Previous studies have shown that MYPT1 is phosphorylated by CDK1 at S473 during mitosis, and subsequently docks to the polo-binding domain of PLK1 and dephosphorylates PLK1. Herein we present data that Chk2 phosphorylates MYPT1 at S507 in vitro and in vivo, which antagonizes pS473. Chk2 inhibition results in failure of γ-tubulin recruitment to the centrosomes, phenocopying Plk1 inhibition defects. These aberrancies were also observed in the MYPT1-S507A stable transfectants, suggesting that Chk2 exerts its effect on centrosomes via MYPT1. Collectively, we have identified a Chk2-MYPT1-PLK1 axis in regulating centrosome maturation. Abbreviations: Chk2: checkpoint kinase 2; MYPT1: myosin phosphatase targeting subunit 1; PP1cβ: protein phosphatase 1c β; Noc: nocodazole; IP: immunoprecipitation; IB: immunoblotting; LC-MS/MS: liquid chromatography-tandem mass spectrometry; Chk2: checkpoint kinase 2; KD: kinase domain; WT: wild type; Ub: ubiquitin; DAPI: 4',6-diamidino-2-phenylindole; IF: Immunofluorescence; IR: ionizing radiation; siCHK2: siRNA targeting CHK2.
Collapse
Affiliation(s)
- Shanshan Nai
- Beijing Key Laboratory of DNA damage Response, College of Life Sciences, Capital Normal University, Beijing, China
| | - Yingxin Shi
- Beijing Key Laboratory of DNA damage Response, College of Life Sciences, Capital Normal University, Beijing, China
| | - Huanwei Ru
- Beijing Key Laboratory of DNA damage Response, College of Life Sciences, Capital Normal University, Beijing, China
| | - Yuehe Ding
- National Institute of Biological Sciences, Beijing, China
| | - Qizhi Geng
- Beijing Key Laboratory of DNA damage Response, College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhe Li
- Beijing Key Laboratory of DNA damage Response, College of Life Sciences, Capital Normal University, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA damage Response, College of Life Sciences, Capital Normal University, Beijing, China
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, China
| | - Jing Li
- Beijing Key Laboratory of DNA damage Response, College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
5
|
Kiss A, Erdődi F, Lontay B. Myosin phosphatase: Unexpected functions of a long-known enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:2-15. [PMID: 30076859 DOI: 10.1016/j.bbamcr.2018.07.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 01/08/2023]
Abstract
Myosin phosphatase (MP) holoenzyme is a Ser/Thr specific enzyme, which is the member of protein phosphatase type 1 (PP1) family and composed of a PP1 catalytic subunit (PP1c/PPP1CB) and a myosin phosphatase targeting subunit (MYPT1/PPP1R12A). PP1c is required for the catalytic activity of the holoenzyme, while MYPT1 regulates MP through targeting the holoenzyme to its substrates. Above the well-characterized function of MP, as the major regulator of smooth muscle contractility mediating the dephosphorylation of 20 kDa myosin light chain, accumulating data support its role in other, non-contractile functions. In this review, we summarize the scaffold function of MP holoenzyme and its roles in processes such as cell cycle, development, gene expression regulation and neurotransmitter release. In particular, we highlight novel interacting proteins of MYPT1 and pathophysiological functions of MP relevant to tumorigenesis, insulin resistance and neurodegenerative disorders. This article is part of a Special Issue entitled: Protein Phosphatases as Critical Regulators for Cellular Homeostasis edited by Prof. Peter Ruvolo and Dr. Veerle Janssens.
Collapse
Affiliation(s)
- Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
6
|
Hu X, Li Z, Ding Y, Geng Q, Xiahou Z, Ru H, Dong MQ, Xu X, Li J. Chk1 modulates the interaction between myosin phosphatase targeting protein 1 (MYPT1) and protein phosphatase 1cβ (PP1cβ). Cell Cycle 2018; 17:421-427. [PMID: 29262732 PMCID: PMC5927650 DOI: 10.1080/15384101.2017.1418235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is an instrumental kinase that modulates many aspects of the cell cycle. Previous investigations have indicated that Plk1 is a target of the DNA damage response, and Plk1 inhibition is dependent on ATM/ATR and Chk1. But the exact mechanism remains elusive. In a proteomic screen to identify Chk1-interacting proteins, we found that myosin phosphatase targeting protein 1 (MYPT1) was present in the immunocomplex. MYPT1 is phosphorylated by CDK1, thus recruiting protein phosphatase 1β (PP1cβ) to dephosphorylate and inactivate Plk1. Here we identified that Chk1 directly interacts with MYPT1 and preferentially phosphorylates MYPT1 at Ser20, which is essential for MYPT1-PP1cβ interaction and subsequent Plk1 dephosphorylation. Phosphorylation of Ser20 is abolished during mitotic damage when Chk1 is inhibited. The degradation of MYPT1 is also regulated by Chk1 phosphorylation. Our results thus unveil the underlying machinery that attenuates Plk1 activity during mitotic damage through Chk1-induced phosphorylation of MYPT1.
Collapse
Affiliation(s)
- Xiaomei Hu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhe Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuehe Ding
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qizhi Geng
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhikai Xiahou
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Huanwei Ru
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
7
|
Li X, Nai S, Ding Y, Geng Q, Zhu B, Yu K, Zhu WG, Dong MQ, Su XD, Xu X, Li J. Polo-like kinase 1 (PLK1)-dependent phosphorylation of methylenetetrahydrofolate reductase (MTHFR) regulates replication via histone methylation. Cell Cycle 2017; 16:1933-1942. [PMID: 28820331 PMCID: PMC5638376 DOI: 10.1080/15384101.2017.1363942] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/30/2017] [Indexed: 01/12/2023] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme regulating the folate cycle and its genetic variations have been associated with various human diseases. Previously we identified that MTHFR is phosphorylated by cyclin-dependent kinase 1 (CDK1) at T34 and MTHFR underlies heterochromatin maintenance marked by H3K9me3 levels. Herein we demonstrate that pT34 creates a binding motif that docks MTHFR to the polo-binding domain (PBD) of polo-like kinase 1 (PLK1), a fundamental kinase that orchestrates many cell cycle events. We show that PLK1 phosphorylates MTHFR at T549 in vitro and in vivo. Further, we uncovered a role of MTHFR in replication. First, MTHFR depletion increased the fraction of cells in S phase. This defect could not be rescued by siRNA resistant plasmids harboring T549A, but could be restored by overproduction of Suv4-20H2, the H4K20 methyltransferase. Moreover, siMTHFR attenuated H4K20me3 levels, which could be rescued by Suv4-20H2 overproduction. More importantly, we also investigated MTHFR-E429A, the protein product of an MTHFR single nucleotide variant. MTHFR-E429A overexpression also increased S phase cells and decreased H4K20me3 levels, and it is linked to a poor glioma prognosis in the Chinese population. Collectively, we have unveiled a vital role of PLK1-dependent phosphorylation of MTHFR in replication via histone methylation, and implicate folate metabolism with glioma.
Collapse
Affiliation(s)
- Xueyan Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Shanshan Nai
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Yuehe Ding
- National Institute of Biological Sciences, Beijing, China
| | - Qizhi Geng
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Bingtao Zhu
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Kai Yu
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Xiao-Dong Su
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
8
|
Modeling osteosarcoma progression by measuring the connectivity dynamics using an inference of multiple differential modules algorithm. Mol Med Rep 2017; 16:1047-1054. [PMID: 28586048 PMCID: PMC5562023 DOI: 10.3892/mmr.2017.6703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/08/2017] [Indexed: 02/02/2023] Open
Abstract
Understanding the dynamic changes in connectivity of molecular pathways is important for determining disease prognosis. Thus, the current study used an inference of multiple differential modules (iMDM) algorithm to identify the connectivity changes of sub-network to predict the progression of osteosarcoma (OS) based on the microarray data of OS at four Huvos grades. Initially, multiple differential co-expression networks (M-DCNs) were constructed, and weight values were assigned for each edge, followed by detection of seed genes in M-DCNs according to the topological properties. Using these seed gene as a start, an iMDM algorithm was utilized to identify the multiple candidate modules. The statistical significance was determined to select multiple differential modules (M-DMs) based on the null score distribution of candidate modules generated using randomized networks. Additionally, the significance of Module Connectivity Dynamic Score (MCDS) to quantify the dynamic change of M-DMs connectivity. Further, DAVID was employed for KEGG pathway enrichment analysis of genes in dynamic modules. In addition to the basal condition, four conditions, OS grade 1–4, were also included (M=4). In total, 4 DCNs were constructed, and each of them included 2,138 edges and 272 nodes. A total of 13 genes were identified and termed ‘seed genes’ based on the z-score distribution of 272 nodes in DCNs. Following the module search, module refinement and statistical significance analysis, a total of four 4-DMs (modules 1, 2, 3 and 4) were identified. Only one significant 4-DM (module 3 in the DCNs of grade 1, 2, 3 and 4 OS) with dynamic changes was detected when the MCDS of real 4-DMs were compared to a null distribution of MCDS of random 4-DMs. Notably, the genes of the dynamic module (module 3) were enriched in two significant pathway terms, ubiquitin-mediated proteolysis and ribosome. The seed genes with the highest degrees included protein phosphatase 1 regulatory subunit 12A (PPP1R12A), UTP3, small subunit processome component homolog (UTP3), prostaglandin E synthase 3 (PTGES3). Thus, pathway functions (ubiquitin-mediated proteolysis and ribosome) and several seed genes (PPP1R12A, UTP3, and PTGES3) in the dynamic module 3 may be associated with the progression of OS and may serve as potential therapeutic targets in OS.
Collapse
|
9
|
PPP1R12A Copy Number Is Associated with Clinical Outcomes of Stage III CRC Receiving Oxaliplatin-Based Chemotherapy. Mediators Inflamm 2015; 2015:417184. [PMID: 26113782 PMCID: PMC4465766 DOI: 10.1155/2015/417184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
AIM To investigate the correlation between PPP1R12A gene copy number and clinical outcomes of oxaliplatin-based regimen in stage III colorectal cancer (CRC). METHODS A total of 139 paraffin-embedded tissue samples of stage III CRC patients who received oxaliplatin-based treatment after radical surgery were recruited. Genomic DNA was extracted and purified from paraffin-embedded sections. Quantitative PCR methods were used to detect the relative copy number (RCN) of PPP1R12A. RESULTS Statistical analysis demonstrated that low PPP1R12A RCN was associated with poor RFS (HR = 2.186, 95% CI: 1.293-3.696; P = 0.003) and OS (HR = 2.782, 95% CI: 1.531-5.052; P < 0.001). Additionally, when patients were stratified according to subgroups of stage III and tumor location, poor RFS and OS were also observed in the low PPP1R12A RCN group with significance (RFS: IIIB HR = 2.870, P < 0.001; colon HR = 1.910, P = 0.037; OS: IIIB HR = 3.527, P < 0.001; IIIC HR = 2.662, P = 0.049; rectum HR = 4.229, P = 0.002). CONCLUSION Our findings suggest the copy number of PPP1R12A can independently predict recurrence and overall survival of stage III colorectal cancer patients receiving oxaliplatin-based chemotherapy.
Collapse
|