1
|
Konopkina EA, Gopin AV, Pozdeev AS, Chernysheva MG, Kalle P, Pavlova EA, Kalmykov SN, Petrov VG, Borisova NE, Guda AA, Matveev PI. Kinetic features of solvent extraction by N,O-donor ligands of f-elements: a comparative study of diamides based on 1,10-phenanthroline and 2,2'-bipyridine. Phys Chem Chem Phys 2024; 26:2548-2559. [PMID: 38170859 DOI: 10.1039/d3cp05081e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A variant of microfluidic setup design for the study of extraction kinetics has been proposed. Mass transfer constants for Am(III) and Eu(III) and observed rate constants were obtained for N-,O-donor ligands featuring phenanthroline and bipyridyl cores. The possibility of determining rate constants for cations independently of each other makes it possible to observe the kinetic effect of separation. The extraction rate was found to be lower for the bipyridyl ligand, compared to phenanthroline. The values of the rotation barriers for the ligands were calculated using the DFT method. The values correlate with the obtained low extraction rate for the bipyridyl ligand. Also, crystallographic data showing anti-conformation for the bipyridyl ligand align with the kinetic data. Surface tension was also determined for the systems with the studied ligands. It is shown that at equal ligand concentrations, the value of surface tension agrees with the extraction rate. Furthermore, it is shown that for the bipyridyl ligand, prior contact of the organic phase with nitric acid significantly affects the surface tension.
Collapse
Affiliation(s)
- Ekaterina A Konopkina
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Alexander V Gopin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Anton S Pozdeev
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT, 84322-0300, USA
| | - Maria G Chernysheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Paulina Kalle
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Elizaveta A Pavlova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Stepan N Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Vladimir G Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Nataliya E Borisova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Alexander A Guda
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 3440906, Russian Federation
| | - Petr I Matveev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| |
Collapse
|
2
|
A. Bajaber M, H. Ragab A, Sakr AK, Atia BM, Fathy WM, Gado MA. Application of a new derivatives of traizole Schiff base on chromium recovery from its wastewater. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2147440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Majed A. Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed H. Ragab
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed K. Sakr
- Department of Geology Isotopes, Nuclear Materials Authority,Cairo, Egypt
| | - Bahig M. Atia
- Department of Geology Isotopes, Nuclear Materials Authority,Cairo, Egypt
| | - Wael M. Fathy
- Faculty of Engineering, Mining and Petroleum Dept, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed A. Gado
- Department of Geology Isotopes, Nuclear Materials Authority,Cairo, Egypt
| |
Collapse
|
3
|
Jing X, Sun Z, Zhao D, Sun H, Ren J. A Mini-Review on Methods of Solvent Extraction Kinetics for Heavy Metal Ions. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s107042722202001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Tajabadi F, Ghambarian M. Carrier-mediated extraction: Applications in extraction and microextraction methods. Talanta 2020; 206:120145. [PMID: 31514894 DOI: 10.1016/j.talanta.2019.120145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022]
Abstract
The present review is mainly focused on the overview of carrier mediated extraction (principles and applications) being reported over the last two decades and discusses the extraction process through carriers in various extraction methods such as Bulk liquid membranes, supported liquid membranes, emulsion liquid membranes and polymer inclusion membranes. Several types of carriers such as neutral, anionic, cationic, macrocyclic and supramulecular carriers are discussed. Also their application for metal, anions, drugs and environmental compounds are investigated. Carriers have been demonstrated to be useful for the selective extraction and recovery of numerous cations and anions enhancing the extraction properties of traditional solvent extraction and ion-exchange processes. Several types of carriers have different transport mechanisms. In these mechanisms, transport configurations are addressed and emphasized and the detailed information on the type of carrier are presented along with their specific separation modes. The performance of different carriers in terms of selectivity as well as efficiency are also discussed. Finally, the application of different carriers for the extraction of various compounds are compared and reviewed. To our best knowledge no reviews have been published on carrier-mediated extraction methods.
Collapse
Affiliation(s)
- Fateme Tajabadi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | - Mahnaz Ghambarian
- Iranian Research and Development Center for Chemical Industries, ACECR, Tehran, Iran
| |
Collapse
|
5
|
Béni Á, Nagy D, Kapitány S, Posta J. Separation/preconcentration of chromium species with continuous liquid-liquid extraction device and its determination by AAS. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Ko YJ, Choi K, Lee S, Jung KW, Hong S, Mizuseki H, Choi JW, Lee WS. Strong chromate-adsorbent based on pyrrolic nitrogen structure: An experimental and theoretical study on the adsorption mechanism. WATER RESEARCH 2018; 145:287-296. [PMID: 30165314 DOI: 10.1016/j.watres.2018.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/11/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Chromate is considered a toxic contaminant in various water sources because it poses a risk to animal and human health. To meet the stringent limits for chromium in water and wastewater, pyrrolic nitrogen structure was investigated as a chromate adsorbent for aqueous solutions, employing a polypyrrole coating on carbon black. The characteristics of the adsorbent were analyzed by high-resolution transmission electron microscopy, energy-filtered transmission electron microscopy, and X-ray photoelectron spectroscopy. Chromate was adsorbed as both Cr(III) and Cr(VI). The chromate adsorption capacity increased (from 50.84 to 174.81 mg/g) with increasing amounts of pyrrole monomers (from 50 to 86%) in the adsorbent. The adsorption capacity was well-correlated with the pyrrolic nitrogen content (from 2.06 to 6.57 at%) in the adsorbent, rather than other types of nitrogen. The optimized adsorption capacity (174.81 mg/g in the equilibrium batch experiment and 211.10 mg/g at an initial pH of 3) was far superior to those of conventional adsorbents. We investigated the mechanism behind this powerful chromate adsorption on pyrrolic nitrogen via physical/chemical analyses of the pH-dependent adsorption behavior, supported by first-principles calculation based on density functional theory. We found that Cr(III) and Cr(VI) adsorption followed different reaction paths. Cr(III) adsorption occurred in two sequential steps: 1) A Jones oxidation reaction (JOR)-like reaction of Cr(VI) with pyrrolic N that generates Cr(III), and 2) Cr(III) adsorption on the deprotonated pyrrolic N through Cr(III)-N covalent bonding. Cr(VI) adsorption followed an alternative path: hydrogen-bonding to the deprotonation-free pyrrolic N sites. The pH-dependent fractional deprotonation of the pyrrolic N sites by the JOR-like reaction in the presence of chromate played an important role in the adsorption.
Collapse
Affiliation(s)
- Young-Jin Ko
- Center for Electronic Materials, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Keunsu Choi
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Soonjae Lee
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kyung-Won Jung
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seokwon Hong
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hiroshi Mizuseki
- Computational Science Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Jae-Woo Choi
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Wook-Seong Lee
- Center for Electronic Materials, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
7
|
Chromium removal from industrial wastewater using Phyllostachys pubescens biomass loaded Cu-S nanospheres. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
AbstractIn this paper, a new surface modification method was reported for the preparation of Phyllostachys pubescens powder as an effective adsorbent for the removal of chromium. Complex copper sulfide (Cu-S)nanospheres were evenly dispersed and loaded into the internal surface of the adsorbent, which provided both the ion exchange and oxidative-reductive properties. The composite showed an excellent adsorption efficacy for Cr(III) and Cr(VI). The surface properties of the obtained materials were characterized by FTIR and SEM. Maximum adsorption for Cr(III) and Cr(VI) was observed at pH 6.1 and 1.9, respectively. The experimental sorption equilibrium data were modeled using Langmuir and Freundlich isotherm equations. It was found that the maximum adsorption capacities of Cr(III) and Cr(VI) were 52.30 mg g-1 and 94.25 mg g-1, respectively. The adsorption mechanism analysis inferred that the major adsorption mode of Cr(III) was ion exchange, and Cr(VI) was oxide-reduction.
Collapse
|
8
|
Wang W. Chromium (Ⅵ) removal from aqueous solutions through powdered activated carbon countercurrent two-stage adsorption. CHEMOSPHERE 2018; 190:97-102. [PMID: 28985541 DOI: 10.1016/j.chemosphere.2017.09.141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/29/2017] [Accepted: 09/25/2017] [Indexed: 05/27/2023]
Abstract
To exploit the adsorption capacity of commercial powdered activated carbon (PAC) and to improve the efficiency of Cr(VI) removal from aqueous solutions, the adsorption of Cr(VI) by commercial PAC and the countercurrent two-stage adsorption (CTA) process was investigated. Different adsorption kinetics models and isotherms were compared, and the pseudo-second-order model and the Langmuir and Freundlich models fit the experimental data well. The Cr(VI) removal efficiency was >80% and was improved by 37% through the CTA process compared with the conventional single-stage adsorption process when the initial Cr(VI) concentration was 50 mg/L with a PAC dose of 1.250 g/L and a pH of 3. A calculation method for calculating the effluent Cr(VI) concentration and the PAC dose was developed for the CTA process, and the validity of the method was confirmed by a deviation of <5%.
Collapse
Affiliation(s)
- Wenqiang Wang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.
| |
Collapse
|
9
|
Selective recovery of Au(III), Pt(IV), and Pd(II) from aqueous solutions by liquid–liquid extraction using ionic liquid Aliquat-336. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.01.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Jin Y, Zou D, Wu S, Cao Y, Li J. Extraction Kinetics of Phosphoric Acid from the Phosphoric Acid—Calcium Chloride Solution by Tri-n-butyl Phosphate. Ind Eng Chem Res 2014. [DOI: 10.1021/ie503273j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Jin
- Department of Chemical
Engineering, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Da Zou
- Department of Chemical
Engineering, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Shiqin Wu
- Department of Chemical
Engineering, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Yuqing Cao
- Department of Chemical
Engineering, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Jun Li
- Department of Chemical
Engineering, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| |
Collapse
|
11
|
Kalidhasan S, Kumar ASK, Rajesh V, Rajesh N. An efficient ultrasound assisted approach for the impregnation of room temperature ionic liquid onto Dowex 1×8 resin matrix and its application toward the enhanced adsorption of chromium (VI). JOURNAL OF HAZARDOUS MATERIALS 2012; 213-214:249-257. [PMID: 22365143 DOI: 10.1016/j.jhazmat.2012.01.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 12/08/2011] [Accepted: 01/27/2012] [Indexed: 05/31/2023]
Abstract
The work discussed in this paper is based on the utilization of ultrasound in conjunction with an ionic liquid (Aliquat 336) impregnated Dowex 1×8 resin for the effective adsorption of chromium. Ionic liquids are known for their selectivity toward metal extraction and ultrasonic medium offers efficient energy transfer for impregnating the ionic liquid in the resin matrix. The molecular interaction between the ionic liquid impregnated resin and chromium was studied through various physicochemical and spectroscopic techniques. The influence of various analytical parameters on the adsorption of Cr(VI) such as pH, adsorbent dosage, temperature and interference of foreign ions was studied in detail. Chromium (VI) was quantitatively adsorbed in the pH range of 3.5-4, with a high adsorption capacity of 230.9 mg g(-1) in conformity with the Langmuir isotherm model. The study of thermodynamic parameters showed that the adsorption process is exothermic and spontaneous. The adsorbent could be regenerated using 1 mol L(-1) HCl-0.28 mol L(-1) ascorbic acid mixture. Chromium could be effectively detoxified from an industrial effluent and finally the developed method was validated with the analysis of a certified reference material (BCR-715). The obtained results indicated that the ultrasonic assisted impregnation of the room temperature ionic liquid significantly enhances and improves the removal efficiency of Cr(VI).
Collapse
Affiliation(s)
- S Kalidhasan
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani-Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. Dist 500 078, AP, India
| | | | | | | |
Collapse
|