1
|
Leng C, Wang Q, Zhang G, Xu M, Yang X. Transport of prednisolone, cortisone, and triamcinolone acetonide in agricultural soils: Sorption isotherms, transport dynamics, and field-scale simulation. ENVIRONMENTAL RESEARCH 2023; 239:117287. [PMID: 37813136 DOI: 10.1016/j.envres.2023.117287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
The occurrence of glucocorticoids (GCs) in agricultural soils has raised concerns due to their high polarity, widespread biological effects in vertebrates, and their potential to disrupt vital processes such as glucose metabolism and immune function. This study investigated the sorption and transport dynamics of three GCs, namely cortisone (COR), prednisolone (PNL), and triamcinolone acetonide (TCA) in five soil-water systems (S1-S5 systems). The sorption data of the GCs were fitted to a linear sorption model (R2 = 0.95-0.99), with organic carbon (OC) normalized sorption coefficients ranging from 2.26 ± 0.02 to 3.36 ± 0.02. The sorption magnitudes (Kd) of the GCs exhibited a nearly linear correlation with their corresponding octanol-water partition coefficients (logKow) in the S1-S3 systems. However, some deviations from linearity were observed in the S4 and S5 systems. Furthermore, a strong correlation was observed between the Kd values of the GCs and the OC% of the soils. These data indicated that specific and hydrophobic partitioning interactions governed the sorption of GCs onto soils. The transport data of the GCs were fitted to a two-site nonequilibrium model using the CXTFIT program (R2 = 0.82-0.98). The retardation factor (R) for each GC exhibited a positive correlation with the OC% and clay contents of soils. Additionally, the relationships between the logR values and logKow values of the GCs deviated slightly from linear correlation in most columns. These results indicated that specific interactions in the columns were more pronounced compared to the batch systems. An initial field-scale simulation demonstrated that frequent precipitation can facilitate the dilution and vertical transport of the GCs through soil profiles. The transport potential of the GCs was affected by the properties and soils and GCs. Overall, these findings provide valuable insights into the transport potential and associated environmental risks of GCs in soil-water systems.
Collapse
Affiliation(s)
- Chen Leng
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingwei Wang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Ge Zhang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Manxin Xu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, PR China.
| |
Collapse
|
2
|
Castellanos RM, Bassin JP, Bila DM, Dezotti M. Biodegradation of natural and synthetic endocrine-disrupting chemicals by aerobic granular sludge reactor: Evaluating estrogenic activity and estrogens fate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116551. [PMID: 33529898 DOI: 10.1016/j.envpol.2021.116551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
In this study, the biodegradation of endocrine-disrupting chemicals (EDCs) (namely the natural and synthetic estrogens 17β-estradiol (E2) and 17α-ethinylestradiol (EE2), respectively) was assessed in an aerobic granular sludge (AGS) sequencing batch reactor (SBR) treating simulated domestic sewage. To better understand the fate of these compounds, their concentrations were determined in both liquid and solid (biomass) samples. Throughout the operation of the reactor, subjected to alternating anaerobic and aerated conditions, the removal of the hormones, both present in the influent at a concentration of 20 μg L-1, amounted to 99% (for E2) and 93% (for EE2), with the latter showing higher resistance to biodegradation. Through yeast estrogen screen assays, an average moderate residual estrogenic activity (0.09 μg L-1 EQ-E2) was found in the samples analysed. E2 and EE2 profiles over the SBR cycle suggest a rapid initial adsorption of these compounds on the granular biomass occurring anaerobically, followed by biodegradation under aeration. A possible sequence of steps for the removal of the micropollutants, including the key microbial players, was proposed. Besides the good capability of the AGS on EDCs removal, the results revealed high removal efficiencies (>90%) of COD, ammonium and phosphate. Most of the incoming organics (>80%) were consumed under anaerobic conditions, when phosphate was released (75.2 mgP L-1). Nitrification and phosphate uptake took place along the aeration phase, with effluent ammonium and phosphate levels around 2 mg L-1. Although nitrite accumulation took place over the cycle, nitrate consisted of the main oxidized nitrogen form in the effluent. The specific ammonium and phosphate uptake rates attained in the SBR were found to be 3.3 mgNH4+-N gVSS-1.h-1 and 6.7 mgPO43--P gVSS-1 h-1, respectively, while the specific denitrification rate corresponded to 1.0 mgNOx--N gVSS-1 h-1.
Collapse
Affiliation(s)
- Reynel Martínez Castellanos
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, 21941-972, Rio de Janeiro, Brazil
| | - João P Bassin
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, 21941-972, Rio de Janeiro, Brazil.
| | - Daniele M Bila
- Department of Environmental and Sanitary Engineering, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Márcia Dezotti
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, 21941-972, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
17 beta-estradiol biodegradation by anaerobic granular sludge: Effect of iron sources. Sci Rep 2020; 10:7777. [PMID: 32385383 PMCID: PMC7210892 DOI: 10.1038/s41598-020-64557-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/26/2020] [Indexed: 12/05/2022] Open
Abstract
Steroid estrogens, as typical endocrine disrupting chemicals (EDCs), have raised an increasing concern due to their endocrine disrupting effects on aquatic animals and potential hazards on human health. Batch experiments were conducted to study 17 beta-estradiol (E2) removal and Estradiol Equivalent Quantity (EEQ) elimination by anaerobic granular sludge (AnGS) combined with different valence iron sources. Results showed that E2 was effectively biodegraded and transformed into E1 by AnGS. The addition of different valence iron sources all promoted E2 degradation, reduced E2 Equivalent Quotient (EEQ) concentration, and increased methane production in the batch experiments. The enhancement effect of zero-valent iron (ZVI) on E2 removal and EEQ elimination was stronger than that of Fe2+ and Fe3+ in our experiments. The enhancement effect proportion of ZVI corrosion, Fe2+, and Fe3+ in the process of E2 degradation by AnGS combined with ZVI were 42.26%, 40.21% and 17.53%, respectively.
Collapse
|
4
|
Li C, Kong X, Lan L, Tadda MA, Liu D. Effects of carbon sources on 17 beta-estradiol degradation by Sphingomonas sp. and the analysis of the involved intracellular metabolomics. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:197-206. [PMID: 31841122 DOI: 10.1039/c9em00438f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
17β-estradiol (E2) ubiquitously exists in various water bodies with long-term endocrine-disrupting and carcinogenic impacts on wildlife even at the trace level of ng L-1. However, it remains unclear how easy-to-degrade carbon sources alter E2 biodegradation patterns. In this study, E2 biodegradation by Sphingomonas sp. MCCC 1A06484 was investigated with regard to alternative carbon sources. Results showed that the bacterium preferentially utilized glucose, sodium succinate and sodium acetate over E2. Interestingly, the presence of these preferred nutrients increased the E2 removal efficiency by 20.1%. Furthermore, a positive relation (p < 0.05) between the utilization of total organic carbon (TOC) and E2 was found. Using intracellular metabolomics by UHPLC-QTOF-MS, 11 up-regulated and 35 down-regulated metabolites (variable importance > 1, p < 0.05) were identified in the bacterium when cultivated with E2 under various carbon and nitrogen backgrounds. The E2 exposure contributed to metabolism changes of lipid, nucleotide, carbohydrate, amino acid and membrane transport, which were considered to play roles in the E2 metabolism. The up-regulated phosphatidylcholine might act as an indicator during the bacterial degradation of E2. Generally, this study contributes to an in-depth understanding of E2 biodegradation in complex environments with multiple carbon and nitrogen sources.
Collapse
Affiliation(s)
- Changwei Li
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, China.
| | - Xianwang Kong
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, China.
| | - Lihua Lan
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, China.
| | - Musa Abubakar Tadda
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, China.
| | - Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, China.
| |
Collapse
|
5
|
Zhang H, Wang L, Li Y, Wang P, Wang C. Background nutrients and bacterial community evolution determine 13C-17β-estradiol mineralization in lake sediment microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2304-2311. [PMID: 30332663 DOI: 10.1016/j.scitotenv.2018.10.098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Microbial biodegradation plays a key role in determining the fate of estrogens and can be affected by the background nutrients in natural environments. However, information on how microbial community and nutrient conditions influence estrogen biodegradation is very limited. In this study, 13C-17β-estradiol (13C-E2) was supplied to sediments from the Central Area (CA), Gonghu (GH), Meiliang (ML), and Zhushan (ZS) Bays of Taihu Lake to investigate shifts in bacterial community structure associated with 13C-E2 mineralization over a 30-day incubation period, and the relationships between the background nutrients and cumulative 13C-E2 mineralization rates. The cumulative 13C-E2 mineralization rate for ZS Bay was 87.40% on Day 30, which was significantly greater (P < 0.05) than the rates for ML Bay (67.74%), GH Bay (62.79%), and the CA (52.60%). A correlation analysis suggested that the cumulative 13C-E2 mineralization rate was significantly and positively related to the concentrations of total organic carbon (P < 0.01), nitrate-nitrogen (P < 0.05), ammonia-nitrogen (P < 0.001), and dissolved phosphorus (P < 0.001) in the sediments. Although the highest relative abundances of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes (contain most estrogen-degrading bacteria) were not initially in the ZS Bay sediment, the addition of 13C-E2 stimulated their growth in all sediments, with the greatest increases observed for ZS Bay. At the genus level, the cumulative increases of seven genera (Nitrosomonas, Bacillus, Pseudomonas, Sphingomonas, Novosphingobium, Alcaligenes and Mycobacterium) considered to be associated with E2 degradation were also highest for ZS Bay (80.2 times), followed by ML Bay (39.8 times), GH Bay (28.1 times), and CA (19.0 times). Besides the higher nutrient concentrations, the responses of bacteria to 13C-E2 addition in ZS Bay could also explain it having the highest cumulative 13C-E2 mineralization rate. These results indicate both the background nutrients and bacterial community evolution in the sediments determined the 13C-E2 mineralization rates.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
6
|
Kassotaki E, Pijuan M, Rodriguez-Roda I, Buttiglieri G. Comparative assessment of endocrine disrupting compounds removal in heterotrophic and enriched nitrifying biomass. CHEMOSPHERE 2019; 217:659-668. [PMID: 30447613 DOI: 10.1016/j.chemosphere.2018.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Despite the number of studies that have investigated the fate of endocrine disrupting compounds (EDCs), to date results are still contradictory and more research is required to evaluate the contribution of the microbial communities present in different engineered treatment systems. Thus, autotrophic and heterotrophic types of biomass were here compared in terms of efficiency in the removal of estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynilestradiol (EE2) and bisphenol A (BPA). Experiments were performed with enriched nitrifying activated sludge (NAS) and enriched ammonia oxidizing bacteria (AOB) sludge cultivated at lab-scale, as well as with conventional activated sludge (CAS) from a full-scale wastewater treatment plant. Both enriched NAS and AOB demonstrated a negligible degrading capacity. In both cases, the studied EDCs exhibited low removals (<14%) and showed no correlation with the increasing nitrification rates contradicting some of the hypothesis present in literature. Contrariwise, the biodegradation capabilities of the heterotrophic fraction of CAS were highlighted. E2 and E3 were removed by up to 100% and 78%, respectively. E1 was found to be the main transformation product of E2 (almost quantitative oxidation) and it was also highly eliminated. Finally, EE2 and BPA were more persistent biologically with removals ranging from 10% to 39%. For these two compounds similar removals were obtained during experiments with heat-inactivated biomass suggesting that sorption could be a relevant route of elimination.
Collapse
Affiliation(s)
- Elissavet Kassotaki
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain.
| | - Maite Pijuan
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain.
| | - Ignasi Rodriguez-Roda
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain; LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071, Girona, Spain.
| | - Gianluigi Buttiglieri
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, 17003, Girona, Spain.
| |
Collapse
|
7
|
Du Z, Chen Y, Li X. Quantitative proteomic analyses of the microbial degradation of estrone under various background nitrogen and carbon conditions. WATER RESEARCH 2017; 123:361-368. [PMID: 28686938 DOI: 10.1016/j.watres.2017.06.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/12/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
Microbial degradation of estrogenic compounds can be affected by the nitrogen source and background carbon in the environment. However, the underlying mechanisms are not well understood. The objective of this study was to elucidate the molecular mechanisms of estrone (E1) biodegradation at the protein level under various background nitrogen (nitrate or ammonium) and carbon conditions (no background carbon, acetic acid, or humic acid as background carbon) by a newly isolated bacterial strain. The E1 degrading bacterial strain, Hydrogenophaga atypica ZD1, was isolated from river sediments and its proteome was characterized under various experimental conditions using quantitative proteomics. Results show that the E1 degradation rate was faster when ammonium was used as the nitrogen source than with nitrate. The degradation rate was also faster when either acetic acid or humic acid was present in the background. Proteomics analyses suggested that the E1 biodegradation products enter the tyrosine metabolism pathway. Compared to nitrate, ammonium likely promoted E1 degradation by increasing the activities of the branched-chain-amino-acid aminotransferase (IlvE) and enzymes involved in the glutamine synthetase-glutamine oxoglutarate aminotransferase (GS-GOGAT) pathway. The increased E1 degradation rate with acetic acid or humic acid in the background can also be attributed to the up-regulation of IlvE. Results from this study can help predict and explain E1 biodegradation kinetics under various environmental conditions.
Collapse
Affiliation(s)
- Zhe Du
- Department of Civil Engineering, University of Nebraska-Lincoln, USA
| | - Yinguang Chen
- Department of Environmental Engineering, Tongji University, China
| | - Xu Li
- Department of Civil Engineering, University of Nebraska-Lincoln, USA.
| |
Collapse
|
8
|
Mai L, van den Akker B, Du J, Kookana RS, Fallowfield H. Impact of exogenous organic carbon on the removal of chemicals of concern in the high rate nitrifying trickling filters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 174:7-13. [PMID: 26989940 DOI: 10.1016/j.jenvman.2016.02.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
The application of fixed bed high rate nitrifying trickling filters (NTFs) for the removal of track organic chemicals of concern (CoC) is less well known than their application to nutrient removal in water treatment. Particularly, the effect of exogenous organic carbon substrate (sucrose) loading on the performance of NTFs is not well understood. A laboratory-scale NTF system was operated in recirculation mode, with the objective of removing ammonia and CoC simultaneously. The efficiency of a high rate NTF for removal both of low concentration of ammonia (5 mg NH4-N L(-1)) and different concentrations of CoC in the presence of an exogenous organic carbon substrate (30 mg total organic carbon (TOC) L(-1)) was investigated. In the presence of exogenous organic carbon, the results demonstrated that the high rate NTF was able to successfully remove most of the CoCs investigated, with the removal ranging from 20.2% to 87.54%. High removal efficiencies were observed for acetaminophen (87.54%), bisphenol A (86.60%), trimethoprim (86.24%) and 17α-ethynylestradiol (80.60%). It was followed by the medium removal efficiency for N, N-diethyl-m-toluamide (61.31%) and atrazine (56.90%). In contrast, the removal of caffeine (28.43%) and benzotriazole (20.20%) was poorer in the presence of exogenous organic carbon. The removal efficiency for CoC was also compared with the results obtained in our previous study in the absence of exogenous organic carbon. The results showed that the addition of exogenous organic carbon was able to improve the removal of some of the CoC. Significant TOC percentage removals (45.68%-84.43%) and ammonia removal rate (mean value of 0.44 mg NH4-N L(-1) h(-1)) were also achieved in this study. The findings from this study provide valuable information for optimising the efficiency of high rate NTF for the removal of ammonia, CoC and TOC.
Collapse
Affiliation(s)
- Lei Mai
- Department of Environmental Health, School of Environment, Flinders University, Adelaide, South Australia, 5042, Australia
| | - Ben van den Akker
- Department of Environmental Health, School of Environment, Flinders University, Adelaide, South Australia, 5042, Australia; Australian Water Quality Centre, Adelaide, South Australia, 5000, Australia
| | - Jun Du
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, Waite Campus, Glen Osmond, South Australia, 5064, Australia
| | - Rai S Kookana
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, Waite Campus, Glen Osmond, South Australia, 5064, Australia; University of Adelaide, Waite Campus, Glen Osmond, South Australia, 5064, Australia
| | - Howard Fallowfield
- Department of Environmental Health, School of Environment, Flinders University, Adelaide, South Australia, 5042, Australia.
| |
Collapse
|
9
|
Durán-Álvarez JC, Prado B, González D, Sánchez Y, Jiménez-Cisneros B. Environmental fate of naproxen, carbamazepine and triclosan in wastewater, surface water and wastewater irrigated soil - Results of laboratory scale experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:350-62. [PMID: 26312409 DOI: 10.1016/j.scitotenv.2015.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/15/2015] [Accepted: 08/07/2015] [Indexed: 05/12/2023]
Abstract
Lab-scale photolysis, biodegradation and transport experiments were carried out for naproxen, carbamazepine and triclosan in soil, wastewater and surface water from a region where untreated wastewater is used for agricultural irrigation. Results showed that both photolysis and biodegradation occurred for the three emerging pollutants in the tested matrices as follows: triclosan>naproxen>carbamazepine. The highest photolysis rate for the three pollutants was obtained in experiments using surface water, while biodegradation rates were higher in wastewater and soil than in surface water. Carbamazepine showed to be recalcitrant to biodegradation both in soil and water; although photolysis occurred at a higher level than biodegradation, this compound was poorly degraded by natural processes. Transport experiments showed that naproxen was the most mobile compound through the first 30cm of the soil profile; conversely, the mobility of carbamazepine and triclosan through the soil was delayed. Biodegradation of target pollutants occurred within soil columns during transport experiments. Triclosan was not detected either in leachates or the soil in columns, suggesting its complete biodegradation. Data of these experiments can be used to develop more reliable fate-on-the-field and environmental risk assessment studies.
Collapse
Affiliation(s)
- J C Durán-Álvarez
- Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Mexico
| | - B Prado
- Instituto de Geología, Universidad Nacional Autónoma de México, Mexico
| | - D González
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Mexico
| | - Y Sánchez
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Mexico
| | | |
Collapse
|
10
|
Brasil Bernardelli JK, Liz MV, Belli TJ, Lobo-Recio MA, Lapolli FR. REMOVAL OF ESTROGENS BY ACTIVATED SLUDGE UNDER DIFFERENT CONDITIONS USING BATCH EXPERIMENTS. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2015. [DOI: 10.1590/0104-6632.20150322s00003667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - M. V. Liz
- Technological Federal University of Paraná, Brazil
| | - T. J. Belli
- Federal University of Santa Catarina, Brazil
| | - M. A. Lobo-Recio
- Federal University of Santa Catarina, Brazil; Federal University of Santa Catarina, Brazil
| | | |
Collapse
|
11
|
Filipič J, Kraigher B, Tepuš B, Kokol V, Mandić-Mulec I. Effect of Low-Density Static Magnetic Field on the Oxidation of Ammonium by Nitrosomonas europaea and by Activated Sludge in Municipal Wastewater. Food Technol Biotechnol 2015; 53:201-206. [PMID: 27904349 DOI: 10.17113/ftb.53.02.15.3629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ammonium removal is a key step in biological wastewater treatment and novel approaches that improve this process are in great demand. The aim of this study is to test the hypothesis that ammonium removal from wastewater can be stimulated by static magnetic fields. This was achieved by analysis of the effects of static magnetic field (SMF) on the growth and activity of Nitrosomonas europaea, a key ammonia-oxidising bacterium, where increased growth and increased ammonia oxidation rate were detected when bacteria were exposed to SMF at 17 mT. Additionally, the effect of SMF on mixed cultures of ammonia oxidisers in activated sludge, incubated in sequencing batch bioreactors simulating wastewater treatment process, was assessed. SMFs of 30 and 50 mT, but not of 10 mT, increased ammonium oxidation rate in municipal wastewater by up to 77% and stimulated ammonia oxidiser growth. The results demonstrate the potential for use of static magnetic fields in increasing ammonium removal rates in biological wastewater treatment plants.
Collapse
Affiliation(s)
- Jasmina Filipič
- Ptuj Municipal Service Corporation, Puhova ulica 10, SI-2250 Ptuj, Slovenia; University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology,
Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Barbara Kraigher
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology,
Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Brigita Tepuš
- Ptuj Municipal Service Corporation, Puhova ulica 10, SI-2250 Ptuj, Slovenia
| | - Vanja Kokol
- University of Maribor, Faculty of Mechanical Engineering, Institute for Engineering Materials and Design, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Ines Mandić-Mulec
- Ptuj Municipal Service Corporation, Puhova ulica 10, SI-2250 Ptuj, Slovenia
| |
Collapse
|
12
|
Petrie B, McAdam EJ, Hassard F, Stephenson T, Lester JN, Cartmell E. Diagnostic investigation of steroid estrogen removal by activated sludge at varying solids retention time. CHEMOSPHERE 2014; 113:101-108. [PMID: 25065796 DOI: 10.1016/j.chemosphere.2014.04.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
The impact of solids retention time (SRT) on estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-ethinylestradiol (EE2) removal in an activated sludge plant (ASP) was examined using a pilot plant to closely control operation. Exsitu analytical methods were simultaneously used to enable discrimination of the dominant mechanisms governing estrogen removal following transitions in SRT from short (3d) to medium (10d) and long (27d) SRTs which broadly represent those encountered at full-scale. Total estrogen (∑EST, i.e., sum of E1, E2, E3 and EE2) removals which account for aqueous and particulate concentrations were 70±8, 95±1 and 93±2% at 3, 10 and 27d SRTs respectively. The improved removal observed following an SRT increase from 3 to 10d was attributable to the augmented biodegradation of the natural estrogens E1 and E2. Interestingly, estrogen biodegradation per bacterial cell increased with SRT. These were 499, 1361 and 1750ng 10(12) viable cells(-1)d(-1). This indicated an improved efficiency of the same group or the development of a more responsive group of bacteria. In this study no improvement in absolute ∑EST removal was observed in the ASP when SRT increased from 10 to 27d. However, batch studies identified an augmented biomass sorption capacity for the more hydrophobic estrogens E2 and EE2 at 27d, equivalent to an order of magnitude. The lack of influence on estrogen removal during pilot plant operation can be ascribed to their distribution within activated sludge being under equilibrium. Consequently, lower wastage of excess sludge inherent of long SRT operation counteracts any improvement in sorption.
Collapse
Affiliation(s)
- Bruce Petrie
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Ewan J McAdam
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Francis Hassard
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Tom Stephenson
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - John N Lester
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Elise Cartmell
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK.
| |
Collapse
|
13
|
Alvarino T, Suarez S, Lema JM, Omil F. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors. JOURNAL OF HAZARDOUS MATERIALS 2014; 278:506-13. [PMID: 25010455 DOI: 10.1016/j.jhazmat.2014.06.031] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/28/2014] [Accepted: 06/17/2014] [Indexed: 05/12/2023]
Abstract
The removal of 16 Pharmaceutical and Personal Care Products (PPCPs) were studied in a conventional activated sludge (CAS) unit and an upflow anaerobic sludge blanket (UASB) reactor. Special attention was paid to each biomass conformation and activity as well as to operational conditions. Biodegradation was the main PPCP removal mechanism, being higher removals achieved under aerobic conditions, except in the case of sulfamethoxazole and trimetrophim. Under anaerobic conditions, PPCP biodegradation was correlated with the methanogenic rate, while in the aerobic reactor a relationship with nitrification was found. Sorption onto sludge was influenced by biomass conformation, being only significant for musk fragrances in the UASB reactor, in which an increase of the upward velocity and hydraulic retention time improved this removal. Additionally, PPCP sorption increased with time in the UASB reactor, due to the granular biomass structure which suggests the existence of intra-molecular diffusion.
Collapse
Affiliation(s)
- T Alvarino
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - S Suarez
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - J M Lema
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - F Omil
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
14
|
Ziels RM, Lust MJ, Gough HL, Strand SE, Stensel HD. Influence of bioselector processes on 17α-ethinylestradiol biodegradation in activated sludge wastewater treatment systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6160-6167. [PMID: 24810975 DOI: 10.1021/es405351b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The removal of the potent endocrine-disrupting estrogen hormone, 17α-ethinylestradiol (EE2), in municipal wastewater treatment plant (WWTP) activated sludge (AS) processes can occur through biodegradation by heterotrophic bacteria growing on other organic wastewater substrates. Different kinetic and metabolic substrate utilization conditions created with AS bioselector processes can affect the heterotrophic population composition in AS. The primary goal of this research was to determine if these changes also affect specific EE2 biodegradation kinetics. A series of experiments were conducted with parallel bench-scale AS reactors treating municipal wastewater with estrogens at 100-300 ng/L concentrations to evaluate the effect of bioselector designs on pseudo first-order EE2 biodegradation kinetics normalized to mixed liquor volatile suspended solids (VSS). Kinetic rate coefficient (kb) values for EE2 biodegradation ranged from 5.0 to 18.9 L/g VSS/d at temperatures of 18 °C to 24 °C. EE2 kb values for aerobic biomass growth at low initial food to mass ratio feeding conditions (F/Mf) were 1.4 to 2.2 times greater than that from growth at high initial F/Mf. Anoxic/aerobic and anaerobic/aerobic metabolic bioselector reactors achieving biological nutrient removal had similar EE2 kb values, which were lower than that in aerobic AS reactors with biomass growth at low initial F/Mf. These results provide evidence that population selection with growth at low organic substrate concentrations can lead to improved EE2 biodegradation kinetics in AS treatment.
Collapse
Affiliation(s)
- Ryan M Ziels
- Department of Civil and Environmental Engineering, University of Washington , Seattle, Washington 98195-2700, United States
| | | | | | | | | |
Collapse
|
15
|
Marti EJ, Batista JR. Impact of secondary treatment types and sludge handling processes on estrogen concentration in wastewater sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:1056-1067. [PMID: 24239827 DOI: 10.1016/j.scitotenv.2013.10.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
Endocrine-disrupting compounds (EDCs), such as estrogen, are known to be present in the aquatic environment at concentrations that negatively affect fish and other wildlife. Wastewater treatment plants (WWTPs) are major contributors of EDCs into the environment. EDCs are released via effluent discharge and land application of biosolids. Estrogen removal in WWTPs has been studied in the aqueous phase; however, few researchers have determined estrogen concentration in sludge. This study focuses on estrogen concentration in wastewater sludge as a result of secondary treatment types and sludge handling processes. Grab samples were collected before and after multiple treatment steps at two WWTPs receiving wastewater from the same city. The samples were centrifuged into aqueous and solid phases and then processed using solid phase extraction. Combined natural estrogens (estrone, estradiol and estriol) were measured using an enzyme-linked immunosorbent assay (ELISA) purchased from a manufacturer. Results confirmed that activated sludge treatments demonstrate greater estrogen removal compared to trickling filters and mass concentration of estrogen was measured for the first time on trickling filter solids. Physical and mechanical sludge treatment processes, such as gravity thickeners and centrifuges, did not significantly affect estrogen removal based on mass balance calculations. Dissolved air flotation thickening demonstrated a slight decrease in estrogen concentration, while anaerobic digestion resulted in increased mass concentration of estrogen on the sludge and a high estrogen concentration in the supernatant. Although there are no state or federally mandated discharge effluent standards or sludge application standards for estrogen, implications from this study are that trickling filters would need to be exchanged for activated sludge treatment or followed by an aeration basin in order to improve estrogen removal. Also, anaerobic digestion may need to be replaced with aerobic digestion for sludge that is intended for land application.
Collapse
Affiliation(s)
- Erica J Marti
- Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4015, USA.
| | - Jacimaria R Batista
- Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4015, USA
| |
Collapse
|
16
|
Tan DT, Arnold WA, Novak PJ. Impact of organic carbon on the biodegradation of estrone in mixed culture systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:12359-12365. [PMID: 24117277 DOI: 10.1021/es4027908] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The effects of organic carbon concentrations and loading on the degradation of estrone (E1) were examined under various conditions in batch reactors and membrane-coupled bioreactors (MBRs). Experiments examined effects on individual microorganisms (substrate competition and growth) and on the whole community (selection). Substrate competition with organic carbon (competitive inhibition and catabolic repression) was not a factor in E1 degradation (P = 0.19 and 0.29 for two different analyses). Conversely, addition of organic carbon increased E1 degradation rates, attributable to biomass growth in feast-famine reactors over a five-day period (P = 0.016). Subsequently, however, community dynamics controlled E1 degradation rates, with other organisms outcompeting E1 degraders. More moderate but sustained increases in E1 degradation rates were observed under starvation conditions. Low influent organic carbon strength was detrimental to E1 degradation in MBRs, where organic carbon concentration and loading were decoupled (P = 0.018). These results point to the importance of multiple substrate utilizers in E1 degradation. They also suggest that while initial growth of biomass depends on the presence of sufficient organic carbon, further enrichment under starvation conditions may improve E1 degradation capability via the growth and/or stimulation of multiple substrate utilizers rather than heterotrophs characterized by an r-strategist growth regime.
Collapse
Affiliation(s)
- David T Tan
- Department of Civil Engineering, University of Minnesota , 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| | | | | |
Collapse
|
17
|
|