1
|
Licata A, Seidita A, Como S, de Carlo G, Cammilleri M, Bonica R, Soresi M, Veronese N, Chianetta R, Citarrella R, Giannitrapani L, Barbagallo M. Herbal and Dietary Supplements as Adjunctive Treatment for Mild SARS-CoV-2 Infection in Italy. Nutrients 2025; 17:230. [PMID: 39861359 PMCID: PMC11767322 DOI: 10.3390/nu17020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
During the COVID-19 pandemic, several observational studies proved a certain efficacy of nutraceuticals, herbal products, and other dietary supplements as adjuvant therapies used alongside antiviral drugs. Although their use has not been widespread in Italy, according to preliminary evidence, many supplements with demonstrated immunomodulatory effects, such as vitamins C and D, herbal medicines and essential oils, might relieve the respiratory symptoms of COVID-19, since SARS-CoV-2 can activate inflammasome-mediated inflammatory signaling pathways. Other observational studies have shown that herbal treatments, such as Echinacea purpurea and ginseng, help alleviate respiratory symptoms and reduce serum levels of inflammatory cytokines, which are typically overexpressed in both adult and pediatric SARS-CoV-2 patients. Further, vitamins C and D can attenuate the immune response thanks to their cytokine suppression ability and to their known antimicrobial activity and potential to modulate T helper cell response. The strong immune response triggered by SARS-CoV-2 infection is responsible for the severity of the disease. Preliminary data have also shown that L-arginine, an endothelial-derived relaxing factor, is able to modulate endothelial damage, which appears to be one of the main targets of this systemic disease. Finally, some essential oils and their isolated compounds, such as eucalyptol, may be helpful in reducing many of the respiratory symptoms of COVID-19, although others, such as menthol, are not recommended, since it can lead to an undervaluation of the clinical status of a patient. In this narrative review, despite the lack of strong evidence in this field, we aimed to give an overview of the current available literature (mainly observational and cross-sectional studies) regarding herbal products and dietary supplements and their use in the treatment of mild disease from SARS-CoV-2 infection. Obviously, dietary supplements and herbal products do not constitute a standardized treatment for COVID-19 disease, but they could represent an adjunctive and useful treatment when used together with antivirals.
Collapse
Affiliation(s)
- Anna Licata
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Aurelio Seidita
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, 90146 Palermo, Italy; (A.S.)
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Silvia Como
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Gabriele de Carlo
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, 90146 Palermo, Italy; (A.S.)
| | - Marcella Cammilleri
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Roberta Bonica
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Maurizio Soresi
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Nicola Veronese
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Roberta Chianetta
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Roberto Citarrella
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Lydia Giannitrapani
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Mario Barbagallo
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| |
Collapse
|
2
|
Vijayakumar A, Kim JH. Ginseng and ginsenosides on cardiovascular and pulmonary diseases; Pharmacological potentials for the coronavirus (COVID-19). J Ginseng Res 2024; 48:113-121. [PMID: 38465214 PMCID: PMC10920003 DOI: 10.1016/j.jgr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 03/12/2024] Open
Abstract
Since its outbreak in late 2019, the Coronavirus disease 2019 (COVID-19) pandemic has profoundly caused global morbidity and deaths. The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has major complications in cardiovascular and pulmonary system. The increased rate of mortality is due to delayed detection of certain biomarkers that are crucial in the development of disease. Furthermore, certain proteins and enzymes in cellular signaling pathways play an important role in replication of SARS-CoV-2. Most cases are mild to moderate symptoms, however severe cases of COVID-19 leads to death. Detecting the level of biomarkers such as C-reactive protein, cardiac troponin, creatine kinase, creatine kinase-MB, procalcitonin and Matrix metalloproteinases helps in early detection of the severity of disease. Similarly, through downregulating Renin-angiotensin system, interleukin, Mitogen-activated protein kinases and Phosphoinositide 3-kinases pathways, COVID-19 can be effectively controlled and mortality could be prevented. Ginseng and ginsenosides possess therapeutic potential in cardiac and pulmonary complications, there are several studies performed in which they have suppressed these biomarkers and downregulated the pathways, thereby inhibiting the further spread of disease. Supplementation with ginseng or ginsenoside could act on multiple pathways to reduce the level of biomarkers significantly and alleviate cardiac and pulmonary damage. Therefore, this review summarizes the potential of ginseng extract and ginsenosides in controlling the cardiovascular and pulmonary diseases by COVID-19.
Collapse
Affiliation(s)
- Ajay Vijayakumar
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Republic of Korea
| |
Collapse
|
3
|
Boopathi V, Nahar J, Murugesan M, Subramaniyam S, Kong BM, Choi SK, Lee CS, Ling L, Yang DU, Yang DC, Mathiyalagan R, Chan Kang S. In silico and in vitro inhibition of host-based viral entry targets and cytokine storm in COVID-19 by ginsenoside compound K. Heliyon 2023; 9:e19341. [PMID: 37809955 PMCID: PMC10558348 DOI: 10.1016/j.heliyon.2023.e19341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus that emerged as an epidemic, causing a respiratory disease with multiple severe symptoms and deadly consequences. ACE-2 and TMPRSS2 play crucial and synergistic roles in the membrane fusion and viral entry of SARS-CoV-2 (COVID-19). The spike (S) protein of SARS-CoV-2 binds to the ACE-2 receptor for viral entry, while TMPRSS2 proteolytically cleaves the S protein into S1 and S2 subunits, promoting membrane fusion. Therefore, ACE-2 and TMPRSS2 are potential drug targets for treating COVID-19, and their inhibition is a promising strategy for treatment and prevention. This study proposes that ginsenoside compound K (G-CK), a triterpenoid saponin abundant in Panax Ginseng, a dietary and medicinal herb highly consumed in Korea and China, effectively binds to and inhibits ACE-2 and TMPRSS2 expression. We initially conducted an in-silico evaluation where G-CK showed a high affinity for the binding sites of the two target proteins of SARS-CoV-2. Additionally, we evaluated the stability of G-CK using molecular dynamics (MD) simulations for 100 ns, followed by MM-PBSA calculations. The MD simulations and free energy calculations revealed that G-CK has stable and favorable energies, leading to strong binding with the targets. Furthermore, G-CK suppressed ACE2 and TMPRSS2 mRNA expression in A549, Caco-2, and MCF7 cells at a concentration of 12.5 μg/mL and in LPS-induced RAW 264.7 cells at a concentration of 6.5 μg/mL, without significant cytotoxicity.ACE2 and TMPRSS2 expression were significantly lower in A549 and RAW 264.7 cells following G-CK treatment. These findings suggest that G-CK may evolve as a promising therapeutic against COVID-19.
Collapse
Affiliation(s)
- Vinothini Boopathi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Jinnatun Nahar
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Mohanapriya Murugesan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | | | - Byoung Man Kong
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Sung-Keun Choi
- Daedong Korea Ginseng Co., Ltd, 86, Gunbuk-ro, Gunbuk-myeon, Geumsan-gun, Chungcheongnam-do 32718 Republic of Korea
| | - Chang-Soon Lee
- Daedong Korea Ginseng Co., Ltd, 86, Gunbuk-ro, Gunbuk-myeon, Geumsan-gun, Chungcheongnam-do 32718 Republic of Korea
| | - Li Ling
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Dong Uk Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| |
Collapse
|
4
|
Song J, Lee Y. Protective role of ginseng in endometriosis during covid-19. J Ginseng Res 2023; 47:169-172. [PMID: 35971392 PMCID: PMC9365513 DOI: 10.1016/j.jgr.2022.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
The coronavirus disease 2019 (COVID) pandemic began in December 2019. Many countries have implemented restrictions such as mandatory mask wearing and social distancing. These measures have caused diverse and complex health problems, particularly in women's health, anxiety, and depression. This review examines an alternative approach to the treatment of endometriosis during the COVID pandemic. The efficacy of ginseng with anti-inflammatory activity and ability to relieve or prevent symptoms of endometriosis is discussed and reviewed.
Collapse
Affiliation(s)
- JiHyeon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Mieres-Castro D, Mora-Poblete F. Saponins: Research Progress and Their Potential Role in the Post-COVID-19 Pandemic Era. Pharmaceutics 2023; 15:pharmaceutics15020348. [PMID: 36839670 PMCID: PMC9964560 DOI: 10.3390/pharmaceutics15020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In the post-COVID-19 pandemic era, the new global situation and the limited therapeutic management of the disease make it necessary to take urgent measures in more effective therapies and drug development in order to counteract the negative global impacts caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new infectious variants. In this context, plant-derived saponins-glycoside-type compounds constituted from a triterpene or steroidal aglycone and one or more sugar residues-may offer fewer side effects and promising beneficial pharmacological activities. This can then be used for the development of potential therapeutic agents against COVID-19, either as a therapy or as a complement to conventional pharmacological strategies for the treatment of the disease and its prevention. The main objective of this review was to examine the primary and current evidence in regard to the therapeutic potential of plant-derived saponins against the COVID-19 disease. Further, the aim was to also focus on those studies that highlight the potential use of saponins as a treatment against SARS-CoV-2. Saponins are antiviral agents that inhibit different pharmacological targets of the virus, as well as exhibit anti-inflammatory and antithrombotic activity in relieving symptoms and clinical complications related to the disease. In addition, saponins also possess immunostimulatory effects, which improve the efficacy and safety of vaccines for prolonging immunogenicity against SARS-CoV-2 and its infectious variants.
Collapse
|
6
|
Shin SW, Cho IH. Panax ginseng as a potential therapeutic for neurological disorders associated with COVID-19; Toward targeting inflammasome. J Ginseng Res 2023; 47:23-32. [PMID: 36213093 PMCID: PMC9529349 DOI: 10.1016/j.jgr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by a severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). SARS-CoV-2 infection may cause clinical manifestations of multiple organ damage, including various neurological syndromes. There are currently two oral antiviral drugs-Paxlovid and molnupiravir-that are recognized to treat COVID-19, but there are still no drugs that can specifically fight the challenges of SARS-CoV-2 variants. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome is a multimolecular complex that can sense heterogeneous pathogen-associated molecular patterns associated with neurological disorders. The NLRP3 activation stimulates the production of caspase-1-mediated interleukin (IL)-1β, IL-18, and other cytokines in immune cells. Panax (P.) ginseng is a medicinal plant that has traditionally been widely used to boost immunity and treat various pathological conditions in the nervous system due to its safety and anti-inflammatory/oxidant/viral activities. Several recent reports have indicated that P. ginseng and its active ingredients may regulate NLRP3 inflammasome activation in the nervous system. Therefore, this review article discusses the current knowledge regarding the pathogenesis of neurological disorders related to COVID-19 and NLRP3 inflammasome activation and the possibility of using P. ginseng in a strategy targeting this pathway to treat neurological disorders.
Collapse
Affiliation(s)
- Seo Won Shin
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ik Hyun Cho
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea,Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea,Corresponding author. D.V.M. & Ph.D. Department of Convergence Medical Science and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
7
|
Yang S, Han SB, Kang S, Lee J, Kim D, Kozlova A, Song M, Park SH, Lee J. The relationship of skin disorders, COVID-19, and the therapeutic potential of ginseng: a review. J Ginseng Res 2023; 47:33-43. [PMID: 36249949 PMCID: PMC9546782 DOI: 10.1016/j.jgr.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made significant impacts on global public health, including the development of several skin diseases that have arisen primarily as a result of the pandemic. Owing to the widespread expansion of coronavirus disease 19 (COVID-19), the development of effective treatments for these skin diseases is drawing attention as an important social issue. For many centuries, ginseng and its major active ingredients, ginsenosides and saponins, have been widely regarded as herbal medicines. Further, the anti-viral action of ginseng suggests its potential effectiveness as a therapeutic agent against COVID-19. Thus, the aim of this review was to examine the association of skin lesions with COVID-19 and the effect of ginseng as a therapeutic agent to treat skin diseases induced by COVID-19 infection. We classified COVID-19-related skin disorders into three categories: caused by inflammatory, immune, and complex (both inflammatory and immune) responses and evaluated the evidence for ginseng as a treatment for each category. This review offers comprehensive evidence on the improvement of skin disorders induced by SARS-CoV-2 infection using ginseng and its active constituents.
Collapse
Affiliation(s)
- Seoyoun Yang
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Su Bin Han
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Soohyun Kang
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Junghyun Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dongseon Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Anastasiia Kozlova
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Minkyung Song
- T cell and Tumor Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea,Corresponding author. T cell and Tumor Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 16419, Gyunggi Do, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea,Corresponding author. Department of Bio and Chemical Engineering, Hongik University, 30016, Sejong City, Republic of Korea
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea,Corresponding author. Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 16419, Gyunggi Do, Republic of Korea
| |
Collapse
|
8
|
Islam F, Khadija JF, Harun-Or-Rashid M, Rahaman MS, Nafady MH, Islam MR, Akter A, Emran TB, Wilairatana P, Mubarak MS. Bioactive Compounds and Their Derivatives: An Insight into Prospective Phytotherapeutic Approach against Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5100904. [PMID: 35450410 PMCID: PMC9017558 DOI: 10.1155/2022/5100904] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative brain disorder that causes cellular response alterations, such as impaired cholinergic mechanism, amyloid-beta (Aβ) AD aggregation, neuroinflammation, and several other pathways. AD is still the most prevalent form of dementia and affects many individuals across the globe. The exact cause of the disorder is obscure. There are yet no effective medications for halting, preventing, or curing AD's progress. Plenty of natural products are isolated from several sources and analyzed in preclinical and clinical settings for neuroprotective effects in preventing and treating AD. In addition, natural products and their derivatives have been promising in treating and preventing AD. Natural bioactive compounds play an active modulatory role in the pathological molecular mechanisms of AD development. This review focuses on natural products from plant sources and their derivatives that have demonstrated neuroprotective activities and maybe promising to treat and prevent AD. In addition, this article summarizes the literature pertaining to natural products as agents in the treatment of AD. Rapid metabolism, nonspecific targeting, low solubility, lack of BBB permeability, and limited bioavailability are shortcomings of most bioactive molecules in treating AD. We can use nanotechnology and nanocarriers based on different types of approaches.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Jannatul Fardous Khadija
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|