1
|
Nacer A, Boudjema S, Bouhaous M, Boudouaia N, Bengharez Z. Bioremediation of hexavalent chromium by an indigenous bacterium Bacillus cereus S10C1: optimization study using two level full factorial experimental design. CR CHIM 2021. [DOI: 10.5802/crchim.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
2
|
Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. CHEMOSPHERE 2017; 178:513-533. [PMID: 28347915 DOI: 10.1016/j.chemosphere.2017.03.074] [Citation(s) in RCA: 513] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 02/13/2017] [Accepted: 03/16/2017] [Indexed: 05/18/2023]
Abstract
Chromium (Cr) is a potentially toxic heavy metal which does not have any essential metabolic function in plants. Various past and recent studies highlight the biogeochemistry of Cr in the soil-plant system. This review traces a plausible link among Cr speciation, bioavailability, phytouptake, phytotoxicity and detoxification based on available data, especially published from 2010 to 2016. Chromium occurs in different chemical forms (primarily as chromite (Cr(III)) and chromate (Cr(VI)) in soil which vary markedly in term of their biogeochemical behavior. Chromium behavior in soil, its soil-plant transfer and accumulation in different plant parts vary with its chemical form, plant type and soil physico-chemical properties. Soil microbial community plays a key role in governing Cr speciation and behavior in soil. Chromium does not have any specific transporter for its uptake by plants and it primarily enters the plants through specific and non-specific channels of essential ions. Chromium accumulates predominantly in plant root tissues with very limited translocation to shoots. Inside plants, Cr provokes numerous deleterious effects to several physiological, morphological, and biochemical processes. Chromium induces phytotoxicity by interfering plant growth, nutrient uptake and photosynthesis, inducing enhanced generation of reactive oxygen species, causing lipid peroxidation and altering the antioxidant activities. Plants tolerate Cr toxicity via various defense mechanisms such as complexation by organic ligands, compartmentation into the vacuole, and scavenging ROS via antioxidative enzymes. Consumption of Cr-contaminated-food can cause human health risks by inducing severe clinical conditions. Therefore, there is a dire need to monitor biogeochemical behavior of Cr in soil-plant system.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan.
| | - Saliha Shamshad
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Marina Rafiq
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen D-28359, Germany
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen D-28359, Germany; Southern Cross GeoScience, Southern Cross University, Lismore 2480, NSW, Australia
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Antonio Machado, 31058 Toulouse Cedex 9, France
| | - Muhammad Imtiaz Rashid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan; Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Wu H, Yin Z, Quan Y, Fang Y, Yin C. Removal of methyl acrylate by ceramic-packed biotrickling filter and their response to bacterial community. BIORESOURCE TECHNOLOGY 2016; 209:237-245. [PMID: 26970927 DOI: 10.1016/j.biortech.2016.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
Methyl acrylate is a widely used raw chemical materials and it is toxic in humans. In order to treat the methyl acrylate waste gas, a 3-layer BTF packed with ceramic particles and immobilized with activated sludge was set up. The BTF exhibited excellent removal efficiency that no methyl acrylate could be detected when EBRT was larger than 266s and inlet concentration was lower than 0.19g/m(3). The 1st layer performed the best at fixed inlet concentration of 0.42g/m(3). PCR combined with DGGE was performed to detect the differences in different layers of the BTF. Phylum Proteobacteria (e.g. α-, β-, γ-, δ-) was predominantly represented in the bacterial community, followed by Actinobacteria and Firmicutes. Desulfovibrio gigas, Variovorax paradoxus, Dokdonella koreensis, Pseudoxanthomonas suwonensis, Azorhizobium caulinodans, Hyphomicrobium denitrificans, Hyphomicrobium sp. and Comamonas testosteroni formed the bacteria community to treat methyl acrylate waste gas in the BTF.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Zhenhao Yin
- Analytical and Testing Center, Yanbian University, Yanji 133002, China
| | - Yue Quan
- Department of Environmental Science, Agricultural College, Yanbian University, Yanji 133002, China
| | - Yingyu Fang
- Analytical and Testing Center, Yanbian University, Yanji 133002, China
| | - Chengri Yin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
4
|
Tahri Joutey N, Bahafid W, Sayel H, Ananou S, El Ghachtouli N. Hexavalent chromium removal by a novel Serratia proteamaculans isolated from the bank of Sebou River (Morocco). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:3060-3072. [PMID: 24194414 DOI: 10.1007/s11356-013-2249-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
The novel Serratia proteamaculans isolated from a chromium-contaminated site was tolerant to a concentration of 500 mg Cr(VI)/l. The optimum pH and temperature for reduction of Cr(VI) by S. proteamaculans were found to be 7.0 and 30 °C, respectively. The Cr(VI) reduction rate decreased with the increase in Cr(VI) concentration from 100 to 400 mg/l, suggesting the enzymatic chromium reduction. Resting and permeabilised cell assays provided the better evidence that chromate reduction in S. proteamaculans is enzymatic. Reduction by cell-free filtrate shows no extracellular chromate-reducing activity, revealing that this activity may be associated to membrane fraction and/or cytosolic fraction. Assays conducted with cytosolic and particulate fraction of S. proteamaculans confirmed the role of membrane-bound proteins in Cr(VI) reduction. Furthermore, chromium reduced by heat-treated cells suggests that membrane-associated chromate reductase activity of S. proteamaculans is preceded by its adsorption on the cell surface.
Collapse
Affiliation(s)
- Nezha Tahri Joutey
- Microbial Biotechnology Laboratory, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Route Immouzer, P. O. Box 2202, Fez, Morocco
| | | | | | | | | |
Collapse
|
5
|
Samuel J, Paul ML, Pulimi M, Nirmala MJ, Chandrasekaran N, Mukherjee A. Hexavalent Chromium Bioremoval through Adaptation and Consortia Development from Sukinda Chromite Mine Isolates. Ind Eng Chem Res 2012; 51:3740-3749. [DOI: 10.1021/ie201796s] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jastin Samuel
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil nadu, India
| | - Madona L Paul
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil nadu, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil nadu, India
| | - M Joyce Nirmala
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil nadu, India
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil nadu, India
| |
Collapse
|
6
|
Dalcin MG, Pirete MM, Lemos DA, Ribeiro EJ, Cardoso VL, de Resende MM. Evaluation of hexavalent chromium removal in a continuous biological filter with the use of central composite design (CCD). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2011; 92:1165-1173. [PMID: 21216521 DOI: 10.1016/j.jenvman.2010.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 10/27/2010] [Accepted: 11/29/2010] [Indexed: 05/30/2023]
Abstract
Hexavalent chromium is frequently found in industrial effluents as a result of the industrial applications of this compound and its anti-corrosive features. However, hexavalent chromium is extremely toxic, and its discharge in water is regulated, with a maximum limit of 0.1 mg/L in accordance with legislation established by CONAMA-Brazil (no. 397, April 3, 2008). To achieve lower discharge values, it is necessary to reduce from Cr(VI) to Cr(III), which is less toxic, and an economic alternative involves biological removal of this compound. Residence time distributions (RTDs) were measured to evaluate the behavior of actual biofilter operation conditions in a biofilter flow. The medium residence time distributions used were 8 and 24 h (recommended by the legislation). To optimize this process, a central composite design was used, considering the initial chromium concentration and pH as the independent variables and the removal of hexavalent chromium as the response. The boundary curves and surface response showed optimal behavior at 3.94 mg/L [Cr(0)] and a pH of 6.2. The removal process of hexavalent chromium is mathematically described by the Michaelis-Menten kinetic model. This model appropriately represents the variation of chromium concentration along the bioreactor.
Collapse
Affiliation(s)
- Maurielem Guterres Dalcin
- Faculty of Chemical Engineering, Uberlândia Federal University, P.O. Box 593, Av. João Naves de Ávila, 2121, Campus Santa Mônica, Bloco 1K 38400-902, Uberlândia, MG, Brazil
| | | | | | | | | | | |
Collapse
|