1
|
Crosby T, Stadler LB. Plasmid Backbone Impacts Conjugation Rate, Transconjugant Fitness, and Community Assembly of Genetically Bioaugmented Soil Microbes for PAH Bioremediation. ACS ENVIRONMENTAL AU 2025; 5:241-252. [PMID: 40125281 PMCID: PMC11926752 DOI: 10.1021/acsenvironau.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 03/25/2025]
Abstract
Many polycyclic aromatic hydrocarbons (PAHs) in the environment resulting from crude oil spills and the incomplete combustion of organic matter are highly toxic, mutagenic, or carcinogenic to microorganisms and humans. Bioremediation of PAHs using microorganisms that encode biodegradative genes is a promising approach for environmental PAH cleanup. However, the viability of exogenous microorganisms is often limited due to competition with the native microbial community. Instead of relying on the survival of one or a few species of bacteria, genetic bioaugmentation harnesses conjugative plasmids that spread functional genes to native microbes. In this study, two plasmid backbones that differ in copy number regulation, replication, and mobilization genes were engineered to contain a PAH dioxygenase gene (bphC) and conjugated to soil bacteria including Bacillus subtilis, Pseudomonas putida, and Acinetobacter sp., as well as a synthetic community assembled from these bacteria. Fitness effects of the plasmids in transconjugants significantly impacted the rates of conjugative transfer and biotransformation rates of a model PAH (2,3-dihydroxybiphenyl). A synergistic effect was observed in which synthetic communities bioaugmented with bphC had significantly higher PAH degradation rates than bacteria grown in monocultures. Finally, conjugation rates were significantly associated with the relative abundances of bacteria in synthetic communities, underscoring how fitness impacts of plasmids can shape the microbial community structure and function.
Collapse
Affiliation(s)
- Tessa
M. Crosby
- Department of Civil and Environmental
Engineering, Rice University, Houston, Texas 77006, United States
| | - Lauren B. Stadler
- Department of Civil and Environmental
Engineering, Rice University, Houston, Texas 77006, United States
| |
Collapse
|
2
|
Zhou Y, Pan S. Assessment of the efficiency of immobilized degrading microorganisms in removing the organochlorine pesticide residues from agricultural soils. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1274. [PMID: 37801194 DOI: 10.1007/s10661-023-11891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/16/2023] [Indexed: 10/07/2023]
Abstract
To investigate the removal of organochlorine pesticide residues by immobilized degrading microbe, indigenous microorganisms from organochlorine pesticide (OCP)-contaminated soils in Chengdu plain, pot experiments were carried out to evaluate the potential of the immobilized complex microbial specific degrading microbe treated with sodium alginate (SA) composite carrier in decontaminating OCP-contaminated soils, and field experiments were also conducted to investigate the enhanced efficiency of immobilized microbial agents on the dissipation of OCPs in the contaminated plots for different cultivation usage. The results showed that the dissipation rate of OCPs in contaminated soils with initial concentrations of 122.24 μg/kg was 89.94% after the addition of 25 mg of immobilized microbial agents at the end of the 90 days of experiment, which was 6.1% higher than that of the compound microbial agents under the same environmental conditions, and the control group without the addition of microbial agents was only 1.18%, while the concentration of OCPs in contaminated soils with initial concentrations of 203.64 μg/kg only decreased to 65.29 μg/kg after the addition of 20 mg of compound microbial agents. In contrast, the soil concentration of immobilized microbial agent treatment group under the same conditions decreased to 52.15 μg/kg. During the field experiment, the enhanced efficiency of immobilized microbial agents on the degradation of OCPs in different cultivation usage was evidently different, showed that the concentration of OCPs in paddy fields (18.60%) > tea gardens (12.17%) ≥ orchards (11.41%) > vegetable fields (6.21%) ≥ dryland (4.79%), which was especially significant in stress environment. Overall, the immobilization treatment obviously improved the degradation potential of OCPs-specific degrading microbe, and the degree of improvement was related to the metabolic activity of the degrading microbe, the addition amount, remediation time, and habitat conditions.
Collapse
Affiliation(s)
- Yuxiao Zhou
- Department of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
- Guangxi Key Laboratory of Water Engineering Materials and Structures, Nanning, 530000, Guangxi, China
- Key Laboratory of Highway Engineering of Ministry of Education, Changsha University of Science & Technology, Changsha, 410114, Hunan, China
| | - Shengwang Pan
- Department of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
- Guangxi Key Laboratory of Water Engineering Materials and Structures, Nanning, 530000, Guangxi, China.
- Key Laboratory of Highway Engineering of Ministry of Education, Changsha University of Science & Technology, Changsha, 410114, Hunan, China.
| |
Collapse
|
3
|
Kugarajah V, Nisha KN, Jayakumar R, Sahabudeen S, Ramakrishnan P, Mohamed SB. Significance of microbial genome in environmental remediation. Microbiol Res 2023; 271:127360. [PMID: 36931127 DOI: 10.1016/j.micres.2023.127360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023]
Abstract
Environmental pollutants seriously threaten the ecosystem and health of various life forms, particularly with the rapid industrialization and emerging population. Conventionally physical and chemical strategies are being opted for the removal of these pollutants. Bioremediation, through several advancements, has been a boon to combat the existing threat faced today. Microbes with enzymes degrade various pollutants and utilize them as a carbon and energy source. With the existing demand and through several research explorations, Genetically Engineered Microorganisms (GEMs) have paved to be a successful approach to abate pollution through bioremediation. The genome of the microbe determines its biodegradative nature. Thus, methods including pure culture techniques and metagenomics are used for analyzing the genome of microbes, which provides information about catabolic genes. The information obtained along with the aid of biotechnology helps to construct GEMs that are cost-effective and safer thereby exhibiting higher degradation of pollutants. The present review focuses on the role of microbes in the degradation of environmental pollutants, role of evolution in habitat and adaptation of microbes, microbial degenerative genes, their pathways, and the efficacy of recombinant DNA (rDNA) technology for creating GEMs for bioremediation. The present review also provides a gist of existing GEMs for bioremediation and their limitations, thereby providing a future scope of implementation of these GEMs for a sustainable environment.
Collapse
Affiliation(s)
- Vaidhegi Kugarajah
- Department of Nanobiomaterials, Institute for Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602015, India
| | | | - R Jayakumar
- Department of Nanobiomaterials, Institute for Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602015, India
| | - S Sahabudeen
- Department of Biotechnology, SRM Institute of Science and Technology, Kanchipuram Dist, Kattankulathur, Tamil Nadu, India; Medical Team, Doctoral Institute for Evidence Based Policy, Tokyo, Japan
| | - P Ramakrishnan
- Department of Nanobiomaterials, Institute for Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602015, India.
| | - S B Mohamed
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India.
| |
Collapse
|
4
|
Abed RMM, Al-Fori M, Al-Hinai M, Al-Sabahi J, Al-Battashi H, Prigent S, Headley T. Effect of partially hydrolyzed polyacrylamide (HPAM) on the bacterial communities of wetland rhizosphere soils and their efficiency in HPAM and alkane degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9713-9724. [PMID: 36063269 DOI: 10.1007/s11356-022-22636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The effect of partially hydrolyzed polyacrylamide (HPAM) on structure and function of rhizosphere soil bacterial communities in constructed wetlands has been largely underinvestigated. In this study, we compare the effect of 250, 500, and 1000 mg/L of HPAM on bacterial community composition of Phragmites australis associated rhizosphere soils in an experimental wetland using MiSeq amplicon sequencing. Rhizosphere soils from the HPAM-free and the 500-mg/L-exposed treatments were used for laboratory experiments to further investigate the effect of HPAM on the soil's degradation and respiration activities. Soils treated with HPAM showed differences in bacterial communities with the dominance of Proteobacteria and the enrichment of potential hydrocarbon and HPAM-degrading bacteria. CO2 generation was higher in the HPAM-free soils than in the HPAM pre-exposed soil, with a noticeable increase in both soils when oil was added. The addition of HPAM at different concentrations had a more pronounced effect on CO2 evolution in the HPAM-pre-exposed soil. Soils were able to degrade between 37 ± 18.0 and 66 ± 6.7% of C10 to C30 alkanes after 28 days, except in the case of HPAM-pre-exposed soil treated with 500 mg/L where degradation reached 92 ± 4.3%. Both soils reduced HPAM concentration by 60 ± 15% of the initial amount in the 500 mg/L treatment, but by only ≤ 21 ± 7% in the 250-mg/L and 1000-mg/L treatments. In conclusion, the rhizosphere soils demonstrated the ability to adapt and retain their ability to degrade hydrocarbon in the presence of HPAM.
Collapse
Affiliation(s)
- Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, Al Khoud, P.O. Box: 36, PC 123, Al Seeb, Sultanate of Oman.
| | - Marwan Al-Fori
- Biology Department, College of Science, Sultan Qaboos University, Al Khoud, P.O. Box: 36, PC 123, Al Seeb, Sultanate of Oman
| | - Mahmood Al-Hinai
- Biology Department, College of Science, Sultan Qaboos University, Al Khoud, P.O. Box: 36, PC 123, Al Seeb, Sultanate of Oman
| | - Jamal Al-Sabahi
- Central Instrumentation Laboratory, College of Agricultural & Marine Sciences, Sultan Qaboos University, Al Khoud, P.O. Box: 34, PC 123, Al Seeb, Sultanate of Oman
| | - Huda Al-Battashi
- Biology Department, College of Science, Sultan Qaboos University, Al Khoud, P.O. Box: 36, PC 123, Al Seeb, Sultanate of Oman
| | - Stephane Prigent
- BAUER Nimr LLC, P.C 114, Al Mina, P.O. Box 1186, Muscat, Sultanate of Oman
| | - Tom Headley
- BAUER Nimr LLC, P.C 114, Al Mina, P.O. Box 1186, Muscat, Sultanate of Oman
| |
Collapse
|
5
|
Morales-Guzmán G, Ferrera-Cerrato R, Rivera-Cruz MDC, Torres-Bustillos LG, Mendoza-López MR, Esquivel-Cote R, Alarcón A. Phytoremediation of soil contaminated with weathered petroleum hydrocarbons by applying mineral fertilization, an anionic surfactant, or hydrocarbonoclastic bacteria. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:329-338. [PMID: 35704711 DOI: 10.1080/15226514.2022.2083577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study evaluated the effect of the application of mineral fertilization (F), the anionic surfactant Triton X-100 (TX100), or the inoculation with a hydrocarbooclastic bacterial consortium (BCons) on the growth of Clitoria ternatea during the phytoremediation of a Gleysol contaminated with weathered petroleum hydrocarbons (39,000 mg kg-1 WPH) collected from La Venta, Tabasco (Mexico). The experiment consisted of a completely randomized design with seven treatments and four replications each under greenhouse conditions. The application of F (biostimulation) increased plant growth and biomass production; in contrast, TX100 only favored root biomass (11%) but significantly favored WPH degradation. Bioaugmentation with BCons did not show significant effects on plant growth. Nevertheless, the combination of biostimulation with bioaugmentation (BCons + F, BCons + TX100, and BCons + F+TX100) enhanced plant growth, hydrocarbonoclastic bacteria population, and WPH degradation when compared to treatments with the single application of bioaugmentation (BCons) or biostimulation (F).
Collapse
Affiliation(s)
- Gilberto Morales-Guzmán
- Posgrado de Edafología, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México, Mexico
| | - Ronald Ferrera-Cerrato
- Posgrado de Edafología, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México, Mexico
| | - María Del Carmen Rivera-Cruz
- Posgrado en Producción Agroalimentaria en el Trópico, Colegio de Postgraduados, Periférico Carlos A, Cárdenas, Tabasco, Mexico
| | - Luis Gilberto Torres-Bustillos
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional (UPIBI-IPN), Ciudad de Mexico, Mexico
| | - Ma Remedios Mendoza-López
- Unidad de Servicios de Apoyo en Resolución Analítica. Universidad Veracruzana, Dr. Luis Castelazo Ayala S/N, Col. Industrial-Animas, Xalapa, Veracruz, Mexico
| | - Rosalba Esquivel-Cote
- Posgrado de Edafología, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México, Mexico
| | - Alejandro Alarcón
- Posgrado de Edafología, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México, Mexico
| |
Collapse
|
6
|
Srichandan H, Singh PK, Parhi PK, Mohanty P, Adhya TK, Pattnaik R, Mishra S, Hota PK. Environmental remediation using metals and inorganic and organic materials: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2022; 40:197-226. [PMID: 35895918 DOI: 10.1080/26896583.2022.2065871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent times, environmental pollution has been an alarming concern. This is increasing day-in-and-day-out, especially in the Asia-Pacific region due to the increasing population, urbanization, industrialization and inappropriate waste management measures. Pollution abatement is the need of the hour to sustain the biosphere in general and the human life in particular. A range of physical, chemical and biological strategies are commonly employed to remove pollutants from the contained water, soil and air. Physical, chemical or physicochemical remediation processes are commonly employed owing to their high efficiency, stability, recyclable property and low procurement cost as compared to metals, inorganic and organic materials. Materials of the later type include biocomposites, thin films, modified (bio)polymers, nanoparticles, nanofilters, sorbent like activated charcoal, and carbon nanotubes and nanosensors. Remediation mechanism largely follows sorption, degradation, oxidation, reduction, catalytic conversion, detection and microbial toxicity principles. This review details the mechanisms of action by these various remediating entities, their successful applications in pollution abatement, drawbacks and future prospects.HighlightsEnvironmental remediation using metals, inorganic and organic materials are discussed extensively.Major remediating approaches, viz., physical, physicochemical and chemical are elaborated citing latest references.The significance of biocomposites, biopolymers, polymers, thin films, nanoparticles, nanofilters, nanosensors and sorbents in remediation are highlighted.Pollutant removal from water, air and soil has been precisely discussed.A note on drawbacks, improvement and future prospects of remediating agents is presented.
Collapse
Affiliation(s)
- Haragobinda Srichandan
- Bioenergy Lab, BDTC, School of Biotechnology, KIIT Deemed-to-be-University, Bhubaneswar, India
| | - Puneet Kumar Singh
- Bioenergy Lab, BDTC, School of Biotechnology, KIIT Deemed-to-be-University, Bhubaneswar, India
| | | | - Pratikhya Mohanty
- Bioenergy Lab, BDTC, School of Biotechnology, KIIT Deemed-to-be-University, Bhubaneswar, India
| | - Tapan Kumar Adhya
- School of Biotechnology, KIIT Deemed-to-be-University, Bhubaneswar, India
| | - Ritesh Pattnaik
- Bioenergy Lab, BDTC, School of Biotechnology, KIIT Deemed-to-be-University, Bhubaneswar, India
| | - Snehasish Mishra
- Bioenergy Lab, BDTC, School of Biotechnology, KIIT Deemed-to-be-University, Bhubaneswar, India
| | - Pranab Kumar Hota
- Department of Chemistry, Odapada Panchayat Samiti Mahavidyalaya, Dhenkanal,India
| |
Collapse
|
7
|
Song Y, Li R, Chen G, Yan B, Zhong L, Wang Y, Li Y, Li J, Zhang Y. Bibliometric Analysis of Current Status on Bioremediation of Petroleum Contaminated Soils during 2000-2019. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8859. [PMID: 34444608 PMCID: PMC8393949 DOI: 10.3390/ijerph18168859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 01/06/2023]
Abstract
Petroleum contaminated soils have become a great concern worldwide. Bioremediation has been widely recognized as one of the most promising technologies and has played an important role in solving the issues of petroleum contaminated soils. In this study, a bibliometric analysis using VOSviewer based on Web of Science data was conducted to provide an overview on the field of bioremediation of petroleum contaminated soils. A total of 7575 articles were analyzed on various aspects of the publication characteristics, such as publication output, countries, institutions, journals, highly cited papers, and keywords. An evaluating indicator, h-index, was applied to characterize the publications. The pace of publishing in this field increased steadily over last 20 years. China accounted for the most publications (1476), followed by the United States (1032). The United States had the highest h-index (86) and also played a central role in the collaboration network among the most productive countries. The Chinese Academy of Sciences was the institution with the largest number of papers (347) and cooperative relations (52). Chemosphere was the most productive journal (360). Our findings indicate that the influence of developing countries has increased over the years, and researchers tend to publish articles in high-quality journals. At present, mainstream research is centered on biostimulation, bioaugmentation, and biosurfactant application. Combined pollution of petroleum hydrocarbons and heavy metals, microbial diversity monitoring, biosurfactant application, and biological combined remediation technology are considered future research hotspots.
Collapse
Affiliation(s)
- Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
| | - Ruiyi Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
| | - Lei Zhong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
| | - Yuxin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
| | - Yihang Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
| | - Jinlei Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
| | - Yingxiu Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Y.S.); (R.L.); (G.C.); (B.Y.); (L.Z.); (Y.W.); (Y.L.); (J.L.)
- China-Australia Centre for Sustainable Urban Development, Tianjin 300350, China
| |
Collapse
|
8
|
Clover Root Exudates Favor Novosphingobium sp. HR1a Establishment in the Rhizosphere and Promote Phenanthrene Rhizoremediation. mSphere 2021; 6:e0041221. [PMID: 34378981 PMCID: PMC8386446 DOI: 10.1128/msphere.00412-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizoremediation is based on the ability of microorganisms to metabolize nutrients from plant root exudates and, thereby, to cometabolize or even mineralize toxic environmental contaminants. Novosphingobium sp. HR1a is a bacterial strain able to degrade a wide variety of polycyclic aromatic hydrocarbons (PAHs). Here, we have demonstrated that the number of CFU in microcosms vegetated with clover was almost 2 orders of magnitude higher than that in nonvegetated microcosms or microcosms vegetated with rye-grass or grass. Strain HR1a was able to eliminate 92% of the phenanthrene in the microcosms with clover after 9 days. We have studied the molecular basis of the interaction between strain HR1a and clover by phenomic, metabolomic, and transcriptomic analyses. By measuring the relative concentrations of several metabolites exudated by clover both in the presence and in the absence of the bacteria, we identified some compounds that were probably consumed in the rhizosphere; the transcriptomic analyses confirmed the expression of genes involved in the catabolism of these compounds. By using a transcriptional fusion of the green fluorescent protein (GFP) to the promoter of the gene encoding the dioxygenase involved in the degradation of PAHs, we have demonstrated that this gene is induced at higher levels in clover microcosms than in nonvegetated microcosms. Therefore, the positive interaction between clover and Novosphingobium sp. HR1a during rhizoremediation is a result of the bacterial utilization of different carbon and nitrogen sources released during seedling development and the capacity of clover exudates to induce the PAH degradation pathway. IMPORTANCE The success of an eco-friendly and cost-effective strategy for soil decontamination is conditioned by the understanding of the ecology of plant-microorganism interactions. Although many studies have been published about the bacterial metabolic capacities in the rhizosphere and about rhizoremediation of contaminants, there are fewer studies dealing with the integration of bacterial metabolic capacities in the rhizosphere during PAH bioremediation, and some aspects still remain controversial. Some authors have postulated that the presence of easily metabolizable carbon sources in root exudates might repress the expression of genes required for contaminant degradation, while others found that specific rhizosphere compounds can induce such genes. Novosphingobium sp. HR1a, which is our model organism, has two characteristics desirable in bacteria for use in remediation: its ubiquity and the capacity to degrade a wide variety of contaminants. We have demonstrated that this bacterium consumes several rhizospheric compounds without repression of the genes required for the mineralization of PAHs. In fact, some compounds even induced their expression.
Collapse
|
9
|
Rahmeh R, Akbar A, Kumar V, Al-Mansour H, Kishk M, Ahmed N, Al-Shamali M, Boota A, Al-Ballam Z, Shajan A, Al-Okla N. Insights into Bacterial Community Involved in Bioremediation of Aged Oil-Contaminated Soil in Arid Environment. Evol Bioinform Online 2021; 17:11769343211016887. [PMID: 34163126 PMCID: PMC8191072 DOI: 10.1177/11769343211016887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/16/2021] [Indexed: 11/15/2022] Open
Abstract
Soil contamination by hydrocarbons due to oil spills has become a global concern and it has more implications in oil producing regions. Biostimulation is considered as one of the promising remediation techniques that can be adopted to enhance the rate of degradation of crude oil. The soil microbial consortia play a critical role in governing the biodegradation of total petroleum hydrocarbons (TPHs), in particular polycyclic aromatic hydrocarbons (PAHs). In this study, the degradation pattern of TPHs and PAHs of Kuwait soil biopiles was measured at three-month intervals. Then, the microbial consortium associated with oil degradation at each interval was revealed through 16S rRNA based next generation sequencing. Rapid degradation of TPHs and most of the PAHs was noticed at the first 3 months of biostimulation with a degradation rate of pyrene significantly higher compared to other PAHs counterparts. The taxonomic profiling of individual stages of remediation revealed that, biostimulation of the investigated soil favored the growth of Proteobacteria, Alphaprotobacteria, Chloroflexi, Chlorobi, and Acidobacteria groups. These findings provide a key step towards the restoration of oil-contaminated lands in the arid environment.
Collapse
Affiliation(s)
- Rita Rahmeh
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Abrar Akbar
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Vinod Kumar
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Hamad Al-Mansour
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Mohamed Kishk
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Nisar Ahmed
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Mustafa Al-Shamali
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Anwar Boota
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Zainab Al-Ballam
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Anisha Shajan
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Naser Al-Okla
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| |
Collapse
|
10
|
Villaverde J, Láiz L, Lara-Moreno A, González-Pimentel JL, Morillo E. Bioaugmentation of PAH-Contaminated Soils With Novel Specific Degrader Strains Isolated From a Contaminated Industrial Site. Effect of Hydroxypropyl-β-Cyclodextrin as PAH Bioavailability Enhancer. Front Microbiol 2019; 10:2588. [PMID: 31798552 PMCID: PMC6874150 DOI: 10.3389/fmicb.2019.02588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/25/2019] [Indexed: 11/13/2022] Open
Abstract
A PAHs-contaminated industrial soil was analyzed using PCR amplification of the gene 16S ribosomal RNA for the detection and identification of different isolated bacterial strains potentially capable of degrading PAHs. Novel degrader strains were isolated and identified as Achromobacter xylosoxidans 2BC8 and Stenotrophomonas maltophilia JR62, which were able to degrade PYR in solution, achieving a mineralization rate of about 1% day-1. A. xylosoxidans was also able to mineralize PYR in slurry systems using three selected soils, and the total extent of mineralization (once a plateau was reached) increased 4.5, 21, and 57.5% for soils LT, TM and CR, respectively, regarding the mineralization observed in the absence of the bacterial degrader. Soil TM contaminated with PYR was aged for 80 days and total extent of mineralization was reduced (from 46 to 35% after 180 days), and the acclimation period increased (from 49 to 79 days). Hydroxypropyl-ß-cyclodextrin (HPBCD) was used as a bioavailability enhancer of PYR in this aged soil, provoking a significant decrease in the acclimation period (from 79 to 54 days) due to an increase in PYR bioavailable fraction just from the beginning of the assay. However, a similar global extension of mineralization was obtained. A. xylosoxidans was then added together with HPBCD to this aged TM soil contaminated with PYR, and the total extent of mineralization decreased to 25% after 180 days, possibly due to the competitive effect of endogenous microbiota and the higher concentration of PYR in the soil solution provoked by the addition of HPBCD, which could have a toxic effect on the A. xylosoxidans strain.
Collapse
Affiliation(s)
- Jaime Villaverde
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - Leonila Láiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - Alba Lara-Moreno
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - J L González-Pimentel
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - Esmeralda Morillo
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| |
Collapse
|
11
|
Machado LF, de Assis Leite DC, da Costa Rachid CTC, Paes JE, Martins EF, Peixoto RS, Rosado AS. Tracking Mangrove Oil Bioremediation Approaches and Bacterial Diversity at Different Depths in an in situ Mesocosms System. Front Microbiol 2019; 10:2107. [PMID: 31572322 PMCID: PMC6753392 DOI: 10.3389/fmicb.2019.02107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022] Open
Abstract
In this study, oil spills were simulated in field-based mangrove mesocosms to compare the efficiency of bioremediation strategies and to characterize the presence of the alkB, ndo, assA, and bssA genes and the ecological structures of microbial communities in mangrove sediments at two different depths, (D1) 1–10 cm and (D2) 25–35 cm. The results indicated that the hydrocarbon degradation efficiency was higher in superficial sediment layers, although no differences in the hydrocarbon degradation rates or in the abundances of the alkB and ndo genes were detected among the tested bioremediation strategies at this depth. Samples from the deeper layer exhibited higher abundances of the analyzed genes, except for assA and bssA, which were not detected in our samples. For all of the treatments and depths, the most abundant phyla were Proteobacteria, Firmicutes and Bacteroidetes, with Gammaproteobacteria, Flavobacteriales and Clostridiales being the most common classes. The indicator species analysis (ISA) results showed strong distinctions among microbial taxa in response to different treatments and in the two collection depths. Our results indicated a high efficiency of the monitored natural attenuation (MNA) for oil consumption in the tested mangrove sediments, revealing the potential of this strategy for environmental decontamination and suggesting that environmental and ecological factors may select for specific bacterial populations in distinct niches.
Collapse
Affiliation(s)
- Laís Feitosa Machado
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Jorge Eduardo Paes
- Research Center Leopoldo Américo Miguez de Mello, Rio de Janeiro, Brazil
| | - Edir Ferreira Martins
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Silva Peixoto
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,IMAM-AquaRio - Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| | - Alexandre Soares Rosado
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,IMAM-AquaRio - Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Metataxonomic analyses reveal differences in aquifer bacterial community as a function of creosote contamination and its potential for contaminant remediation. Sci Rep 2019; 9:11731. [PMID: 31409826 PMCID: PMC6692397 DOI: 10.1038/s41598-019-47921-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/20/2019] [Indexed: 01/07/2023] Open
Abstract
Metataxonomic approach was used to describe the bacterial community from a creosote-contaminated aquifer and to access the potential for in situ bioremediation of the polycyclic aromatic hydrocarbons (PAHs) by biostimulation. In general, the wells with higher PAH contamination had lower richness and diversity than others, using the Shannon and Simpson indices. By the principal coordinate analysis (PCoA) it was possible to observe the clustering of the bacterial community of most wells in response of the presence of PAH contamination. The significance analysis using edgeR package of the R program showed variation in the abundance of some Operational Taxonomic Units (OTUs) of contaminated wells compared to uncontaminated ones. Taxons enriched in the contaminated wells were correlated positively (p < 0.05) with the hydrocarbons, according to redundancy analysis (RDA). All these enriched taxa have been characterized as PAH degrading agents, such as the genus Comamonas, Geobacter, Hydrocarboniphaga, Anaerolinea and Desulfomonile. Additionally, it was possible to predict, with the PICRUSt program, a greater proportion of pathways and genes related to the degradation of PAHs in the wells with higher contamination levels. We conclude that the contaminants promoted the enrichment of several groups of degrading bacteria in the area, which strengthens the feasibility of applying biostimulation as an aquifer remediation strategy.
Collapse
|
13
|
Haleyur N, Shahsavari E, Jain SS, Koshlaf E, Ravindran VB, Morrison PD, Osborn AM, Ball AS. Influence of bioaugmentation and biostimulation on PAH degradation in aged contaminated soils: Response and dynamics of the bacterial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 238:49-58. [PMID: 30844545 DOI: 10.1016/j.jenvman.2019.02.115] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/31/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent a group of hazardous compounds that are ubiquitous and persistent. The main aim of this study was to investigate the degradation of PAHs in chronically contaminated, aged and weathered soils obtained from a former gas plant of Australia. Biostimulation and bioaugmentation using individual isolates (Rhodococcus sp. (NH2), Achromobacter sp. (NH13), Oerskovia paurometabola (NH11), Pantoea sp. (NH15), Sejongia sp. (NH20), Microbacterium maritypicum (NH30) and Arthrobacter equi (NH21)) and a consortium of these isolates were tested during mesocosm studies. A significant reduction (99%) in PAH concentration was observed in all the treatments. In terms of the abundance of PAH-degrading genes and microbial community structure during PAH degradation, qPCR results revealed that Gram-positive bacteria were dominant over other bacterial communities in all the treatments. 16S sequencing results revealed that the inoculated organisms did not establish themselves during the treatment. However, substantial bacterial community changes during the treatments were observed, suggesting that the natural community exhibited sufficient resilience and diversity to enable an active, but changing degrading community at all stages of the degradation process. Consequently, biostimulation is proposed as the best strategy to remediate PAHs in aged, weathered and chronically contaminated soils.
Collapse
Affiliation(s)
- Nagalakshmi Haleyur
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia.
| | - Esmaeil Shahsavari
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Sohni Singh Jain
- Department of Electrical and Biomedical Engineering, School of Engineering, RMIT University, Bundoora West, VIC, 3083, Australia
| | - Eman Koshlaf
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Vivek B Ravindran
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Paul D Morrison
- Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - A Mark Osborn
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Andrew S Ball
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia.
| |
Collapse
|
14
|
Dhote M, Kumar A, Jajoo A, Juwarkar A. Study of microbial diversity in plant-microbe interaction system with oil sludge contamination. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:789-795. [PMID: 29775095 DOI: 10.1080/15226514.2018.1425668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A 90 days greenhouse experiment was conducted for evaluation of soil microbial diversity in different treatments of rhizospheric and nonrhizospheric oil sludge contaminated soil. Various pot treatments (T1-T5) were as follows: 2% oil sludge contaminated soil was considered as control (T1); augmentation of control with preadapted microbial consortium was T2; addition of Vetiver zizanioide to control was T3; bioaugmentation of control along with V. zizanioide was T4; and bioaugmentation with V. zizanioide and bulking agent was T5. During the study, different microbial populations were determined in all treatments. Additionally, soil microbial diversity using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of 16S rDNA was carried out. At the end of experimental period, significant increase in microbial number in bioaugmented rhizospheric treatments (T4 and T5) was observed as compared to non-rhizospheric and non-bioaugmented treatments (T2 and T3). The community and sequencing results revealed that combined treatment of plant and microbes resulted in improved microbial species and number. The dominant phyla belonged to γ proteobacteria, β proteobacteria, Chloroflexi, firmicutes, and uncultured bacteria. It is concluded that plant-microbe-soil system supports immense oil degrading microbial diversity and can be used as an effective indicator tool for remediation of oil sludge contaminated sites.
Collapse
Affiliation(s)
- Monika Dhote
- a Eco-system Division, National Environmental Engineering Research Institute (NEERI) , Nagpur , Maharashtra , India
- b School of Biotechnology, Devi Ahilya University , Indore , MP , India
- c School of Life Sciences, Devi Ahilya University , Indore , MP , India
| | - Anil Kumar
- b School of Biotechnology, Devi Ahilya University , Indore , MP , India
| | - Anjana Jajoo
- c School of Life Sciences, Devi Ahilya University , Indore , MP , India
| | - Asha Juwarkar
- a Eco-system Division, National Environmental Engineering Research Institute (NEERI) , Nagpur , Maharashtra , India
| |
Collapse
|
15
|
Singh DP, Prabha R, Gupta VK, Verma MK. Metatranscriptome Analysis Deciphers Multifunctional Genes and Enzymes Linked With the Degradation of Aromatic Compounds and Pesticides in the Wheat Rhizosphere. Front Microbiol 2018; 9:1331. [PMID: 30034370 PMCID: PMC6043799 DOI: 10.3389/fmicb.2018.01331] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/31/2018] [Indexed: 11/19/2022] Open
Abstract
Agricultural soils are becoming contaminated with synthetic chemicals like polyaromatic compounds, petroleum hydrocarbons, polychlorinated biphenyls (PCBs), phenols, herbicides, insecticides and fungicides due to excessive dependency of crop production systems on the chemical inputs. Microbial degradation of organic pollutants in the agricultural soils is a continuous process due to the metabolic multifunctionalities and enzymatic capabilities of the soil associated communities. The plant rhizosphere with its complex microbial inhabitants and their multiple functions, is amongst the most live and dynamic component of agricultural soils. We analyzed the metatranscriptome data of 20 wheat rhizosphere samples to decipher the taxonomic microbial communities and their multifunctionalities linked with the degradation of organic soil contaminants. The analysis revealed a total of 21 different metabolic pathways for the degradation of aromatic compounds and 06 for the xenobiotics degradation. Taxonomic annotation of wheat rhizosphere revealed bacteria, especially the Proteobacteria, actinobacteria, firmicutes, bacteroidetes, and cyanobacteria, which are shown to be linked with the degradation of aromatic compounds as the dominant communities. Abundance of the transcripts related to the degradation of aromatic amin compounds, carbazoles, benzoates, naphthalene, ketoadipate pathway, phenols, biphenyls and xenobiotics indicated abundant degradation capabilities in the soils. The results highlighted a potentially dominant role of crop rhizosphere associated microbial communities in the remediation of contaminant aromatic compounds.
Collapse
Affiliation(s)
- Dhananjaya P. Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Ratna Prabha
- Department of Bio-Medical Engineering and Bio-Informatics, Chhattisgarh Swami Vivekanand Technical University, Bhilai, India
| | - Vijai K. Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Mukesh K. Verma
- Department of Bio-Medical Engineering and Bio-Informatics, Chhattisgarh Swami Vivekanand Technical University, Bhilai, India
| |
Collapse
|
16
|
Lu H, Sun J, Zhu L. The role of artificial root exudate components in facilitating the degradation of pyrene in soil. Sci Rep 2017; 7:7130. [PMID: 28769098 PMCID: PMC5541004 DOI: 10.1038/s41598-017-07413-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/26/2017] [Indexed: 11/09/2022] Open
Abstract
Root exudates play an important role in the phytoremediation of soils contaminated by organic pollutants, but how root exudate components affect the remediation process is not well understood. In this study, we explored the effects and mechanisms of the major root exudates, including glucose, organic acids, and serine, in the rhizoremediation of pyrene-contaminated soil. The results showed that glucose increased the degradation of pyrene (54.3 ± 1.7%) most significantly compared to the organic acids (45.5 ± 2.5%) and serine (43.2 ± 0.1%). Glucose could significantly facilitate the removal of pyrene in soil through promoting dehydrogenase activity indicated by a positive correlation between the removal efficiency of pyrene and the soil dehydrogenase activity (p < 0.01). Furthermore, root exudates were able to change soil microbial community, particularly the bacterial taxonomic composition, thereby affecting the biodegradation of pyrene. Glucose could alter soil microbial community and enhance the amount of Mycobacterium markedly, which is dominant in the degradation of pyrene. These findings provide insights into the mechanisms by which root exudates enhance the degradation of organic contaminants and advance our understanding of the micro-processes involved in rhizoremediation.
Collapse
Affiliation(s)
- Hainan Lu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
17
|
Wu M, Ye X, Chen K, Li W, Yuan J, Jiang X. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:657-664. [PMID: 28196719 DOI: 10.1016/j.envpol.2017.01.079] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
A laboratory study was conducted to evaluate the impact of bioaugmentation plus biostimulation (BR, added both nutrients and bacterial consortia), and natural attenuation (NA) on hydrocarbon degradation efficiency and microflora characterization during remediation of a freshly contaminated soil. After 112 days of remediation, the initial level of total petroleum hydrocarbon (TPH) (61,000 mg/kg soil) was reduced by 4.5% and 5.0% in the NA and BR treatments, respectively. Bioremediation did not significantly enhance TPH biodegradation compared to natural attenuation. The degradation of the aliphatic fraction was the most active with the degradation rate of 30.3 and 28.7 mg/kg/day by the NA and BR treatments, respectively. Soil microbial activities and counts in soil were generally greater for bioremediation than for natural attenuation. MiSeq sequencing indicated that the diversity and structure of microbial communities were affected greatly by bioremediation. In response to bioremediation treatment, Promicromonospora, Pseudomonas, Microcella, Mycobacterium, Alkanibacter, and Altererythrobacter became dominant genera in the soil. The result indicated that combining bioaugmentation with biostimulation did not improve TPH degradation, but soil microbial activities and structure of microbial communities are sensitive to bioremediation in short-term and heavily oil-contaminated soil.
Collapse
Affiliation(s)
- Manli Wu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China.
| | - Xiqiong Ye
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China
| | - Kaili Chen
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China
| | - Wei Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China
| | - Jing Yuan
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China
| | - Xin Jiang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China
| |
Collapse
|
18
|
|
19
|
Yan L, Sinkko H, Penttinen P, Lindström K. Characterization of successional changes in bacterial community composition during bioremediation of used motor oil-contaminated soil in a boreal climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 542:817-25. [PMID: 26556745 DOI: 10.1016/j.scitotenv.2015.10.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 05/20/2023]
Abstract
The widespread use of motor oil makes it a notable risk factor to cause scattered contamination in soil. The monitoring of microbial community dynamics can serve as a comprehensive tool to assess the ecological impact of contaminants and their disappearance in the ecosystem. Hence, a field study was conducted to monitor the ecological impact of used motor oil under different perennial cropping systems (fodder galega, brome grass, galega-brome grass mixture and bare fallow) in a boreal climate zone. Length heterogeneity PCR characterized a successional pattern in bacterial community following oil contamination over a four-year bioremediation period. Soil pH and electrical conductivity were associated with the shifts in bacterial community composition. Crops had no detectable effect on bacterial community composition or complexity. However, the legume fodder galega increased soil microbial biomass, expressed as soil total DNA. Oil contamination induced an abrupt change in bacterial community composition at the early stage, yet the effect did not last as long as the oil in soil. The successional variation in bacterial community composition can serve as a sensitive ecological indicator of oil contamination and remediation in situ.
Collapse
Affiliation(s)
- Lijuan Yan
- Department of Environmental Sciences, PO Box 65 (Viikinkaari 2a), 00014, University of Helsinki, Finland.
| | - Hanna Sinkko
- Department of Food and Environmental Sciences, PO Box 56 (Latokartanonkaari 11), 00014, University of Helsinki, Finland
| | - Petri Penttinen
- Department of Environmental Sciences, PO Box 65 (Viikinkaari 2a), 00014, University of Helsinki, Finland
| | - Kristina Lindström
- Department of Environmental Sciences, PO Box 65 (Viikinkaari 2a), 00014, University of Helsinki, Finland
| |
Collapse
|
20
|
Deng F, Liao C, Yang C, Guo C, Ma L, Dang Z. A new approach for pyrene bioremediation using bacteria immobilized in layer-by-layer assembled microcapsules: dynamics of soil bacterial community. RSC Adv 2016. [DOI: 10.1039/c5ra23273b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Pyrene-degrading bacteria immobilized in layer-by-layer assembled microcapsules were prepared and inoculated into pyrene-contaminated soil. The microcapsules enhanced the pyrene removal ability and improved the bacterial community construction.
Collapse
Affiliation(s)
- Fucai Deng
- School of Environment and Energy
- South China University of Technology
- Guangzhou
- China
| | - Changjun Liao
- School of Environment and Energy
- South China University of Technology
- Guangzhou
- China
- Department of Environmental Engineering
| | - Chen Yang
- School of Environment and Energy
- South China University of Technology
- Guangzhou
- China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters
| | - Chuling Guo
- School of Environment and Energy
- South China University of Technology
- Guangzhou
- China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters
| | - Lin Ma
- School of Environment and Energy
- South China University of Technology
- Guangzhou
- China
| | - Zhi Dang
- School of Environment and Energy
- South China University of Technology
- Guangzhou
- China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters
| |
Collapse
|
21
|
Ben Said O, Louati H, Soltani A, Preud'homme H, Cravo-Laureau C, Got P, Pringault O, Aissa P, Duran R. Changes of benthic bacteria and meiofauna assemblages during bio-treatments of anthracene-contaminated sediments from Bizerta lagoon (Tunisia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15319-15331. [PMID: 25618309 DOI: 10.1007/s11356-015-4105-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 01/11/2015] [Indexed: 06/04/2023]
Abstract
Sediments from Bizerta lagoon were used in an experimental microcosm setup involving three scenarios for the bioremediation of anthracene-polluted sediments, namely bioaugmentation, biostimulation, and a combination of both bioaugmentation and biostimulation. In order to investigate the effect of the biotreatments on the benthic biosphere, 16S rRNA gene-based T-RFLP bacterial community structure and the abundance and diversity of the meiofauna were determined throughout the experiment period. Addition of fresh anthracene drastically reduced the benthic bacterial and meiofaunal abundances. The treatment combining biostimulation and bioaugmentation was most efficient in eliminating anthracene, resulting in a less toxic sedimentary environment, which restored meiofaunal abundance and diversity. Furthermore, canonical correspondence analysis showed that the biostimulation treatment promoted a bacterial community favorable to the development of nematodes while the treatment combining biostimulation and bioaugmentation resulted in a bacterial community that advantaged the development of the other meiofauna taxa (copepods, oligochaetes, polychaetes, and other) restoring thus the meiofaunal structure. The results highlight the importance to take into account the bacteria/meiofauna interactions during the implementation of bioremediation treatment.
Collapse
Affiliation(s)
- Olfa Ben Said
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, 7021, Zarzouna, Tunisia.
- Equipe Environnement et Microbiologie-MELODY Group-UMR CNRS IPREM 5254-IBEAS, Université de Pau et des Pays de l'Adour, Pau, France.
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia.
| | - Hela Louati
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, 7021, Zarzouna, Tunisia
- Laboratoire Ecosystèmes Marins Côtiers, UMR 5119 CNRS-UM2-IFREMER-IRD-ECOSYM, Université Montpellier 2, Montpellier, France
| | - Amel Soltani
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, 7021, Zarzouna, Tunisia
- Equipe Environnement et Microbiologie-MELODY Group-UMR CNRS IPREM 5254-IBEAS, Université de Pau et des Pays de l'Adour, Pau, France
| | - Hugues Preud'homme
- Laboratoire Chimie Analytique BioInorganique Environnement-UMR CNRS IPREM 5254-Helioparc, Université de Pau et des Pays de l'Adour, Pau, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie-MELODY Group-UMR CNRS IPREM 5254-IBEAS, Université de Pau et des Pays de l'Adour, Pau, France
| | - Patrice Got
- Laboratoire Ecosystèmes Marins Côtiers, UMR 5119 CNRS-UM2-IFREMER-IRD-ECOSYM, Université Montpellier 2, Montpellier, France
| | - Olivier Pringault
- Laboratoire Ecosystèmes Marins Côtiers, UMR 5119 CNRS-UM2-IFREMER-IRD-ECOSYM, Université Montpellier 2, Montpellier, France
| | - Patricia Aissa
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, 7021, Zarzouna, Tunisia
| | - Robert Duran
- Equipe Environnement et Microbiologie-MELODY Group-UMR CNRS IPREM 5254-IBEAS, Université de Pau et des Pays de l'Adour, Pau, France
| |
Collapse
|
22
|
Akbari A, Ghoshal S. Effects of diurnal temperature variation on microbial community and petroleum hydrocarbon biodegradation in contaminated soils from a sub-Arctic site. Environ Microbiol 2015; 17:4916-28. [DOI: 10.1111/1462-2920.12846] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Ali Akbari
- Department of Civil Engineering; McGill University; Montreal Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering; McGill University; Montreal Canada
| |
Collapse
|