1
|
Tomei MC, Mosca Angelucci D, Daugulis AJ. Self-regenerating tubing bioreactor for removal of toxic substrates: Operational strategies in response to severe dynamic loading conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138019. [PMID: 32213416 DOI: 10.1016/j.scitotenv.2020.138019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
A tubing TPPB (Two-Phase Partitioning Bioreactor) was operated with the objective of verifying the effective treatment of a phenolic synthetic wastewater with simultaneous polymeric tubing bioregeneration by introducing tubing effluent recycle and modifications to the Hydraulic Retention Time (HRT). 2,4-dichlorophenol (DCP) was employed as the target substrate and the bioreactor was operated for a 3 month period under severe loading conditions (from 77 to 384 mg/L d) with HRT in the tubing in the range of 2-4 h. Tubing effluent recycle (recycle flow rate/influent flow rate ratio = 0.3) was applied when a loss of performance was detected arising from the increased load. For HRT values of 3 and 4 h, almost complete DCP removal was achieved after a few days (1-5) of operation while for the 2 h HRT (i.e. in the most severe loading condition) the DCP removal was ≥97%. A beneficial effect on the process performance arising from recycle application was evident for all the operating conditions investigated, and was confirmed by statistical analysis. Essentially complete polymer bioregeneration was achieved when the bioreactor was operated at the lowest HRT (i.e. 2 h), combined with the application of tubing effluent recycle. The results of this study highlighted several advantages of the tubing TPPB configuration in a comparative analysis of different regeneration options, including the possibility of operating continuously with simultaneous bioregeneration and without the need for additional units or operational steps and extra-energy consumption.
Collapse
Affiliation(s)
- M Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione, Rome, Italy.
| | - Domenica Mosca Angelucci
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione, Rome, Italy
| | - Andrew J Daugulis
- Department of Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
2
|
Tomei MC, Mosca Angelucci D, Stazi V, Daugulis AJ. On the applicability of a hybrid bioreactor operated with polymeric tubing for the biological treatment of saline wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1056-1063. [PMID: 28511350 DOI: 10.1016/j.scitotenv.2017.05.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
Effective biological treatment of high salt content wastewater requires consideration of both salt and organic toxicity. This study treated a synthetic saline wastewater containing NaCl (100gL-1) and 2,4-dimethylphenol (1.2gL-1) with a hybrid system consisting of a biological reactor containing spiral-coiled polymeric tubing through which the mixed feed was pumped. The tubing wall was permeable to the organic contaminant, but not to the salt, which allowed transfer of the organic into the cell-containing bioreactor contents for degradation, while not exposing the cells to high salt concentrations. Different grades of DuPont Hytrel polymer were examined on the basis of organic affinity predictions and experimental partition and mass transfer tests. Hytrel G3548 tubing showed the highest permeability for 2,4-dimethylphenol while exerting an effective salt barrier, and was used to verify the feasibility of the proposed system. Very high organic removal (99% after just 5h of treatment) and effective biodegradation of the organic fraction of the wastewater (>90% at the end of the test) were observed. Complete salt separation from the microbial culture was also achieved.
Collapse
Affiliation(s)
- M Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione (Rome), Italy.
| | - Domenica Mosca Angelucci
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione (Rome), Italy
| | - Valentina Stazi
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione (Rome), Italy
| | - Andrew J Daugulis
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| |
Collapse
|
3
|
Sheppard JB, Hambly B, Pendley B, Lindner E. Voltammetric determination of diffusion coefficients in polymer membranes. Analyst 2017; 142:930-937. [DOI: 10.1039/c6an02671k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diffusion-controlled transport of ions and molecules through polymer membranes utilized in chemical and biosensors is often the key factor determining the response characteristics of these sensors. A simple voltammetric method utilizing a planar electrochemical cell allows the rapid determination of diffusion coefficients in resistive polymer membranes.
Collapse
Affiliation(s)
| | - Bradley Hambly
- Department of Biomedical Engineering
- University of Memphis
- Memphis
- USA
| | - Bradford Pendley
- Department of Biomedical Engineering
- University of Memphis
- Memphis
- USA
| | - Erno Lindner
- Department of Biomedical Engineering
- University of Memphis
- Memphis
- USA
| |
Collapse
|
4
|
Tomei MC, Mosca Angelucci D, Daugulis AJ. Sequential anaerobic-aerobic decolourization of a real textile wastewater in a two-phase partitioning bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:585-593. [PMID: 27580470 DOI: 10.1016/j.scitotenv.2016.08.140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/02/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
This work describes the application of a solid-liquid two-phase partitioning bioreactor (TPPB) for the removal of colour from a real textile wastewater containing reactive azo-dyes. Four polymers were tested over the pH range of 4-9 to select the most effective absorbant to be used as the partitioning phase in the TPPB. The best results were obtained with Hytrel 8206 at pH4 achieving ~70% colour removal, based on the dominant wavelength, in the first 5h of contact time, and 84% after 24h. Wastewater treatment was undertaken in a solid-liquid TPPB operated with Hytrel 8206 in sequential anaerobic-aerobic configuration. The reaction time of 23h was equally distributed between the anaerobic and aerobic phases and, to favour colour uptake, the pH was controlled at 4.5 in the first 4h of the anaerobic phase, and then increased to 7.5. Colour removal (for the dominant wavelength, 536nm) increased from 70 to 85% by modifying the bioreactor operation from single-phase to TPPB mode. Based on COD measurements nearly complete biodegradation of the intermediates produced in the anaerobic phase was obtained, both in the single-phase and two-phase mode, with better performance of the TPPB system reaching 75% CODDye removal.
Collapse
Affiliation(s)
- M Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione, Rome, Italy.
| | - Domenica Mosca Angelucci
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione, Rome, Italy
| | - Andrew J Daugulis
- Department of Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
5
|
Tomei MC, Mosca Angelucci D, Daugulis AJ. Towards a continuous two-phase partitioning bioreactor for xenobiotic removal. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:403-415. [PMID: 27318737 DOI: 10.1016/j.jhazmat.2016.05.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/08/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
The removal of a xenobiotic (4-chlorophenol) from contaminated water was investigated in a simulated continuous two-phase partitioning bioreactor (C-TPPB), fitted with coiled tubing comprised of a specifically-selected extruded polymer, Hytrel 8206. Wastewater flowed inside the tubing, the pollutant diffused through the tubing wall, and was removed in the aqueous bioreactor phase at typical biological removal rates in the C-TTPB simulated by varying aqueous phase throughput to the reactor. Operating over a range of influent substrate concentrations (500-1500mgL(-1)) and hydraulic retention times in the tubing (4-8h), overall mass transfer coefficients were 1.7-3.5×10(-7)ms(-1), with the highest value corresponding to the highest tubing flow rate. Corresponding mass transfer rates are of the same order as biological removal rates, and thus do not limit the removal process. The C-TPPB showed good performance over all organic and hydraulic loading ranges, with removal efficiencies of 4CP in the tubing wastewater stream always ≥96%. Additionally, the presence of the Hytrel tubing was able to buffer increases in organic loading to the hybrid system, enhancing overall process stability. Biological testing of the C-TPPB confirmed the abiotic test results demonstrating even higher 4-chlorophenol removal efficiency (∼99%) in the tubing stream.
Collapse
Affiliation(s)
- M Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione, Rome, Italy.
| | - Domenica Mosca Angelucci
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione, Rome, Italy
| | - Andrew J Daugulis
- Department of Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
6
|
Mosca Angelucci D, Tomei MC. Regeneration strategies of polymers employed in ex-situ remediation of contaminated soil: Bioregeneration versus solvent extraction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 159:169-177. [PMID: 26074469 DOI: 10.1016/j.jenvman.2015.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
In this study we evaluated the feasibility of two regeneration strategies of contaminated polymers employed for ex-situ soil remediation in a two-step process. Soil decontamination is achieved by sorption of the pollutants on the polymer beads, which are regenerated in a subsequent step. Tested soil was contaminated with a mixture of 4-chlorophenol and pentachlorophenol, and a commercial polymer, Hytrel, has been employed for extraction. Removal efficiencies of the polymer-soil extraction are in the range of 51-97% for a contact time ≤ 24 h. Two polymer regeneration strategies, solvent extraction and biological regeneration (realized in a two-phase partitioning bioreactor), were tested and compared. Performance was assessed in terms of removal rates and efficiencies and an economic analysis based on the operating costs has been performed. Results demonstrated the feasibility of both regeneration strategies, but the bioregeneration was advantageous in that provided the biodegradation of the contaminants desorbed from the polymer. Practically complete removal for 4-chlorophenol and up to 85% biodegradation efficiency for pentachlorophenol were achieved. Instead, in the solvent extraction, a relevant production (184-831 L kg(pol)(-1)) of a highly polluted stream to be treated or disposed of is observed. The cost analysis of the two strategies showed that the bioregeneration is much more convenient with operating costs of ∼12 €/kg(pol) i.e. more than one order of magnitude lower in comparison to ∼233 €/kg(pol) of the solvent extraction.
Collapse
Affiliation(s)
- Domenica Mosca Angelucci
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione, Rome, Italy
| | - M Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione, Rome, Italy.
| |
Collapse
|
7
|
Tomei MC, Mosca Angelucci D, Ademollo N, Daugulis AJ. Rapid and effective decontamination of chlorophenol-contaminated soil by sorption into commercial polymers: concept demonstration and process modeling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 150:81-91. [PMID: 25438115 DOI: 10.1016/j.jenvman.2014.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/02/2014] [Accepted: 11/09/2014] [Indexed: 06/04/2023]
Abstract
Solid phase extraction performed with commercial polymer beads to treat soil contaminated by chlorophenols (4-chlorophenol, 2,4-dichlorophenol and pentachlorophenol) as single compounds and in a mixture has been investigated in this study. Soil-water-polymer partition tests were conducted to determine the relative affinities of single compounds in soil-water and polymer-water pairs. Subsequent soil extraction tests were performed with Hytrel 8206, the polymer showing the highest affinity for the tested chlorophenols. Factors that were examined were polymer type, moisture content, and contamination level. Increased moisture content (up to 100%) improved the extraction efficiency for all three compounds. Extraction tests at this upper level of moisture content showed removal efficiencies ≥70% for all the compounds and their ternary mixture, for 24 h of contact time, which is in contrast to the weeks and months, normally required for conventional ex situ remediation processes. A dynamic model characterizing the rate and extent of decontamination was also formulated, calibrated and validated with the experimental data. The proposed model, based on the simplified approach of "lumped parameters" for the mass transfer coefficients, provided very good predictions of the experimental data for the absorptive removal of contaminants from soil at different individual solute levels. Parameters evaluated from calibration by fitting of single compound data, have been successfully applied to predict mixture data, with differences between experimental and predicted data in all cases being ≤3%.
Collapse
Affiliation(s)
- M Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione, Rome, Italy.
| | - Domenica Mosca Angelucci
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione, Rome, Italy
| | - Nicoletta Ademollo
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione, Rome, Italy
| | - Andrew J Daugulis
- Department of Chemical Engineering, Queen's University, Kingston Ontario K7L 3N6, Canada
| |
Collapse
|
8
|
Paca J, Halecky M, Karlova P, Gelbicova T, Kozliak E. Interactions among mononitrophenol isomers during biodegradation of their mixtures. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:109-118. [PMID: 25560256 DOI: 10.1080/10934529.2014.975038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Continuous aerobic biodegradation of 4-NP, 3-NP and 2-NP mixture was monitored in a packed bed reactor in simulated wastewater with a mixed microbial culture immobilized on expanded slate. Substrate loading was varied by increasing the concentration of one isomer while keeping the other two at constant levels, all at a constant residence time of 60 min. At large concentrations, all of the individual NP isomers suppressed the degradation rates of the other isomers at steady state; however, the observed patterns and threshold concentrations were different for all three substrates. As a result, conditions were determined for stable and efficient removal of NP mixtures. Changes of the biofilm composition during a long-term operation were identified.
Collapse
Affiliation(s)
- Jan Paca
- a Institute of Chemical Technology, Department of Biotechnology , Prague , Czech Republic
| | | | | | | | | |
Collapse
|
9
|
Tomeia MC, Angeluccia DM, Daugulis AJ. The use of used automobile tyres in a partitioning bioreactor for the biodegradation of xenobiotic mixtures. ENVIRONMENTAL TECHNOLOGY 2014; 35:75-81. [PMID: 24600843 DOI: 10.1080/09593330.2013.811529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Waste tyres were utilized as the sorption phase in a two-phase partitioning bioreactor (TPPB) for the biodegradation of a binary mixture of 2,4-dichlorophenol (DCP) and 4-nitrophenol (4NP). These compounds are extensively used in the chemical industry and are found in many industrial effluents. Although both compounds are toxic and are on the EPA list of priority pollutants, a higher inhibitory effect on microorganisms is exerted by DCP, and our experimental tests were focused on strategies to reduce its negative impact on microbial activity. Sorption/desorption tests for the DCP-4NP mixture were first performed to verify the related uptake/release rates by the tyres, which showed that the tyres had a higher capacity for DCP uptake and practically no affinity for 4NP. An acclimatized mixed culture was then utilized in a sequencing batch reactor (SBR) operated in conventional and two-phase mode. For the binary DCP-4NP mixture a significant reduction in DCP toxicity, and a concomitant enhancement in substrate removal efficiency (up to 83%for DCP and approximate 100% for 4NP) were clearly seen for the TPPB operated with 10% and 15% v/v tyres, for influent concentrations up to 180 mg/L, with practically negligible biodegradation in the conventional single phase reactor. The long-term utilization of tyres was confirmed at an influent loading of 180 mg/L with a test performed over 20 work cycles showing an improvement of the removal performance for both compounds.
Collapse
Affiliation(s)
- M Concetta Tomeia
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10-00015 Monterotondo Stazione, Rome, Italy. Department of Chemical Engineering, Queen's University, Kingston, Ontario Canada K7L 3N6.
| | - Domenica Mosca Angeluccia
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10-00015 Monterotondo Stazione, Rome, Italy. Department of Chemical Engineering, Queen's University, Kingston, Ontario Canada K7L 3N6
| | - Andrew J Daugulis
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10-00015 Monterotondo Stazione, Rome, Italy. Department of Chemical Engineering, Queen's University, Kingston, Ontario Canada K7L 3N6
| |
Collapse
|
10
|
Praveen P, Loh KC. Two-phase biodegradation of phenol in trioctylphosphine oxide impregnated hollow fiber membrane bioreactor. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Tomei MC, Daugulis AJ. Feasibility of operating a solid-liquid bioreactor with used automobile tires as the sequestering phase for the biodegradation of inhibitory compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 125:7-11. [PMID: 23629012 DOI: 10.1016/j.jenvman.2013.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/21/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
Finding new uses for waste or discarded material is an important environmental goal; being able to use a waste material to treat another waste is an even more attractive objective, and this was the purpose of the present work. We previously showed that used automobile tires have an affinity for a toxic contaminant, dichlorophenol (DCP), absorbing and releasing it based on concentration driving forces. Here we have exploited this phenomenon by using used tires as the sequestering phase in a Two-Phase Partitioning Bioreactor (TPPB) to treat otherwise-toxic levels of DCP, far out-performing single phase operation in a sequencing batch bioreactor. A comprehensive examination of substrate loading, reactor exchange ratio, and tire fraction used, demonstrated that the tire-TPPB system could handle a 40% higher influent substrate loading and an increase of the exchange ratio value from 0.5 (prohibitive for single phase operation) to 0.7. Such improvement was obtained with a tire fraction ≤9%, comparable to that for commercial polymers previously employed in TPPBs. This study has opened the door to the identification of other waste plastics suitable for use in TPPBs for the treatment of recalcitrant organic contaminants.
Collapse
Affiliation(s)
- M Concetta Tomei
- Water Research Institute, CNR, Via Salaria km 29,300 CP 10, 00015 Monterotondo Stazione, Rome, Italy.
| | | |
Collapse
|
12
|
Dafoe JT, Daugulis AJ. Manipulating the composition of absorbent polymers affects product and by-product concentration profiles in the biphasic biotransformation of indene to cis-1,2-indandiol. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Poleo EE, Daugulis AJ. Simultaneous biodegradation of volatile and toxic contaminant mixtures by solid-liquid two-phase partitioning bioreactors. JOURNAL OF HAZARDOUS MATERIALS 2013; 254-255:206-213. [PMID: 23611802 DOI: 10.1016/j.jhazmat.2013.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/12/2013] [Accepted: 03/16/2013] [Indexed: 06/02/2023]
Abstract
Microbial inhibition and stripping of volatile compounds are two common problems encountered in the biotreatment of contaminated wastewaters. Both can be addressed by the addition of a hydrophobic auxiliary phase that can absorb and subsequently re-release the substrates, lowering their initial aqueous concentrations. Such systems have been described as Two Phase Partitioning Bioreactors (TPPBs). In the current work the performances of a solid-liquid TPPB, a liquid-liquid TPPB and a single phase reactor for the simultaneous degradation of butyl acetate (the volatile component) and phenol (the toxic component) have been compared. The auxiliary phase used in the solid-liquid TPPB was a 50:50 polymer mixture of styrene-butadiene rubber and Hytrel 8206, with high affinities for butyl acetate and phenol, respectively. The liquid-liquid TPPB employed silicone oil which has fixed physical properties, and had no capacity to absorb the toxic contaminant (phenol). Butyl acetate degradation was enhanced in both TPPBs relative to the single phase, arising from its sequestration into the auxiliary phase, thereby reducing volatilization losses. The solid-liquid TPPB additionally showed a substantial increase in the phenol degradation rate, relative to the silicone oil system, demonstrating the superiority and versatility of polymer based systems.
Collapse
Affiliation(s)
- Eduardo E Poleo
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Andrew J Daugulis
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
14
|
Biodegradation of endocrine disruptors in solid-liquid two-phase partitioning systems by enrichment cultures. Appl Environ Microbiol 2013; 79:4701-11. [PMID: 23728808 DOI: 10.1128/aem.01239-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Naturally occurring and synthetic estrogens and other molecules from industrial sources strongly contribute to the endocrine disruption of urban wastewater. Because of the presence of these molecules in low but effective concentrations in wastewaters, these endocrine disruptors (EDs) are only partially removed after most wastewater treatments, reflecting the presence of these molecules in rivers in urban areas. The development of a two-phase partitioning bioreactor (TPPB) might be an effective strategy for the removal of EDs from wastewater plant effluents. Here, we describe the establishment of three ED-degrading microbial enrichment cultures adapted to a solid-liquid two-phase partitioning system using Hytrel as the immiscible water phase and loaded with estrone, estradiol, estriol, ethynylestradiol, nonylphenol, and bisphenol A. All molecules except ethynylestradiol were degraded in the enrichment cultures. The bacterial composition of the three enrichment cultures was determined using 16S rRNA gene sequencing and showed sequences affiliated with bacteria associated with the degradation of these compounds, such as Sphingomonadales. One Rhodococcus isolate capable of degrading estrone, estradiol, and estriol was isolated from one enrichment culture. These results highlight the great potential for the development of TPPB for the degradation of highly diluted EDs in water effluents.
Collapse
|
15
|
Halecky M, Karlova P, Paca J, Stiborova M, Kozliak EI, Bajpai R, Sedlacek I. Biodegradation of a mixture of mononitrophenols in a packed-bed aerobic reactor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:989-999. [PMID: 23573919 DOI: 10.1080/10934529.2013.773195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Aerobic biodegradation of individual mononitrophenols (4-, 3- and 2-NPs) and their mixture in simulated wastewater was investigated in a packed-bed bench scale bioreactor continuously operated in a flow mode, with a mixed microbial culture adsorbed on expanded slate. Under a low, suboptimal hydraulic retention time (HRT) of 30 min the reactor removed more than 3 g.L(-1).day(-1) of the NP mixture while maintaining a > 85-90% removal efficiency (RE). Under higher HRT values, starting at 45 min, more than 2 g.L(-1).day(-1) of the NP mixture were removed with an RE > 98%. Significant substrate interactions were observed; the addition of other NPs caused the saturation of 2-NP catabolic capacity whereas the addition of 2-NP caused the de-saturation of the 4- and 3-NP catabolic capacity. 3- and 4-NPs appeared to be removed independently, i.e., by different enzyme systems. After ten months of operation, the biofilm composition was significantly altered to become predominantly bacterial. Only one originally inoculated strain remained indicating microbial contamination followed by a genetic material exchange.
Collapse
Affiliation(s)
- Martin Halecky
- Institute of Chemical Technology, Department of Biotechnology, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
16
|
Tomei MC, Annesini MC, Daugulis AJ. 2,4-Dichlorophenol removal in a solid–liquid two phase partitioning bioreactor (TPPB): kinetics of absorption, desorption and biodegradation. N Biotechnol 2012; 30:44-50. [DOI: 10.1016/j.nbt.2012.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 11/29/2022]
|
17
|
Tomei MC, Annesini MC, Daugulis AJ. Solid–liquid two-phase partitioning bioreactors (TPPBs) operated with waste polymers. Case study: 2,4-dichlorophenol biodegradation with used automobile tires as the partitioning phase. Biotechnol Lett 2012; 34:2037-42. [DOI: 10.1007/s10529-012-1013-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/05/2012] [Indexed: 10/28/2022]
|
18
|
Hagesteijn KFL, Daugulis AJ. Passive/aggressive detoxification of continuous flow biotreatment systems using absorptive polymers: partitioning bioreactors treating transient phenol loadings. Biotechnol Lett 2012; 34:1817-24. [DOI: 10.1007/s10529-012-0965-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/22/2012] [Indexed: 11/30/2022]
|