1
|
Cheng S, Schuh M. Two mechanisms repress cyclin B1 translation to maintain prophase arrest in mouse oocytes. Nat Commun 2024; 15:10044. [PMID: 39567493 PMCID: PMC11579420 DOI: 10.1038/s41467-024-54161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
In mammals, oocytes are arrested in prophase of meiosis I for long periods of time. Prophase arrest is critical for reproduction because it allows oocytes to grow to their full size to support meiotic maturation and embryonic development. Prophase arrest requires the inhibitory phosphorylation of the mitotic kinase CDK1. Whether prophase arrest is also regulated at the translational level is unknown. Here, we show that prophase arrest is regulated by translational control of dormant cyclin B1 mRNAs. Using Trim-Away, we identify two mechanisms that maintain cyclin B1 dormancy and thus prophase arrest. First, a complex of the RNA-binding proteins DDX6, LSM14B and CPEB1 directly represses cyclin B1 translation through interacting with its 3'UTR. Second, cytoplasmic poly(A)-binding proteins (PABPCs) indirectly repress the translation of cyclin B1 and other poly(A)-tail-less or short-tailed mRNAs by sequestering the translation machinery on long-tailed mRNAs. Together, we demonstrate how RNA-binding proteins coordinately regulate prophase arrest, and reveal an unexpected role for PABPCs in controlling mRNA dormancy.
Collapse
Affiliation(s)
- Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, 430072, Wuhan, China
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
2
|
Peng K, Cui K, Li P, Liu X, Du Y, Xu H, Yang X, Lu S, Liang X. Mogroside V alleviates the heat stress-induced disruption of the porcine oocyte in vitro maturation. Theriogenology 2024; 217:37-50. [PMID: 38244353 DOI: 10.1016/j.theriogenology.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Heat stress (HS) is a stressor that negatively affect female reproduction. Specially, oocytes are very sensitive to HS. It has been demonstrated that some active compounds can protect oocyte from HS. We previously found that Mogroside V (MV), extracted from Siraitia grosvenorii (Luo Han Guo), can protect oocyte from many kinds of stresses. However, how MV alleviates HS-induced disruption of oocyte maturation remains unknown. In this study, we treated the HS-induced porcine oocytes with MV to examine their maturation and quality. Our findings demonstrate that MV can effectively alleviate HS-induced porcine oocyte abnormal cumulus cell expansion, decrease of first polar body extrusion rate, spindle assembly and chromosome separation abnormalities, indicating MV attenuates oocyte mature defects. We further observed that MV can effectively alleviate HS-induced cortical granule distribution abnormality and decrease of blastocyst formation rate after parthenogenesis activation. In addition, MV treatment reversed mitochondrial dysfunction and lipid droplet content decrease, reduced reactive oxygen species levels, early apoptosis and DNA damage in porcine oocytes after HS. Collectively, this study suggests that MV can effectively protect porcine oocytes from HS.
Collapse
Affiliation(s)
- Ke Peng
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Kexin Cui
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Pan Li
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Xinxin Liu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Ya Du
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Huiyan Xu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiaogan Yang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Shengsheng Lu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Xingwei Liang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
3
|
Cheng S, Altmeppen G, So C, Welp LM, Penir S, Ruhwedel T, Menelaou K, Harasimov K, Stützer A, Blayney M, Elder K, Möbius W, Urlaub H, Schuh M. Mammalian oocytes store mRNAs in a mitochondria-associated membraneless compartment. Science 2022; 378:eabq4835. [PMID: 36264786 DOI: 10.1126/science.abq4835] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Full-grown oocytes are transcriptionally silent and must stably maintain the messenger RNAs (mRNAs) needed for oocyte meiotic maturation and early embryonic development. However, where and how mammalian oocytes store maternal mRNAs is unclear. Here, we report that mammalian oocytes accumulate mRNAs in a mitochondria-associated ribonucleoprotein domain (MARDO). MARDO assembly around mitochondria was promoted by the RNA-binding protein ZAR1 and directed by an increase in mitochondrial membrane potential during oocyte growth. MARDO foci coalesced into hydrogel-like matrices that clustered mitochondria. Maternal mRNAs stored in the MARDO were translationally repressed. Loss of ZAR1 disrupted the MARDO, dispersed mitochondria, and caused a premature loss of MARDO-localized mRNAs. Thus, a mitochondria-associated membraneless compartment controls mitochondrial distribution and regulates maternal mRNA storage, translation, and decay to ensure fertility in mammals.
Collapse
Affiliation(s)
- Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gerrit Altmeppen
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Chun So
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sarah Penir
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Electron Microscopy City Campus, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katerina Menelaou
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bourn Hall Clinic, Cambridge, UK
| | - Katarina Harasimov
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandra Stützer
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | | | - Wiebke Möbius
- Electron Microscopy City Campus, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Gambini A, Briski O, Canel NG. State of the art of nuclear transfer technologies for assisting mammalian reproduction. Mol Reprod Dev 2022; 89:230-242. [PMID: 35642677 DOI: 10.1002/mrd.23615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/14/2022] [Accepted: 05/22/2022] [Indexed: 12/27/2022]
Abstract
The transfer of nuclear genomic DNA from a cell to a previously enucleated oocyte or zygote constitutes one of the main tools for studying epigenetic reprogramming, nucleus-cytoplasm compatibility, pluripotency state, and for genetic preservation or edition in animals. More than 50 years ago, the first experiences in nuclear transfer began to reveal that factors stored in the cytoplasm of oocytes could reprogram the nucleus of another cell and support the development of an embryo with new genetic information. Furthermore, when the nuclear donor cell is an oocyte, egg, or a zygote, the implementation of these technologies acquires clinical relevance for patients with repeated failures in ART associated with poor oocyte quality or mitochondrial dysfunctions. This review describes the current state, scope, and future perspectives of nuclear transfer techniques currently available for assisting mammal reproduction.
Collapse
Affiliation(s)
- Andrés Gambini
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Olinda Briski
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gabriela Canel
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Hospital de Clínicas "José de San Martín," Instituto Universitario de Fertilidad y Reproducción Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Wu YK, Fan HY. Revisiting ZAR proteins: the understudied regulator of female fertility and beyond. Cell Mol Life Sci 2022; 79:92. [PMID: 35072788 PMCID: PMC11071961 DOI: 10.1007/s00018-022-04141-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/02/2022] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
Putative RNA-binding proteins (RBPs), zygote arrested-1 (ZAR1), and ZAR2 (also known as ZAR1L), have been identified as maternal factors that mainly function in oogenesis and embryogenesis. Despite divergence in their spatio-temporal expression among species, the CxxC structure of the C-terminus of ZAR proteins is highly conserved and is reported to be the functional domain for the activity of the RBPs of ZAR proteins. In oocytes from Xenopus laevis and zebrafish, ZAR proteins have been reported to bind to maternal transcripts and inhibit translation in immature growing oocytes, whereas in fully grown mouse oocytes, they promote the translation during meiotic maturation. Thus, ZAR1 and ZAR2 may be required for the maternal-to-zygotic transition by stabilizing the maternal transcriptome in oocytes with partial functional redundancy. In addition, recent studies have suggested non-ovarian expression and function of ZAR proteins, particularly their involvement in tumorigenesis. ZAR proteins are potentially associated with tumor suppressors and can serve as epigenetically inactivated cancer biomarkers. In this review, studies on Zar1/2 are systematically summarized, and some issues that require discussion and further investigation are introduced as perspectives.
Collapse
Affiliation(s)
- Yu-Ke Wu
- Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China.
| |
Collapse
|
6
|
Fujimine-Sato A, Kuno T, Higashi K, Sugawara A, Hiraga H, Takahashi A, Tanaka K, Yokoyama E, Shiga N, Watanabe Z, Yaegashi N, Tachibana M. Exploration of the Cytoplasmic Function of Abnormally Fertilized Embryos via Novel Pronuclear-Stage Cytoplasmic Transfer. Int J Mol Sci 2021; 22:ijms22168765. [PMID: 34445470 PMCID: PMC8395835 DOI: 10.3390/ijms22168765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
In regular IVF, a portion of oocytes exhibit abnormal numbers of pronuclei (PN) that is considered as abnormal fertilization, and they are routinely discarded. However, it is known that abnormal ploidy still does not completely abandon embryo development and implantation. To explore the potential of cytoplasm from those abnormally fertilized oocytes, we developed a novel technique for the transfer of large cytoplasm between pronuclear-stage mouse embryos, and assessed its impact. A large volume of cytoplast could be efficiently transferred in the PN stage using a novel two-step method of pronuclear-stage cytoplasmic transfer (PNCT). PNCT revealed the difference in the cytoplasmic function among abnormally fertilized embryos where the cytoplasm of 3PN was developmentally more competent than 1PN, and the supplementing of fresh 3PN cytoplasm restored the impaired developmental potential of postovulatory “aged” oocytes. PNCT-derived embryos harbored significantly higher mitochondrial DNA copies, ATP content, oxygen consumption rate, and total cells. The difference in cytoplasmic function between 3PN and 1PN mouse oocytes probably attributed to the proper activation via sperm and may impact subsequent epigenetic events. These results imply that PNCT may serve as a potential alternative treatment to whole egg donation for patients with age-related recurrent IVF failure.
Collapse
Affiliation(s)
- Ayako Fujimine-Sato
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takashi Kuno
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Keiko Higashi
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Atsushi Sugawara
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Hiroaki Hiraga
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Aiko Takahashi
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Keiko Tanaka
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Emi Yokoyama
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Naomi Shiga
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Zen Watanabe
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Masahito Tachibana
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
- Correspondence: ; Tel.: +81-22-717-7253; Fax: +81-22-717-7258
| |
Collapse
|
7
|
Bebbere D, Albertini DF, Coticchio G, Borini A, Ledda S. The subcortical maternal complex: emerging roles and novel perspectives. Mol Hum Reprod 2021; 27:6311673. [PMID: 34191027 DOI: 10.1093/molehr/gaab043] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Since its recent discovery, the subcortical maternal complex (SCMC) is emerging as a maternally inherited and crucial biological structure for the initial stages of embryogenesis in mammals. Uniquely expressed in oocytes and preimplantation embryos, where it localizes to the cell subcortex, this multiprotein complex is essential for early embryo development in the mouse and is functionally conserved across mammalian species, including humans. The complex has been linked to key processes leading the transition from oocyte to embryo, including meiotic spindle formation and positioning, regulation of translation, organelle redistribution, and epigenetic reprogramming. Yet, the underlying molecular mechanisms for these diverse functions are just beginning to be understood, hindered by unresolved interplay of SCMC components and variations in early lethal phenotypes. Here we review recent advances confirming involvement of the SCMC in human infertility, revealing an unexpected relationship with offspring health. Moreover, SCMC organization is being further revealed in terms of novel components and interactions with additional cell constituents. Collectively, this evidence prompts new avenues of investigation into possible roles during the process of oogenesis and the regulation of maternal transcript turnover during the oocyte to embryo transition.
Collapse
Affiliation(s)
- Daniela Bebbere
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | | | | | | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
8
|
Christodoulaki A, Boel A, Tang M, De Roo C, Stoop D, Heindryckx B. Prospects of Germline Nuclear Transfer in Women With Diminished Ovarian Reserve. Front Endocrinol (Lausanne) 2021; 12:635370. [PMID: 33692760 PMCID: PMC7937897 DOI: 10.3389/fendo.2021.635370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Diminished ovarian reserve (DOR) is associated with a reduced quantity and quality of the retrieved oocytes, usually leading to poor reproductive outcomes which remain a great challenge for assisted reproduction technology (ART). Women with DOR often have to seek for oocyte donation, precluding genetically related offspring. Germline nuclear transfer (NT) is a novel technology in ART that involves the transfer of the nuclear genome from an affected oocyte/zygote of the patient to the cytoplast of an enucleated donor oocyte/zygote. Therefore, it offers opportunities for the generation of genetically related embryos. Currently, although NT is clinically applied only in women with serious mitochondrial DNA disorders, this technology has also been proposed to overcome certain forms of female infertility, such as advanced maternal age and embryo developmental arrest. In this review, we are proposing the NT technology as a future treatment option for DOR patients. Strikingly, the application of different NT strategies will result in an increase of the total number of available reconstituted embryos for DOR patients.
Collapse
Affiliation(s)
- Antonia Christodoulaki
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Maoxing Tang
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chloë De Roo
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Dominic Stoop
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|