1
|
Lv L, Yang C, Zhang X, Chen T, Luo M, Yu G, Chen Q. Autophagy-related protein PlATG2 regulates the vegetative growth, sporangial cleavage, autophagosome formation, and pathogenicity of peronophythora litchii. Virulence 2024; 15:2322183. [PMID: 38438325 PMCID: PMC10913709 DOI: 10.1080/21505594.2024.2322183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/18/2024] [Indexed: 03/06/2024] Open
Abstract
Autophagy is an intracellular degradation process that is important for the development and pathogenicity of phytopathogenic fungi and for the defence response of plants. However, the molecular mechanisms underlying autophagy in the pathogenicity of the plant pathogenic oomycete Peronophythora litchii, the causal agent of litchi downy blight, have not been well characterized. In this study, the autophagy-related protein ATG2 homolog, PlATG2, was identified and characterized using a CRISPR/Cas9-mediated gene replacement strategy in P. litchii. A monodansylcadaverine (MDC) staining assay indicated that deletion of PlATG2 abolished autophagosome formation. Infection assays demonstrated that ΔPlatg2 mutants showed significantly impaired pathogenicity in litchi leaves and fruits. Further studies have revealed that PlATG2 participates in radial growth and asexual/sexual development of P. litchii. Moreover, zoospore release and cytoplasmic cleavage of sporangia were considerably lower in the ΔPlatg2 mutants than in the wild-type strain by FM4-64 staining. Taken together, our results revealed that PlATG2 plays a pivotal role in vegetative growth, sporangia and oospore production, zoospore release, sporangial cleavage, and plant infection of P. litchii. This study advances our understanding of the pathogenicity mechanisms of the phytopathogenic oomycete P. litchii and is conducive to the development of effective control strategies.
Collapse
Affiliation(s)
- Lin Lv
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chengdong Yang
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xue Zhang
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Taixu Chen
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Manfei Luo
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Ge Yu
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Qinghe Chen
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
2
|
Ru B, Hao X, Li W, Peng Q, Miao J, Liu X. A Novel FYVE Domain-Containing Protein Kinase, PsZFPK1, Plays a Critical Role in Vegetative Growth, Sporangium Formation, Oospore Production, and Virulence in Phytophthora sojae. J Fungi (Basel) 2023; 9:709. [PMID: 37504698 PMCID: PMC10381902 DOI: 10.3390/jof9070709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Proteins containing both FYVE and serine/threonine kinase catalytic (STKc) domains are exclusive to protists. However, the biological function of these proteins in oomycetes has rarely been reported. In the Phytophthora sojae genome database, we identified five proteins containing FYVE and STKc domains, which we named PsZFPK1, PsZFPK2, PsZFPK3, PsZFPK4, and PsZFPK5. In this study, we characterized the biological function of PsZFPK1 using a CRISPR/Cas9-mediated gene replacement system. Compared with the wild-type strain, P6497, the PsZFPK1-knockout mutants exhibited significantly reduced growth on a nutrient-rich V8 medium, while a more pronounced defect was observed on a nutrient-poor Plich medium. The PsZFPK1-knockout mutants also showed a significant increase in sporangium production. Furthermore, PsZFPK1 was found to be essential for oospore production and complete virulence but dispensable for the stress response in P. sojae. The N-terminal region, FYVE and STKc domains, and T602 phosphorylation site were found to be vital for the function of PsZFPK1. Conversely, these domains were not required for the localization of PsZFPK1 protein in the cytoplasm. Our results demonstrate that PsZFPK1 plays a critical role in vegetative growth, sporangium formation, oospore production, and virulence in P. sojae.
Collapse
Affiliation(s)
- Binglu Ru
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Xinchang Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Wenhao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Qin Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| |
Collapse
|
3
|
Nekrakalaya B, Arefian M, Kotimoole CN, Krishna RM, Palliyath GK, Najar MA, Behera SK, Kasaragod S, Santhappan P, Hegde V, Prasad TSK. Towards Phytopathogen Diagnostics? Coconut Bud Rot Pathogen Phytophthora palmivora Mycelial Proteome Analysis Informs Genome Annotation. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:189-203. [PMID: 35353641 DOI: 10.1089/omi.2021.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Planetary agriculture stands to benefit immensely from phytopathogen diagnostics, which would enable early detection of pathogens with harmful effects on crops. For example, Phytophthora palmivora is one of the most destructive phytopathogens affecting many economically important tropical crops such as coconut. P. palmivora causes diseases in over 200 host plants, and notably, the bud rot disease in coconut and oil palm, which is often lethal because it is usually detected at advanced stages of infection. Limited availability of large-scale omics datasets for P. palmivora is an important barrier for progress toward phytopathogen diagnostics. We report here the mycelial proteome of P. palmivora using high-resolution mass spectrometry analysis. We identified 8073 proteins in the mycelium. Gene Ontology-based functional classification of detected proteins revealed 4884, 4981, and 3044 proteins, respectively, with roles in biological processes, molecular functions, and cellular components. Proteins such as P-loop, NTPase, and WD40 domains with key roles in signal transduction pathways were identified. KEGG pathway analysis annotated 2467 proteins to various signaling pathways, such as phosphatidylinositol, Ca2+, and mitogen-activated protein kinase, and autophagy and cell cycle. These molecular substrates might possess vital roles in filamentous growth, sporangia formation, degradation of damaged cellular content, and recycling of nutrients in P. palmivora. This large-scale proteomics data and analyses pave the way for new insights on biology, genome annotation, and vegetative growth of the important plant pathogen P. palmivora. They also can help accelerate research on future phytopathogen diagnostics and preventive interventions.
Collapse
Affiliation(s)
- Bhagya Nekrakalaya
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohammad Arefian
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Chinmaya Narayana Kotimoole
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | | | - Mohammad Altaf Najar
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Santosh Kumar Behera
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sandeep Kasaragod
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Vinayaka Hegde
- ICAR-Central Plantation Crops Research Institute, Kasaragod, India
| | | |
Collapse
|
4
|
Autophagy-Related Gene PlATG6a Is Involved in Mycelial Growth, Asexual Reproduction and Tolerance to Salt and Oxidative Stresses in Peronophythora litchii. Int J Mol Sci 2022; 23:ijms23031839. [PMID: 35163762 PMCID: PMC8836449 DOI: 10.3390/ijms23031839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Autophagy is ubiquitously present in eukaryotes. During this process, intracellular proteins and some waste organelles are transported into lysosomes or vacuoles for degradation, which can be reused by the cell to guarantee normal cellular metabolism. However, the function of autophagy-related (ATG) proteins in oomycetes is rarely known. In this study, we identified an autophagy-related gene, PlATG6a, encoding a 514-amino-acid protein in Peronophythora litchii, which is the most destructive pathogen of litchi. The transcriptional level of PlATG6a was relatively higher in mycelium, sporangia, zoospores and cysts. We generated PlATG6a knockout mutants using CRISPR/Cas9 technology. The P. litchii Δplatg6a mutants were significantly impaired in autophagy and vegetative growth. We further found that the Δplatg6a mutants displayed decreased branches of sporangiophore, leading to impaired sporangium production. PlATG6a is also involved in resistance to oxidative and salt stresses, but not in sexual reproduction. The transcription of peroxidase-encoding genes was down-regulated in Δplatg6a mutants, which is likely responsible for hypersensitivity to oxidative stress. Compared with the wild-type strain, the Δplatg6a mutants showed reduced virulence when inoculated on the litchi leaves using mycelia plugs. Overall, these results suggest a critical role for PlATG6a in autophagy, vegetative growth, sporangium production, sporangiophore development, zoospore release, pathogenesis and tolerance to salt and oxidative stresses in P. litchii.
Collapse
|
5
|
Murúa P, Müller DG, Etemadi M, van West P, Gachon CMM. Host and pathogen autophagy are central to the inducible local defences and systemic response of the giant kelp Macrocystis pyrifera against the oomycete pathogen Anisolpidium ectocarpii. THE NEW PHYTOLOGIST 2020; 226:1445-1460. [PMID: 31955420 PMCID: PMC7317505 DOI: 10.1111/nph.16438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/08/2020] [Indexed: 05/20/2023]
Abstract
Kelps are key primary producers of cold and temperate marine coastal ecosystems and exhibit systemic defences against pathogens. Yet, the cellular mechanisms underpinning their immunity remain to be elucidated. We investigated the time course of infection of the kelp Macrocystis pyrifera by the oomycete Anisolpidium ectocarpii using TEM, in vivo autophagy markers and autophagy inhibitors. Over several infection cycles, A. ectocarpii undergoes sequential physiological shifts sensitive to autophagy inhibitors. Initially lipid-rich, pathogen thalli become increasingly lipid-depleted; they subsequently tend to become entirely abortive, irrespective of their lipid content. Moreover, infected algal cells mount local defences and can directly eliminate the pathogen by xenophagy. Finally, autophagy-dependent plastid recycling is induced in uninfected host cells. We demonstrate the existence of local, inducible autophagic processes both in the pathogen and infected host cells, which result in the restriction of pathogen propagation. We also show the existence of a systemic algal response mediated by autophagy. We propose a working model accounting for all our observations, whereby the outcome of the algal-pathogen interaction (i.e. completion or not of the pathogen life cycle) is dictated by the induction, and possibly the mutual hijacking, of the host and pathogen autophagy machineries.
Collapse
Affiliation(s)
- Pedro Murúa
- Aberdeen Oomycete LaboratoryInternational Centre for Aquaculture Research and DevelopmentUniversity of AberdeenForesterhillAberdeenAB25 2ZDUK
- The Scottish Association for Marine ScienceScottish Marine InstituteObanPA37 1QAUK
| | - Dieter G. Müller
- Fachbereich Biologie der Universität KonstanzD‐78457KonstanzGermany
| | - Mohammad Etemadi
- Institute of MicrobiologyUniversity of InnsbruckA‐6020InnsbruckTyrolAustria
| | - Pieter van West
- Aberdeen Oomycete LaboratoryInternational Centre for Aquaculture Research and DevelopmentUniversity of AberdeenForesterhillAberdeenAB25 2ZDUK
| | - Claire M. M. Gachon
- The Scottish Association for Marine ScienceScottish Marine InstituteObanPA37 1QAUK
- UMR 7245 - Molécules de Communication et Adaptation des Micro-organismesMuséum National d'Histoire NaturelleCP 54, 57 rue Cuvier75005ParisFrance
| |
Collapse
|
6
|
Liu D, Li K, Hu J, Wang W, Liu X, Gao Z. Biocontrol and Action Mechanism of Bacillus amyloliquefaciens and Bacillus subtilis in Soybean Phytophthora Blight. Int J Mol Sci 2019; 20:E2908. [PMID: 31207889 PMCID: PMC6628291 DOI: 10.3390/ijms20122908] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 02/08/2023] Open
Abstract
With the improper application of fungicides, Phytophthora sojae begins to develop resistance to fungicides, and biological control is one of the potential ways to control it. We screened two strains of Bacillus; Bacillus amyloliquefaciens JDF3 and Bacillus subtilis RSS-1, which had an efficient inhibitory effect on P. sojae. They could inhibit mycelial growth, the germination of the cysts, and the swimming of the motile zoospores. To elucidate the response of P. sojae under the stress of B. amyloliquefaciens and B. subtilis, and the molecular mechanism of biological control, comparative transcriptome analysis was applied. Transcriptome analysis revealed that the expression gene of P. sojae showed significant changes, and a total of 1616 differentially expressed genes (DEGs) were detected. They participated in two major types of regulation, namely "specificity" regulation and "common" regulation. They might inhibit the growth of P. sojae mainly by inhibiting the activity of ribosome. A pot experiment indicated that B. amyloliquefaciens and B. subtilis enhanced the resistance of soybean to P. sojae, and their control effects of them were 70.7% and 65.5%, respectively. In addition, B. amyloliquefaciens fermentation broth could induce an active oxygen burst, NO production, callose deposition, and lignification. B. subtilis could also stimulate the systemic to develop the resistance of soybean by lignification, and phytoalexin.
Collapse
Affiliation(s)
- Dong Liu
- College of plant protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China.
- School of life sciences, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China.
- Department of Horticulture and Landscape, Anqing Vocational and Technical College, 99 North of Tianzhushan Road, Anqing 246003, Anhui, China.
| | - Kunyuan Li
- College of plant protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China.
| | - Jiulong Hu
- College of plant protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China.
| | - Weiyan Wang
- College of plant protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China.
| | - Xiao Liu
- College of plant protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China.
| | - Zhimou Gao
- College of plant protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China.
| |
Collapse
|
7
|
Chen L, Zhang X, Wang W, Geng X, Shi Y, Na R, Dou D, Li H. Network and role analysis of autophagy in Phytophthora sojae. Sci Rep 2017; 7:1879. [PMID: 28500315 PMCID: PMC5431975 DOI: 10.1038/s41598-017-01988-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
Autophagy is an evolutionarily conserved mechanism in eukaryotes with roles in development and the virulence of plant fungal pathogens. However, few reports on autophagy in oomycete species have been published. Here, we identified 26 autophagy-related genes (ATGs) belonging to 20 different groups in Phytophthora sojae using a genome-wide survey, and core ATGs in oomycetes were used to construct a preliminary autophagy pathway model. Expression profile analysis revealed that these ATGs are broadly expressed and that the majority of them significantly increase during infection stages, suggesting a central role for autophagy in virulence. Autophagy in P. sojae was detected using a GFP-PsAtg8 fusion protein and the fluorescent dye MDC during rapamycin and starvation treatment. In addition, autophagy was significantly induced during sporangium formation and cyst germination. Silencing PsAtg6a in P. sojae significantly reduced sporulation and pathogenicity. Furthermore, a PsAtg6a-silenced strain showed haustorial formation defects. These results suggested that autophagy might play essential roles in both the development and infection mechanism of P. sojae.
Collapse
Affiliation(s)
- Linlin Chen
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuejing Geng
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yan Shi
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Risong Na
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honglian Li
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
8
|
Frades I, Andreasson E. Phytophthora infestans specific phosphorylation patterns and new putative control targets. Fungal Biol 2016; 120:631-644. [PMID: 27020162 DOI: 10.1016/j.funbio.2016.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 11/15/2022]
Abstract
In this study we applied biomathematical searches of gene regulatory mechanisms to learn more about oomycete biology and to identify new putative targets for pesticides or biological control against Phytophthora infestans. First, oomycete phylum-specific phosphorylation motifs were found by discriminative n-gram analysis. We found 11.600 P. infestans specific n-grams, mapping 642 phosphoproteins. The most abundant group among these related to phosphatidylinositol metabolism. Due to the large number of possible targets found and our hypothesis that multi-level control is a sign of usefulness as targets for intervention, we identified overlapping targets with a second screen. This was performed to identify proteins dually regulated by small RNA and phosphorylation. We found 164 proteins to be regulated by both sRNA and phosphorylation and the dominating functions where phosphatidylinositol signalling/metabolism, endocytosis, and autophagy. Furthermore we performed a similar regulatory study and discriminative n-gram analysis of proteins with no clear orthologs in other species and proteins that are known to be unique to P. infestans such as the RxLR effectors, Crinkler (CRN) proteins and elicitins. We identified CRN proteins with specific phospho-motifs present in all life stages. PITG_12626, PITG_14042 and PITG_23175 are CRN proteins that have species-specific phosphorylation motifs and are subject to dual regulation.
Collapse
Affiliation(s)
- Itziar Frades
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, SE-230 53, Sweden.
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, SE-230 53, Sweden
| |
Collapse
|