1
|
Pan X, Fang C, Shen C, Li X, Xie L, Li L, Huang S, Yan X, Zhu X. Directional ciliary beats across epithelia require Ccdc57-mediated coupling between axonemal orientation and basal body polarity. Nat Commun 2024; 15:10249. [PMID: 39592607 PMCID: PMC11599927 DOI: 10.1038/s41467-024-54766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Motile cilia unify their axonemal orientations (AOs), or beat directions, across epithelia to drive liquid flows. This planar polarity results from cytoskeleton-driven swiveling of basal foot (BF), a basal body (BB) appendage coincident with the AO, in response to regulatory cues. How and when the BF-AO relationship is established, however, are unaddressed. Here, we show that the BF-AO coupling occurs during rotational polarizations of BBs and requires Ccdc57. Ccdc57 localizes on BBs as a rotationally-asymmetric punctum, which polarizes away from the BF in BBs having achieved the rotational polarity to probably fix the BF-AO relationship. Consistently, Ccdc57-deficient ependymal multicilia lack the BF-AO coupling and display directional beats at only single cell level. Ccdc57 -/- tracheal multicilia also fail to fully align their BFs. Furthermore, Ccdc57 -/- mice manifest severe hydrocephalus, due to impaired cerebrospinal fluid flow, and high mortality. These findings unravel mechanisms governing the planar polarity of epithelial motile cilia.
Collapse
Affiliation(s)
- Xinwen Pan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chuyu Fang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuan Shen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xixia Li
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lele Xie
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luan Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shan Huang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xueliang Zhu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
2
|
Wang P, Shi W, Liu S, Shi Y, Jiang X, Li F, Chen S, Sun K, Xu R. ccdc141 is required for left-right axis development by regulating cilia formation in the Kupffer's vesicle of zebrafish. J Genet Genomics 2024; 51:934-946. [PMID: 39047937 DOI: 10.1016/j.jgg.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Laterality is a crucial physiological process intricately linked to the cilium-centrosome complex during embryo development. Defects in the process can result in severe organ mispositioning. Coiled-coil domain containing 141 (CCDC141) has been previously known as a centrosome-related gene, but its role in left-right (LR) asymmetry has not been characterized. In this study, we utilize the zebrafish model and human exome analysis to elucidate the function of ccdc141 in laterality defects. The knockdown of ccdc141 in zebrafish disrupts early LR signaling pathways, cilia function, and Kupffer's vesicle formation. Unlike ccdc141-knockdown embryos exhibiting aberrant LR patterns, ccdc141-null mutants show no apparent abnormality, suggesting a genetic compensation response effect. In parallel, we observe a marked reduction in α-tubulin acetylation levels in the ccdc141 crispants. The treatment with histone deacetylase (HDAC) inhibitors, particularly the HDAC6 inhibitor, rescues the ccdc141 crispant phenotypes. Furthermore, exome analysis of 70 patients with laterality defects reveals an increased burden of CCDC141 mutations, with in-vivo studies verifying the pathogenicity of the patient mutation CCDC141-R123G. Our findings highlight the critical role of ccdc141 in ciliogenesis and demonstrate that CCDC141 mutations lead to abnormal LR patterns, identifying it as a candidate gene for laterality defects.
Collapse
Affiliation(s)
- Pengcheng Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wenxiang Shi
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Sijie Liu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yunjing Shi
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuechao Jiang
- Scientific Research Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
3
|
Song XF, Guo X, Zhao J, Zhang Y, Qin Y, Zuo J. Journal of Genetics and Genomics in 2023: progresses and beyond. J Genet Genomics 2024; 51:1-2. [PMID: 38237980 DOI: 10.1016/j.jgg.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Affiliation(s)
- Xiu-Fen Song
- Journal of Genetics and Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences & the Genetics Society of China, Beijing 100101, China
| | - Xiaoxuan Guo
- Journal of Genetics and Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences & the Genetics Society of China, Beijing 100101, China
| | - Jing Zhao
- Journal of Genetics and Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences & the Genetics Society of China, Beijing 100101, China
| | - Yutian Zhang
- Journal of Genetics and Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences & the Genetics Society of China, Beijing 100101, China
| | - Yuan Qin
- Journal of Genetics and Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences & the Genetics Society of China, Beijing 100101, China
| | - Jianru Zuo
- Journal of Genetics and Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences & the Genetics Society of China, Beijing 100101, China.
| |
Collapse
|