1
|
Wu T, He J, Ye Z, Xia J, Chen M, Chen S, Liu K, Xing P, Yang J, Qian Y, Wang D. Aged Biodegradable Nanoplastics Enhance Body Accumulation Associated with Worse Neuronal Damage in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4352-4363. [PMID: 40065691 DOI: 10.1021/acs.est.4c13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The environmental and health challenges posed by petroleum-based biodegradable plastics, such as polybutylene succinate (PBS) and polybutyleneadipate-co-terephthalate (PBAT), are a significant concern because they are increasingly present in the environment and contribute a substantial proportion of microplastics (MPs) or nanoplastics (NPs). In this study, ultraviolet (UV)-aged PBS-NPs and PBAT-NPs are found to have a higher propensity to accumulate within the body of Caenorhabditis elegans (C. elegans) by prolonging the defecation interval, which could induce severe neuronal damage compared to pristine NPs. The increased accumulation of biodegradable nanoplastics (BNPs) and subsequent impairments of neurobehavior are highly attributed to their reduced particle size and altered surface properties, including changed chemical bonds and functional groups after photoaging. Aged BNPs also cause more severe damage to GABAergic neurons and neurotransmitter receptors, resulting in disrupted neuronal homeostasis and behaviors. Overall, BNPs of both PBS and PBAT components show no significant differences in biological accumulation and mechanisms of neural damage, highlighting the commonalities and characteristics of the adverse effects of petroleum-based BNPs on the nervous system. Our study opens up the exploration of the health impacts of photoaging and the degradation state of BNPs that are increasingly present in the environment.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Jing He
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Zongjian Ye
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Jieyi Xia
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
- Yancheng Kindergarten Teachers College, Yancheng 224005, China
| | - Siyuan Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Kehan Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Pengcheng Xing
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiafu Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Yijing Qian
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
2
|
Wu J, Ding X, Pang Y, Liu Q, Lei J, Zhang H, Zhang T. Research advance of occupational exposure risks and toxic effects of semiconductor nanomaterials. J Appl Toxicol 2025; 45:61-76. [PMID: 38837250 DOI: 10.1002/jat.4647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
In recent years, semiconductor nanomaterials, as one of the most promising and applied classes of engineered nanomaterials, have been widely used in industries such as photovoltaics, electronic devices, and biomedicine. However, occupational exposure is unavoidable during the production, use, and disposal stages of products containing these materials, thus posing potential health risks to workers. The intricacies of the work environment present challenges in obtaining comprehensive data on such exposure. Consequently, there remains a significant gap in understanding the exposure risks and toxic effects associated with semiconductor nanomaterials. This paper provides an overview of the current classification and applications of typical semiconductor nanomaterials. It also delves into the existing state of occupational exposure, methodologies for exposure assessment, and prevailing occupational exposure limits. Furthermore, relevant epidemiological studies are examined. Subsequently, the review scrutinizes the toxicity of semiconductor nanomaterials concerning target organ toxicity, toxicity mechanisms, and influencing factors. The aim of this review is to lay the groundwork for enhancing the assessment of occupational exposure to semiconductor nanomaterials, optimizing occupational exposure limits, and promoting environmentally sustainable development practices in this domain.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaomeng Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yanting Pang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qing Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jialin Lei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Haopeng Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices Southeast University, Nanjing, China
| |
Collapse
|
3
|
Silva AC, Viçozzi GP, Farina M, Ávila DS. Caenorhabditis elegans as a Model for Evaluating the Toxicology of Inorganic Nanoparticles. J Appl Toxicol 2024. [PMID: 39506203 DOI: 10.1002/jat.4704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 11/08/2024]
Abstract
Inorganic nanoparticles are nanomaterials with a central core composed of inorganic specimens, especially metals, which give them interesting applications but can impact the environment and human health. Their short- and long-term effects are not completely known and to investigate that, alternative models have been successfully used. Among these, the nematode Caenorhabditis elegans has been increasingly applied in nanotoxicology in recent years because of its many features and advantages for toxicological screening. This non-parasitic nematode may inhabit any environment where organic matter is available; therefore, it is interesting for ecotoxicological assessments. Moreover, this worm has a high genetic homology to humans, making the findings translatable. A notable number of published studies unraveled the level of toxicity of different nanoparticles, including the mechanisms by which their toxicity occurs. This narrative review collects and describes the most relevant toxicological data for inorganic nanoparticles obtained using C. elegans and also supports its application in safety assessments for regulatory purposes.
Collapse
Affiliation(s)
- Aline Castro Silva
- Graduation Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Gabriel Pedroso Viçozzi
- Graduation Program in Biological Sciences (Toxicological Biochemistry), Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - Daiana Silva Ávila
- Graduation Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa, Uruguaiana, RS, Brazil
- Graduation Program in Biological Sciences (Toxicological Biochemistry), Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
4
|
Chen M, Chen S, Liu K, Ye Z, Qian Y, He J, Xia J, Xing P, Yang J, Wa Ng Y, Wu T. Putative Adverse Outcome Pathway for Parkinson's Disease-like Symptoms Induced by Silicon Quantum Dots based on In Vivo/ Vitro Approaches. ACS NANO 2024; 18:25271-25289. [PMID: 39186478 DOI: 10.1021/acsnano.4c08516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Given the commercial proliferation of silicon quantum dots (SiQDs) and their inevitable environmental dispersal, this study critically examines their biological and public health implications, specifically regarding Parkinson's disease. The study investigated the toxicological impact of SiQDs on the onset and development of PD-like symptoms through the induction of ferroptosis, utilizing both in vivo [Caenorhabditis elegans (C. elegans)] and in vitro (SH-SY5Y neuroblastoma cell line) models. Our findings demonstrated that SiQDs, characterized by their stable and water-soluble physicochemical properties, tended to accumulate in neuronal tissues. This accumulation precipitated dopaminergic neurodegeneration, manifested as diminished dopamine-dependent behaviors, and escalated the expression of PD-specific genes in C. elegans. Importantly, the results revealed that SiQDs induced ferritinophagy, a selective autophagy pathway that triggered ferroptosis and resulted in PD-like symptoms, even exacerbating disease progression in biological models. These insights were incorporated into a putatively qualitative and quantitative adverse outcome pathway framework, highlighting the serious neurodegenerative risks posed by SiQDs through ferroptosis pathways. This study provides a multidisciplinary analysis critical for informing policy on the regulation of SiQDs exposure to safeguard susceptible populations and guiding the responsible development of nanotechnologies impacting environmental and public health.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
- Yancheng Kindergarten Teachers College, Yancheng 224005, P. R. China
| | - Siyuan Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Kehan Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Zongjian Ye
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yijing Qian
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jing He
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jieyi Xia
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Pengcheng Xing
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jiafu Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yán Wa Ng
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, P. R. China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| |
Collapse
|
5
|
Hu Y, Wang X, Niu Y, He K, Tang M. Application of quantum dots in brain diseases and their neurotoxic mechanism. NANOSCALE ADVANCES 2024; 6:3733-3746. [PMID: 39050959 PMCID: PMC11265591 DOI: 10.1039/d4na00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/01/2024] [Indexed: 07/27/2024]
Abstract
The early-stage diagnosis and therapy of brain diseases pose a persistent challenge in the field of biomedicine. Quantum dots (QDs), nano-luminescent materials known for their small size and fluorescence imaging capabilities, present promising capabilities for diagnosing, monitoring, and treating brain diseases. Although some investigations about QDs have been conducted in clinical trials, the concerns about the toxicity of QDs have continued. In addition, the lack of effective toxicity evaluation methods and systems and the difference between in vivo and in vitro toxicity evaluation hinder QDs application. The primary objective of this paper is to introduce the neurotoxic effects and mechanisms attributable to QDs. First, we elucidate the utilization of QDs in brain disorders. Second, we sketch out three pathways through which QDs traverse into brain tissue. Ultimately, expound upon the adverse consequences of QDs on the brain and the mechanism of neurotoxicity in depth. Finally, we provide a comprehensive summary and outlook on the potential development of quantum dots in neurotoxicity and the difficulties to be overcome.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Xiaoli Wang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Yiru Niu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Keyu He
- Blood Transfusion Department, Clinical Laboratory, Zhongda Hospital, Southeast University Nanjing Jiangsu 210009 China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
6
|
Guan S, Tang M. Exposure of quantum dots in the nervous system: Central nervous system risks and the blood-brain barrier interface. J Appl Toxicol 2024; 44:936-952. [PMID: 38062852 DOI: 10.1002/jat.4568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 07/21/2024]
Abstract
Quantum dots currently possess significant importance in the field of biomedical science. Upon introduction into the body, quantum dots exhibit a tendency to accumulate in diverse tissues including the central nervous system (CNS). Consequently, it becomes imperative to devote specific attention to their potential toxic effects. Moreover, the preservation of optimal CNS function relies heavily on blood-brain barrier (BBB) integrity, thereby necessitating its prioritization in neurotoxicological investigations. A more comprehensive understanding of the BBB and CNS characteristics, along with the underlying mechanisms that may contribute to neurotoxicity, will greatly aid researchers in the development of effective design strategies. This article offers an in-depth look at the methods used to reduce the harmful effects of quantum dots on the nervous system, alongside the progression of effective treatments for brain-related conditions. The focal point of this discussion is the BBB and its intricate association with the CNS and neurotoxicology. The discourse commences by recent advancements in the medical application of quantum dots are examined. Subsequently, elucidating the mechanisms through which quantum dots infiltrate the human body and traverse into the brain. Additionally, the discourse delves into the factors that facilitate the passage of quantum dots across the BBB, primarily encompassing the physicochemical properties of quantum dots and the BBB's inherent capacity for self-permeability alteration. Furthermore, a concluding summary is presented, emphasizing existing research deficiencies and identifying promising avenues for further investigation within this field.
Collapse
Affiliation(s)
- Shujing Guan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Ngo LT, Huang WT, Chan MH, Su TY, Li CH, Hsiao M, Liu RS. Comprehensive Neurotoxicity of Lead Halide Perovskite Nanocrystals in Nematode Caenorhabditis elegans. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306020. [PMID: 37661358 DOI: 10.1002/smll.202306020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 09/05/2023]
Abstract
To date, all-inorganic lead halide perovskite quantum dots have emerged as promising materials for photonic, optoelectronic devices, and biological applications, especially in solar cells, raising numerous concerns about their biosafety. Most of the studies related to the toxicity of perovskite quantum dots (PeQDs) have focused on the potential risks of hybrid perovskites by using zebrafish or human cells. So far, the neurotoxic effects and fundamental mechanisms of PeQDs remain unknown. Herein, a comprehensive methodology is designed to investigate the neurotoxicity of PeQDs by using Caenorhabditis elegans as a model organism. The results show that the accumulation of PeQDs mainly focuses on the alimentary system and head region. Acute exposure to PeQDs results in a decrease in locomotor behaviors and pharyngeal pumping, whereas chronic exposure to PeQDs causes brood decline and shortens lifespan. In addition, some abnormal issues occur in the uterus during reproduction assays, such as vulva protrusion, impaired eggs left in the vulva, and egg hatching inside the mother. Excessive reactive oxygen species formation is also observed. The neurotoxicity of PeQDs is explained by gene expression. This study provides a complete insight into the neurotoxicity of PeQD and encourages the development of novel nontoxic PeQDs.
Collapse
Affiliation(s)
- Loan Thi Ngo
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Academia Road 128, Nankang, Taipei, 115, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Academia Road 128, Nankang, Taipei, 115, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ting-Yi Su
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Academia Road 128, Nankang, Taipei, 115, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Academia Road 128, Nankang, Taipei, 115, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
8
|
Lin X, Chen T. A Review of in vivo Toxicity of Quantum Dots in Animal Models. Int J Nanomedicine 2023; 18:8143-8168. [PMID: 38170122 PMCID: PMC10759915 DOI: 10.2147/ijn.s434842] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic.
Collapse
Affiliation(s)
- Xiaotan Lin
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
- Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
| |
Collapse
|
9
|
Wang Y, Hua X, Wang D. Exposure to 6-PPD quinone enhances lipid accumulation through activating metabolic sensors of SBP-1 and MDT-15 in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121937. [PMID: 37307863 DOI: 10.1016/j.envpol.2023.121937] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
Although it has been shown that exposure to 6-PPDQ can cause toxicity on environmental organisms, its possible effects on metabolic state remain largely unclear. We here determined the effect of 6-PPDQ exposure on lipid accumulation in Caenorhabditis elegans. We observed increase in triglyceride content, enhancement in lipid accumulation, and increase in size of lipid droplets in 6-PPDQ (1-10 μg/L) exposed nematodes. This detected lipid accumulation was associated with both increase in fatty acid synthesis reflected by increased expressions of fasn-1 and pod-2 and inhibition in mitochondrial and peroxisomal fatty acid β-oxidation indicated by decreased expressions of acs-2, ech-2, acs-1, and ech-3. The observed lipid accumulation in 6-PPDQ (1-10 μg/L) exposed nematodes was also related to the increase in synthesis of monounsaturated fatty acylCoAs reflected by altered expressions of fat-5, fat-6, and fat-7. Exposure to 6-PPDQ (1-10 μg/L) further increased expressions of sbp-1 and mdt-15 encoding two metabolic sensors to initiate the lipid accumulation and to regulate the lipid metabolism. Moreover, the observed increase in triglyceride content, enhancement in lipid accumulation, and alterations in fasn-1, pod-2, acs-2, and fat-5 expressions in 6-PPDQ exposed nematodes were obviously inhibited by sbp-1 and mdt-15 RNAi. Our observations demonstrated the risk of 6-PPDQ at environmentally relevant concentration in affecting lipid metabolic state in organisms.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
10
|
Agarrayua DA, Silva AC, Saraiva NR, Soares AT, Aschner M, Avila DS. Neurotoxicology of metals and metallic nanoparticles in Caenorhabditis elegans. ADVANCES IN NEUROTOXICOLOGY 2023; 9:107-148. [PMID: 37384197 PMCID: PMC10306323 DOI: 10.1016/bs.ant.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Affiliation(s)
- Danielle Araujo Agarrayua
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Aline Castro Silva
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Nariani Rocha Saraiva
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Ana Thalita Soares
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Daiana Silva Avila
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
- Graduate Program in Biological Sciences- Toxicological Biochemistry, Federal University of Santa Maria, RS, Brazil
| |
Collapse
|
11
|
Guler E, Polat EB, Cam ME. Drug delivery systems for neural tissue engineering. BIOMATERIALS FOR NEURAL TISSUE ENGINEERING 2023:221-268. [DOI: 10.1016/b978-0-323-90554-1.00012-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Bai C, Yao Y, Wang Z, Huang X, Wei T, Zou L, Liu N, Zhang T, Tang M. CdTe quantum dots trigger oxidative stress and endoplasmic reticulum stress-induced apoptosis and autophagy in rat Schwann cell line RSC96. J Appl Toxicol 2022; 42:1962-1977. [PMID: 35857417 DOI: 10.1002/jat.4367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/07/2022]
Abstract
In the current study, the cytotoxicity and mechanisms of cadmium telluride quantum dots (CdTe QDs) on RSC96 cells were evaluated by exposing different doses of CdTe QDs for 24 h. Two types of cell death, including apoptosis and autophagy, as well as two important organelles, mitochondria and endoplasmic reticulum, were focused after CdTe QDs exposure. The results showed that CdTe QDs induced apoptosis in RSC96 cells in a concentration-dependent manner; promoted the accumulation of intracellular reactive oxygen species; decreased the mitochondrial membrane potential; caused the release of cytochrome c; and also increased the expression of Bcl-2 associated X protein, caspase-3, and cytochrome c proteins and decreased the expression of Bcl-2 protein. Further results also confirmed that CdTe QDs could be internalized by RSC96 cells, and the exposure and internalization of CdTe QDs could induce excessive endoplasmic reticulum stress in the cells, and the expression levels of binding immunoglobulin protein, C/EBP homologous protein, and caspase12 proteins were increased in a concentration-dependent manner. Moreover, autophagy-related proteins LC3II, Beclin1, and P62 all increased after CdTe QDs exposure, suggesting that CdTe QDs exposure both promoted autophagosome formation and inhibited autophagosome degradation, and that CdTe QDs affected the autophagic flow in RSC96 cells. In conclusion, CdTe QDs are able to cause apoptosis and autophagy in RSC96 cells through mitochondrial and endoplasmic reticulum stress pathways, and the possible neurotoxicity of CdTe QDs should be further investigated.
Collapse
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Zheng F, Chen C, Aschner M. Neurotoxicity Evaluation of Nanomaterials Using C. elegans: Survival, Locomotion Behaviors, and Oxidative Stress. Curr Protoc 2022; 2:e496. [PMID: 35849041 PMCID: PMC9299521 DOI: 10.1002/cpz1.496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanomaterials are broadly used in a variety of industries and consumer products. However, studies have demonstrated that many nanomaterials, including metal-containing nanoparticles and nanoplastics, have neurotoxic effects. Caenorhabditis elegans (C. elegans) is a widely used model organism with numerous advantages for research, including transparency, short life span, well-characterized nervous system, complete connectome, available genome, and numerous genetic tools. C. elegans has been extensively used to assess the neurotoxicity of multiple chemicals via survival assays, behavioral tests, neuronal morphology studies, and various molecular and mechanistic analyses. However, detailed protocols describing general assays in C. elegans to examine the neurotoxic effects of nanomaterials are limited. Here, we describe protocols for assessing nanomaterial neurotoxicity in C. elegans. We describe the steps for exposure and subsequent evaluation of survival, locomotion behavior, and oxidative stress. Survival and locomotion behavior are measured in wild-type N2 strains to assess acute neurotoxicity. Oxidative stress is used as an endpoint here since it is one of the most predominant and common changes induced by nanomaterials. VP596 nematodes, which express GFP upon activation of skn-1 (the worm homolog of Nrf2), are evaluated for assays of oxidative stress in response to test nanomaterials. These assays can be readily used to quickly examine the neurotoxicity of nanomaterials in vivo, laying the foundation for mechanistic studies of nanomaterials and their impacts on health and physiology. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Exposure of C. elegans to nanomaterials Basic Protocol 2: Survival assessment Basic Protocol 3: Assessment of locomotion behavior Basic Protocol 4: Analysis of oxidative stress.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, 1 Xueyuan Road, University Town, Fuzhou, Fujian, P. R. China
| | - Cheng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461 Bronx, NY, USA
| |
Collapse
|
14
|
A Transcriptomic Analysis of T98G Human Glioblastoma Cells after Exposure to Cadmium-Selenium Quantum Dots Mainly Reveals Alterations in Neuroinflammation Processes and Hypothalamus Regulation. Int J Mol Sci 2022; 23:ijms23042267. [PMID: 35216387 PMCID: PMC8877384 DOI: 10.3390/ijms23042267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 01/04/2023] Open
Abstract
Quantum dots are nanoparticles with very promising biomedical applications. However, before these applications can be authorized, a complete toxicological assessment of quantum dots toxicity is needed. This work studied the effects of cadmium-selenium quantum dots on the transcriptome of T98G human glioblastoma cells. It was found that 72-h exposure to 40 µg/mL (a dose that reduces cell viability by less than 10%) alters the transcriptome of these cells in biological processes and molecular pathways, which address mainly neuroinflammation and hormonal control of hypothalamus via the gonadotropin-releasing hormone receptor. The biological significance of neuroinflammation alterations is still to be determined because, unlike studies performed with other nanomaterials, the expression of the genes encoding pro-inflammatory interleukins is down-regulated rather than up-regulated. The hormonal control alterations of the hypothalamus pose a new concern about a potential adverse effect of quantum dots on fertility. In any case, more studies are needed to clarify the biological relevance of these findings, and especially to assess the real risk of toxicity derived from quantum dots exposure appearing in physiologically relevant scenarios.
Collapse
|
15
|
Bai C, Wei T, Zou L, Liu N, Huang X, Tang M. The apoptosis induced by CdTe quantum dots through the mitochondrial pathway in dorsal root ganglion cell line ND7/23. J Appl Toxicol 2022; 42:1218-1229. [DOI: 10.1002/jat.4291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/28/2021] [Accepted: 01/20/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| |
Collapse
|
16
|
Fakhri S, Abdian S, Zarneshan SN, Moradi SZ, Farzaei MH, Abdollahi M. Nanoparticles in Combating Neuronal Dysregulated Signaling Pathways: Recent Approaches to the Nanoformulations of Phytochemicals and Synthetic Drugs Against Neurodegenerative Diseases. Int J Nanomedicine 2022; 17:299-331. [PMID: 35095273 PMCID: PMC8791303 DOI: 10.2147/ijn.s347187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
As the worldwide average life expectancy has grown, the prevalence of age-related neurodegenerative diseases (NDDs) has risen dramatically. A progressive loss of neuronal function characterizes NDDs, usually followed by neuronal death. Inflammation, apoptosis, oxidative stress, and protein misfolding are critical dysregulated signaling pathways that mainly orchestrate neuronal damage from a mechanistic point. Furthermore, in afflicted families with genetic anomalies, mutations and multiplications of α-synuclein and amyloid-related genes produce some kinds of NDDs. Overproduction of such proteins, and their excessive aggregation, have been proven in various models of neuronal malfunction and death. In this line, providing multi-target therapies carried by novel delivery systems would pave the road to control NDDs through simultaneous modulation of such dysregulated pathways. Phytochemicals are multi-target therapeutic agents, which employ several mechanisms towards neuroprotection. Besides, the blood-brain barrier (BBB) is a critical issue in managing NDDs since it inhibits the accessibility of drugs to the brain in sufficient concentration. Besides, discovering novel delivery systems is vital to improving the efficacy, bioavailability, and pharmacokinetic of therapeutic agents. Such novel formulations are also employed to improve the drug's biodistribution, allow for the co-delivery of several medicines, and offer targeted intracellular delivery against NDDs. The present review proposes nanoformulations of phytochemicals and synthetic agents to combat NDDs by modulating neuroinflammation, neuroapoptosis, neuronal oxidative stress pathways and protein misfolding.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Jin L, Dou TT, Chen JY, Duan MX, Zhen Q, Wu HZ, Zhao YL. Sublethal toxicity of graphene oxide in Caenorhabditis elegans under multi-generational exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113064. [PMID: 34890989 DOI: 10.1016/j.ecoenv.2021.113064] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Nanomaterials have received increasing attentions owing to their potential hazards to the environment and human health; however, the multi-generational toxicity of graphene oxide under consecutive multi-generational exposure scenario still remains unclear. In the present study, Caenorhabditis elegans as an in vivo model organism was employed to explore the multi-generational toxicity effects of graphene oxide and the underlying mechanisms. Endpoints including development and lifespan, locomotion behaviors, defecation cycle, brood sizes, and oxidative response were evaluated in the parental generation and subsequent five filial generations. After continuous exposure for several generations, worms grew smaller and lived shorter. The locomotion behaviors were reduced across the filial generations and these reduced trends were following the impairments of locomotion-related neurons. In addition, the extended defecation cycles from the third filial generation were in consistency with the relative size reduction of the defecation related neuron. Simultaneously, the fertility function of the nematode was impaired under consecutive exposure as reduced brood sizes and oocytes numbers, increased apoptosis of germline, and aberrant expression of reproductive related genes ced-3, ced-4, ced-9, egl-1 and ced-13 were detected in exposed worms. Furthermore, the antioxidant enzyme, SOD-3 was significantly increased in the parent and filial generations. Thus, continuous multi-generational exposure to graphene oxide caused damage to the neuron development and the reproductive system in nematodes. These toxic effects could be reflected by indicators such as growth inhibition, shortened lifespan, and locomotion behavior impairment and induced oxidative response.
Collapse
Affiliation(s)
- Ling Jin
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Ting-Ting Dou
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Jing-Ya Chen
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Ming-Xiu Duan
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Quan Zhen
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Hua-Zhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, People's Republic of China.
| | - Yun-Li Zhao
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China.
| |
Collapse
|
18
|
Xu H, Wang X, Zhang X, Cheng J, Zhang J, Chen M, Wu T. A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode Caenorhabditis elegans. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3314. [PMID: 34947663 PMCID: PMC8703693 DOI: 10.3390/nano11123314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022]
Abstract
Along with the rapidly increasing applications of nitrogen-doped graphene quantum dots (N-GQDs) in the field of biomedicine, the exposure of N-GQDs undoubtedly pose a risk to the health of human beings, especially in the nervous system. In view of the lack of data from in vivo studies, this study used the nematode Caenorhabditis elegans (C. elegans), which has become a valuable animal model in nanotoxicological studies due to its multiple advantages, to undertake a bio-safety assessment of N-GQDs in the nervous system with the assistance of a deep learning model. The findings suggested that accumulated N-GQDs in the nematodes' bodies damaged their normal behavior in a dose- and time-dependent manner, and the impairments of the nervous system were obviously severe when the exposure dosages were above 100 μg/mL. When assessing the morphological changes of neurons caused by N-GQDs, a quantitative image-based analysis based on a deep neural network algorithm (YOLACT) was used because traditional image-based analysis is labor-intensive and limited to qualitative evaluation. The quantitative results indicated that N-GQDs damaged dopaminergic and glutamatergic neurons, which are involved in the neurotoxic effects of N-GQDs in the nematode C. elegans. This study not only suggests a fast and economic C. elegans model to undertake the risk assessment of nanomaterials in the nervous system, but also provides a valuable deep learning approach to quantitatively track subtle morphological changes of neurons at an unbiased level in a nanotoxicological study using C. elegans.
Collapse
Affiliation(s)
- Hongsheng Xu
- College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China;
| | - Xinyu Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (X.W.); (X.Z.); (J.C.); (J.Z.); (M.C.)
| | - Xiaomeng Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (X.W.); (X.Z.); (J.C.); (J.Z.); (M.C.)
| | - Jin Cheng
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (X.W.); (X.Z.); (J.C.); (J.Z.); (M.C.)
| | - Jixiang Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (X.W.); (X.Z.); (J.C.); (J.Z.); (M.C.)
| | - Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (X.W.); (X.Z.); (J.C.); (J.Z.); (M.C.)
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (X.W.); (X.Z.); (J.C.); (J.Z.); (M.C.)
| |
Collapse
|
19
|
Li Y, Zhong L, Zhang L, Shen X, Kong L, Wu T. Research Advances on the Adverse Effects of Nanomaterials in a Model Organism, Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2406-2424. [PMID: 34078000 DOI: 10.1002/etc.5133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Along with the rapid development of nanotechnology, the biosafety assessment of nanotechnology products, including nanomaterials (NMs), has become more and more important. The nematode Caenorhabditis elegans is a valuable model organism that has been widely used in the field of biology because of its excellent advantages, including low cost, small size, short life span, and highly conservative genomes with vertebral animals. In recent years, the number of nanotoxicological researchers using C. elegans has been growing. According to these available studies, the present review classified the adverse effects of NMs in C. elegans into systematic, cellular, and molecular toxicity, and focused on summarizing and analyzing the underlying mechanisms of metal, metal oxide, and nonmetallic NMs causing toxic effects in C. elegans. Our findings provide insights into what further studies are needed to assess the biosafety of NMs in the ecosystem using C. elegans. Environ Toxicol Chem 2021;40:2406-2424. © 2021 SETAC.
Collapse
Affiliation(s)
- Yimeng Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lishi Zhong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lili Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
20
|
Manjunatha B, Seo E, Park SH, Kundapur RR, Lee SJ. Pristine graphene and graphene oxide induce multi-organ defects in zebrafish (Danio rerio) larvae/juvenile: an in vivo study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34664-34675. [PMID: 33656705 DOI: 10.1007/s11356-021-13058-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/16/2021] [Indexed: 05/14/2023]
Abstract
Graphene-based nanomaterials (GBNs) have been widely used in various fields nowadays. However, they are reported to be highly toxic to some aquatic organisms. However, the multi-organ toxicity caused by pristine graphene (pG) and graphene oxide (GO) to the developing zebrafish (Danio rerio) larvae or juvenile and the underlying mechanisms is not fully known. Therefore, in the present study, the effect of pG and GO with environmental concentrations (0, 5, 10, 15, 20, and 25 μg/L of pG; 0, 0.1, 0.2, 0.3, and 0.4 mg/mL of GO) on multi-organ system in developing zebrafish larvae was experimentally assessed. The pG and GO were found to accumulate in the brain tissue that also caused significant changes in the heart beat and survival rate. The sizes of hepatocytes were reduced. Altered axonal integrity, affecting axon length and pattern in "Tg(mbp:eGFP) transgenic lines" was also observed. In addition, the results indicated pathological effects in major organs and with disrupted mitochondrial structure was quite obvious. The pG and GO bioaccumulation leads to multi organ toxicity in zebrafish larvae. In future, the existence of the current study can be extrapolated to other aquatic system in general and in particularly to humans.
Collapse
Affiliation(s)
- Bangeppagari Manjunatha
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Eunseok Seo
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Sung Ho Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | | | - Sang Joon Lee
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| |
Collapse
|
21
|
Liang Y, Zhang T, Tang M. Toxicity of quantum dots on target organs and immune system. J Appl Toxicol 2021; 42:17-40. [PMID: 33973249 DOI: 10.1002/jat.4180] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/06/2022]
Abstract
Quantum dots (QDs), due to their superior luminous properties, have been proven to be a very promising biological probe, which can be used as a candidate material for clinical applications. The toxicity of QDs in the environment and biological systems has caused widespread concern in the nanosphere, but their immune toxicity and their impact on the immune system are still relatively unknown. At present, the research on the toxicity of QDs is mainly focused on in vitro models, but few have systematically evaluated their adverse effects on target organs. Animal studies have shown that QDs can be accumulated in various organs due to their main exposure routes, thereby posing a potential threat to major organs. This review briefly describes general characteristics and the wide medical applications of QDs and focuses on the adverse effects of QDs on major target organs, such as liver, lung, kidney, brain, and spleen, after acute and chronic exposure. QDs mainly cause changes in the corresponding indicators of target organs, such as oxidative damage, and in severe cases cause hyperemia, tissue necrosis, and even death. In addition to causing direct damage to target organs, QDs can also cause a large number of immune cells to accumulate and cause inflammatory reactions when causing damage to other major organs. Whether it is to avoid the risk of people contacting QDs in production and life, or to realize the clinical applications of QDs, is very essential to conduct systematic in vivo toxicity assessment of QDs.
Collapse
Affiliation(s)
- Ying Liang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Tao Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
22
|
Guo Z, Cui Z. Fluorescent nanotechnology for in vivo imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1705. [PMID: 33686803 DOI: 10.1002/wnan.1705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/21/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Fluorescent imaging in living animals gives an intuitive picture of the dynamic processes in the complex environment within a living being. However, animal tissues present a substantial barrier and are opaque to most wavelengths of visible light. Fluorescent nanoparticles (NPs) with new photophysical characteristics have shown excellent performance for in vivo imaging. Hence, fluorescent NPs have been widely studied and applied for the detection of molecular and biological processes in living animals. In addition, developments in the area of nanotechnology have allowed materials to be used in intact animals for disease detection, diagnosis, drug delivery, and treatment. This review provides information on the different types of fluorescent particles based on nanotechnology, describing their unique individual properties and applications for detecting vital processes in vivo. The development and application of new fluorescent NPs will provide opportunities for in vivo imaging with better penetration, sensitivity, and resolution. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Zhengyuan Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
23
|
Manjunatha B, Sreevidya B, Lee SJ. Developmental toxicity triggered by benzyl alcohol in the early stage of zebrafish embryos: Cardiovascular defects with inhibited liver formation and degenerated neurogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141631. [PMID: 32889257 DOI: 10.1016/j.scitotenv.2020.141631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 05/24/2023]
Abstract
Benzyl alcohol (BnOH) is an aromatic alcohol used worldwide as an excipient in foods, cosmetics, household products, and medications. Although BnOH is a bacteriostatic agent found in many parenteral preparations, this agent is responsible for precipitating the gasping syndrome in premature neonates. Increasing evidence of human exposure to BnOH and environmental contamination of BnOH requires a detailed toxicity assessment of this aromatic chemical. Few studies on the toxicity of BnOH have been reported on different animal models, but its developmental toxicity effects are not fully understood yet. Studies on the effects of BnOH on the specific endpoints of organ toxicity are rare. Thus, the present study aimed to examine the developmental toxicity effects of BnOH by using zebrafish (Danio rerio) embryo as a biological disease model. Four-hour post fertilization zebrafish embryos were exposed to BnOH for 72 h to assess BnOH toxicity on an ecological viewpoint. The median lethal concentrations of varying BnOH concentrations in zebrafish embryos were estimated. The embryonic toxicity induced by BnOH was revealed by the apoptosis in embryos and pathological alterations, such as increased mortality, inhibited hatching rate, and decreased somite number. Moreover, pericardial edema and string heartbeat were observed because of arrhythmia and cardiac malformation. The number of normal vessels in the head and trunk regions was remarkably reduced in transgenic zebrafish line Tg (Fli-1: EGFP). Morphological defects and yolk sac retention were related to the degenerated liver formation in Tg (Lfabp: dsRED). Furthermore, BnOH exposure led to the disruption of motor neuron axonal integrity and the alteration of the axon pattern in Tg (olig2: dsRED). In addition, the results exhibited the pathological effects of BnOH exposure on major organs. We believe that this study is the second to report the developmental organ toxicity of BnOH to zebrafish embryos. This study provides important information for further elucidating the mechanism of BnOH-induced developmental organ toxicity.
Collapse
Affiliation(s)
- Bangeppagari Manjunatha
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.
| | - B Sreevidya
- Narayana Medical College and Hospital, Nellore, Andhra Pradesh 524003, India
| | - Sang Joon Lee
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.
| |
Collapse
|
24
|
Liang X, Wang Y, Cheng J, Ji Q, Wang Y, Wu T, Tang M. Mesoporous Silica Nanoparticles at Predicted Environmentally Relevant Concentrations Cause Impairments in GABAergic Motor Neurons of Nematode Caenorhabditis elegans. Chem Res Toxicol 2020; 33:1665-1676. [PMID: 32510209 DOI: 10.1021/acs.chemrestox.9b00477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Available safety evaluations regarding mesoporous silica nanoparticles (mSiNPs) are based on the assumption of a relatively high exposure concentration, which makes the findings less valuable in a realistic environment. In this study, we employed Caenorhabditis elegans (C. elegans) as a model to assess the neuronal damage caused by mSiNPs at the predicted environmentally relevant concentrations. After nematodes were acute and prolonged exposed to mSiNPs at concentrations over 300 μg/L, locomotion degeneration, shrinking behavior, and abnormal foraging behavior were observed, which were associated with the deficits in the development of GABAergic neurons, including D-type and RME motor neurons. Furthermore, the oxidative stress evidenced by excessive ROS generation might contribute to the mechanism of mSiNPs damaging neurons. Although the neurotoxicity of mSiNPs was weaker than (nonmesoporous) SiNPs, it is still necessary for researchers to pay attention to the adverse effects caused by mSiNPs in the environmental animals, especially with the rapid increase in mSiNPs application. Considering the conserved property of GABAergic neurons during evolution, these findings will shed light on our understanding of the potential eco-risks of NPs to the nervous system of other animal models.
Collapse
Affiliation(s)
- Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yutong Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jin Cheng
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Qianqian Ji
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yan Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| |
Collapse
|
25
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm 2020; 149:192-217. [PMID: 31982574 DOI: 10.1016/j.ejpb.2020.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is vulnerable to pathologic processes that lead to the development of neurodegenerative disorders like Alzheimer's, Parkinson's and Huntington's diseases, Multiple sclerosis or Amyotrophic lateral sclerosis. These are chronic and progressive pathologies characterized by the loss of neurons and the formation of misfolded proteins. Additionally, neurodegenerative diseases are accompanied by a structural and functional dysfunction of the blood-brain barrier (BBB). Although serving as a protection for the CNS, the existence of physiological barriers, especially the BBB, limits the access of several therapeutic agents to the brain, constituting a major hindrance in neurotherapeutics advancement. In this regard, nanotechnology-based approaches have arisen as a promising strategy to not only improve drug targeting to the brain, but also to increase bioavailability. Lipid nanocarriers such as liposomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), microemulsions and nanoemulsions, have already proven their potential for enhancing brain transport, crossing more easily into the CNS and allowing the administration of medicines that could benefit the treatment of neurological pathologies. Given the socioeconomic impact of such conditions and the advent of nanotechnology that inevitably leads to more effective and superior therapeutics for their management, it is imperative to constantly update on the current knowledge of these topics. Herein, we provide insight on the BBB and the pathophysiology of the main neurodegenerative disorders. Moreover, this review seeks to highlight the several approaches that can be used to improve the delivery of therapeutic agents to the CNS, while also offering an extensive overview of the latest efforts regarding the use of lipid-based nanocarriers in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- M I Teixeira
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - C M Lopes
- FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Centre, Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P C Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
26
|
Sun J, Zhou Q, Hu X. Integrating multi-omics and regular analyses identifies the molecular responses of zebrafish brains to graphene oxide: Perspectives in environmental criteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:269-279. [PMID: 31100591 DOI: 10.1016/j.ecoenv.2019.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
With the broad application of nanoparticles, nanotoxicology has attracted substantial attention in environmental science. However, the methods for detecting few and targeted genes or proteins, even single omics approaches, may miss other responses, including the major responses induced by nanoparticles. To determine the actual toxicological mechanisms of zebrafish brains induced by graphene oxide (GO, a popular carbon-based nanomaterial applied in various fields) at nonlethal concentrations, multi-omics and regular analyses were combined. The biomolecule responses were remarkable, although GO was not obviously observed in brain tissues. The trends for gene and protein changes were the same and accounted for 3.53% and 5.36% of all changes in the genome and proteome, respectively, suggesting a limitation of single omics analysis. Transcriptomics and proteomics analyses indicated that GO affected the functions or pathways of the troponin complex, actin cytoskeleton, monosaccharide transmembrane transporter activity, oxidoreductase activity and focal adhesion. Both metabolomics and proteomics revealed mitochondrial dysfunction and disruption of the citric acid cycle. The integrated analysis of omics, transmission electron microscopy and immunostaining confirmed that GO induced energy disruptions and mitochondrial damage by downregulating tubulin. The combination of multi-omics and regular analyses provides insights into the actual and highly influential mechanisms underlying nanotoxicity.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
27
|
Qu M, Qiu Y, Lv R, Yue Y, Liu R, Yang F, Wang D, Li Y. Exposure to MPA-capped CdTe quantum dots causes reproductive toxicity effects by affecting oogenesis in nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:54-62. [PMID: 30769203 DOI: 10.1016/j.ecoenv.2019.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/27/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Quantum dots (QDs), considered as a type of excellent semiconductor nanomaterial, are widely employed and have a number of important applications. However, QDs have the potential to produce adverse effects and toxicity with the underlying molecular mechanisms not well understood. Herein, Caenorhabditis elegans was used for in vivo toxicity assessment to detect the reproductive toxicity of CdTe QDs. We found that exposure to CdTe QDs particles (≥ 50 mg/L) resulted in a defect in reproductive capacity, dysfunctional proliferation and differentiation, as well as an imbalance in oogenesis by reducing the number of cells in pachytene and diakinesis. Further, we identified a SPO-11 and PCH-2 mediated toxic mechanism and a GLP-1/Notch mediated protective mechanism in response to CdTe QDs particles (≥ 50 mg/L). Taken together, these results demonstrate the potential adverse impact of CdTe QDs (≥ 50 mg/L) exposure on oogenesis and provide valuable data and guidelines for evaluation of QD biocompatibility.
Collapse
Affiliation(s)
- Man Qu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuexiu Qiu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Rongrong Lv
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ying Yue
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
28
|
Wu T, Xu H, Liang X, Tang M. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. CHEMOSPHERE 2019; 221:708-726. [PMID: 30677729 DOI: 10.1016/j.chemosphere.2019.01.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The number of biosafety evaluation studies of nanoparticles (NPs) using different biological models is increasing with the rapid development of nanotechnology. Thus far, nematode Caenorhabditis elegans (C. elegans), as a complete model organism, has become an important in vivo alternative assay system to assess the risk of NPs, especially at the environmental level. According to results of qualitative and quantitative analyses, it can be concluded that studies of nanoscientific research using C. elegans is persistently growing. However, the comprehensive conclusion and analysis of toxic effects of NPs in C. elegans are limited and chaotic. This review focused on the effects, especially sublethal ones, induced by NPs in C. elegans, including the development, intestinal function, immune response, neuronal function, and reproduction, as well as the underlying mechanisms of NPs causing these effects, including oxidative stress and alterations of several signaling pathways. Furthermore, we presented some factors that influence the toxic effects of NPs in C. elegans. The advantages and limitations of using nematodes in the nanotoxicology study were also discussed. Finally, we predicted that the application of C. elegans to assess long-term impacts of metal oxide NPs in the ecosystem would become a vital part of the nanoscientific research field, which provided an insight for further study.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| | - Hongsheng Xu
- State Grid Electric Power Research Institute, NARI Group Corporation, Nanjing, 211000, China
| | - Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
29
|
Sinis SI, Gourgoulianis KI, Hatzoglou C, Zarogiannis SG. Mechanisms of engineered nanoparticle induced neurotoxicity in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 67:29-34. [PMID: 30710828 DOI: 10.1016/j.etap.2019.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/19/2018] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
The wide-spread implementation of nanoparticles poses a major health concern. Unique biokinetics allow them to transfer to neurons throughout the body and inflict neurotoxicity, which is challenging to evaluate solely in mammalian experimental models due to logistics, financial and ethical limitations. In recent years, the nematode Caenorhabditis elegans has emerged as a promising nanotoxicology experimental surrogate due to characteristics such as ease of culture, short life cycle and high number of progeny. Most importantly, this model organism has a well conserved and fully described nervous system rendering it ideal for use in neurotoxicity assessment of nanoparticles. In that context, this mini review aims to summarize the main mechanistic findings on nanoparticle related neurotoxicity in the setting of Caenorhabditis elegans screening. The injury pathway primarily involves changes in intestinal permeability and defecation frequency both of which facilitate translocation at the site of neurons, where toxicity formation is linked partly to oxidative stress and perturbed neurotransmission.
Collapse
Affiliation(s)
- Sotirios I Sinis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece.
| |
Collapse
|
30
|
Teleanu DM, Chircov C, Grumezescu AM, Teleanu RI. Neurotoxicity of Nanomaterials: An Up-to-Date Overview. NANOMATERIALS 2019; 9:nano9010096. [PMID: 30642104 PMCID: PMC6359621 DOI: 10.3390/nano9010096] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022]
Abstract
The field of nanotechnology, through which nanomaterials are designed, characterized, produced, and applied, is rapidly emerging in various fields, including energy, electronics, food and agriculture, environmental science, cosmetics, and medicine. The most common biomedical applications of nanomaterials involve drug delivery, bioimaging, and gene and cancer therapy. Since they possess unique properties which are different than bulk materials, toxic effects and long-term impacts on organisms are not completely known. Therefore, the purpose of this review is to emphasize the main neurotoxic effects induced by nanoparticles, liposomes, dendrimers, carbon nanotubes, and quantum dots, as well as the key neurotoxicology assays to evaluate them.
Collapse
Affiliation(s)
- Daniel Mihai Teleanu
- Emergency University Hospital, Bucharest, Romania, "Carol Davila" University of Medicine and Pharmacy, Bucharest 050474, Romania.
| | - Cristina Chircov
- Faculty of Engineering in Foreign Languages, Politehnica University of Bucharest, București 060042, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Bucharest 060041, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Bucharest 060041, Romania.
- ICUB-Research Institute of University of Bucharest, University of Bucharest, 36-46 M. Kogalniceanu Blvd., Bucharest 050107, Romania.
| | - Raluca Ioana Teleanu
- Emergency University Hospital, Bucharest, Romania, "Carol Davila" University of Medicine and Pharmacy, Bucharest 050474, Romania.
| |
Collapse
|
31
|
Balci Leinen M, Dede D, Khan MU, Çağlayan M, Koçak Y, Demir HV, Ozensoy E. CdTe Quantum Dot-Functionalized P25 Titania Composite with Enhanced Photocatalytic NO 2 Storage Selectivity under UV and Vis Irradiation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:865-879. [PMID: 30525435 DOI: 10.1021/acsami.8b18036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Composite systems of P25 (titania) functionalized with thioglycolic acid (TGA)-capped CdTe colloidal quantum dots (QDs) were synthesized, structurally characterized, and photocatalytically tested in the photocatalytic NO x oxidation and storage during NO(g) + O2(g) reaction. Pure P25 yielded moderate-to-high NO conversion (31% in UV-A and 40% in visible (vis)) but exhibited extremely poor selectivity toward NO x storage in solid state (25% in UV-A and 35% in vis). Therefore, P25 could efficiently photooxidize NO(g) + O2(g) into NO2; however, it failed to store photogenerated NO2 and released toxic NO2(g) to the atmosphere. CdTe QD-functionalized P25 revealed a major boost in photocatalytic performance with respect to pure P25, where NO conversion reached 42% under UV-A and 43% under vis illumination, while the respective selectivity climbed up to 92 and 97%, rendering the CdTe/P25 composite system an efficient broad-band photocatalyst, which can harvest both UV-A and vis light efficiently and display a strong NO x abatement effect. Control experiments suggested that photocatalytic active sites responsible for the NO(g) + O2(g) photooxidation and formation of NO2 reside mostly on titania, while the main functions of the TGA capping agent and the CdTe QDs are associated with the photocatalytic conversion of the generated NO2 to the adsorbed NO x species, significantly boosting the selectivity toward solid-state NO x storage. Reuse experiments showed that photocatalytic performance of the CdTe/P25 system can be preserved to a reasonable extent with only a moderate decrease in the photocatalytic performance. Although some decrease in the photocatalytic activity was observed after aging, CdTe/P25 could still outperform P25 benchmark photocatalyst. Increasing CdTe QDs loading from the currently optimized minuscule concentrations could be a useful strategy to increase further the catalytic lifetime/stability of the CdTe/P25 system with only a minor penalty in catalytic activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Hilmi Volkan Demir
- School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, and School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | | |
Collapse
|
32
|
Du XY, Ma K, Cheng R, She XJ, Zhang YW, Wang CF, Chen S, Xu C. Host-guest supramolecular assembly directing beta-cyclodextrin based nanocrystals towards their robust performances. JOURNAL OF HAZARDOUS MATERIALS 2019; 361:329-337. [PMID: 30245255 DOI: 10.1016/j.jhazmat.2018.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Fluorescent CdTe nanocrystals (NCs) capped with beta-cyclodextrin (β-CD) are successfully synthesized by host-guest supramolecular assembly of the hydrophobic alkyl chains of N-acetyl-l-cysteine (NAC) on the surface of CdTe NCs and eco-friendly β-CD via the promising simple hydrothermal method in our experiments. The as-prepared NCs display better stability and lower toxicity compared with traditional those only capped with NAC. Specially, cytotoxicity experiments to human umbilical vein endothelial cells in vitro and zebrafish embryo toxicological tests in vivo are performed to determine the toxicity of CdTe NCs. For their practical applications, the promising red-luminescent NCs are employed as stable and low poison red phosphors to fabricate white light-emitting diodes (WLEDs) with remarkable color-rendering index (CRI) being 91.6. This research offers significance for solving the difficulty in toxicity and instability of heavy metal based NCs, which has potential applications in future optoelectronic devices and biomarkers.
Collapse
Affiliation(s)
- Xiang-Yun Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials and College of Chemical Engineering, Nanjing Tech University (Former Nanjing University of Technology), Nanjing 210009, PR China
| | - Kangzhe Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials and College of Chemical Engineering, Nanjing Tech University (Former Nanjing University of Technology), Nanjing 210009, PR China
| | - Rui Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials and College of Chemical Engineering, Nanjing Tech University (Former Nanjing University of Technology), Nanjing 210009, PR China
| | - Xing-Jin She
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials and College of Chemical Engineering, Nanjing Tech University (Former Nanjing University of Technology), Nanjing 210009, PR China
| | - Ya-Wen Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials and College of Chemical Engineering, Nanjing Tech University (Former Nanjing University of Technology), Nanjing 210009, PR China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials and College of Chemical Engineering, Nanjing Tech University (Former Nanjing University of Technology), Nanjing 210009, PR China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials and College of Chemical Engineering, Nanjing Tech University (Former Nanjing University of Technology), Nanjing 210009, PR China.
| | - Chen Xu
- State Key Laboratory of Pharmaceutical Biotechnology and School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
33
|
Young AT, Cornwell N, Daniele MA. Neuro-Nano Interfaces: Utilizing Nano-Coatings and Nanoparticles to Enable Next-Generation Electrophysiological Recording, Neural Stimulation, and Biochemical Modulation. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1700239. [PMID: 33867903 PMCID: PMC8049593 DOI: 10.1002/adfm.201700239] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Neural interfaces provide a window into the workings of the nervous system-enabling both biosignal recording and modulation. Traditionally, neural interfaces have been restricted to implanted electrodes to record or modulate electrical activity of the nervous system. Although these electrode systems are both mechanically and operationally robust, they have limited utility due to the resultant macroscale damage from invasive implantation. For this reason, novel nanomaterials are being investigated to enable new strategies to chronically interact with the nervous system at both the cellular and network level. In this feature article, the use of nanomaterials to improve current electrophysiological interfaces, as well as enable new nano-interfaces to modulate neural activity via alternative mechanisms, such as remote transduction of electromagnetic fields are explored. Specifically, this article will review the current use of nanoparticle coatings to enhance electrode function, then an analysis of the cutting-edge, targeted nanoparticle technologies being utilized to interface with both the electrophysiological and biochemical behavior of the nervous system will be provided. Furthermore, an emerging, specialized-use case for neural interfaces will be presented: the modulation of the blood-brain barrier.
Collapse
Affiliation(s)
- Ashlyn T Young
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Neil Cornwell
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, 911 Oval Dr., Raleigh, NC 27695, USA
| |
Collapse
|
34
|
Wu N, Zhang Z, Zhou J, Sun Z, Deng Y, Lin G, Ying M, Wang X, Yong KT, Wu C, Xu G. The biocompatibility studies of polymer dots on pregnant mice and fetuses. Nanotheranostics 2017; 1:261-271. [PMID: 29071192 PMCID: PMC5646735 DOI: 10.7150/ntno.18964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/02/2017] [Indexed: 01/22/2023] Open
Abstract
Semiconducting polymer dots (Pdots) are small nanoparticles consisting primarily of fluorescent pi-conjugated polymers which show superior optical properties for biological imaging and biosensors. It is necessary to explore systematically the toxicity of Pdots on animals before extensive biomedical applications. The reproductive system is very sensitive to the external invasion and essential for species reproduction as well. In this work, we used the pregnant mice to investigate the reproductive toxicity of Pdots. The changes in body weight of each maternal mouse were recorded every two days. The main organs were collected and analyzed as soon as all the pregnant mice were sacrificed on the 15th embryonic day. Distributions of Pdots on maternal major organs and tissues were examined in frozen tissue sections. Hematoxylin and eosin (H&E) staining was performed to investigate the histopathological changes of maternal organs. The blood chemistry test was applied to study the effects of Pdots on organ functions. Female hormones were evaluated by immunoassays. The amniotic fluid was inspected for assessing their penetration ability of Pdots. Levels of placenta growth related factors were detected by RT-PCR to evaluate the function of placenta. These results showed that Pdots were mainly accumulated in liver and spleen, and no apparent impact was observed on maternal body weight and organs coefficients. Histopathological images also showed normal tissue morphology compared with the untreated group. The female hormones levels did not show significant difference among the three groups as well. Trace amount of Pdots could get into the amniotic fluid but did not change the placental functions and the early development of fetus. Our results demonstrated that Pdots have excellent biocompatibility and no reproductive toxicity under the dosages used in this work, which means that Pdots have great potential in preclinical applications in the future.
Collapse
Affiliation(s)
- Na Wu
- Key laboratory of Optoelectronic Devices and System of The Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen Guangdong Province 518060, China
| | - Zheng Zhang
- Key laboratory of Optoelectronic Devices and System of The Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen Guangdong Province 518060, China
| | - Jie Zhou
- Key laboratory of Optoelectronic Devices and System of The Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen Guangdong Province 518060, China
| | - Zezhou Sun
- State key laboratory on integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University Changchun, Jinlin 130012, China
| | - Yueyue Deng
- Key laboratory of Optoelectronic Devices and System of The Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen Guangdong Province 518060, China
| | - Guimiao Lin
- Key laboratory of Biomedical Engineering of Shenzhen, College of medicine, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ming Ying
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbia Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiaomei Wang
- Key laboratory of Biomedical Engineering of Shenzhen, College of medicine, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gaixia Xu
- Key laboratory of Optoelectronic Devices and System of The Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen Guangdong Province 518060, China
| |
Collapse
|
35
|
Soares FA, Fagundez DA, Avila DS. Neurodegeneration Induced by Metals in Caenorhabditis elegans. ADVANCES IN NEUROBIOLOGY 2017; 18:355-383. [PMID: 28889277 DOI: 10.1007/978-3-319-60189-2_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metals are a component of a variety of ecosystems and organisms. They can generally be divided into essential and nonessential metals. The essential metals are involved in physiological processes once the deficiency of these metals has been associated with diseases. Although iron, manganese, copper, and zinc are important for life, it has been evidenced that they are also involved in neuronal damage in many neurodegenerative disorders. Nonessential metals, which are metals without physiological functions, are present in trace or higher levels in living organisms. Occupational, environmental, or deliberate exposures to lead, mercury, aluminum, and cadmium are clearly correlated with the increase of toxicity and varied kinds of pathological situations. Actually, the field of neurotoxicology needs to satisfy two opposing demands: the testing of a growing list of chemicals and resource limitations and ethical concerns associated with testing using traditional mammalian species. Toxicological assays using alternative animal models may relieve some of this pressure by allowing testing of more compounds while reducing expenses and using fewer mammals. The nervous system is by far the more complex system in C. elegans. Almost a third of their cells are neurons (302 neurons versus 959 cells in adult hermaphrodite). It initially underwent extensive development as a model organism in order to study the nervous system, and its neuronal lineage and the complete wiring diagram of its nervous system are stereotyped and fully described. The neurotransmission systems are phylogenetically conserved from nematodes to vertebrates, which allows for findings from C. elegans to be extrapolated and further confirmed in vertebrate systems. Different strains of C. elegans offer a new perspective on neurodegenerative processes. Some genes have been found to be related to neurodegeneration induced by metals. Studying these interactions may be an effective tool to slow neuronal loss and deterioration.
Collapse
Affiliation(s)
- Felix Antunes Soares
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.
| | | | - Daiana Silva Avila
- Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, 97508-000, Brazil.
| |
Collapse
|
36
|
Rocha TL, Mestre NC, Sabóia-Morais SMT, Bebianno MJ. Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: A review. ENVIRONMENT INTERNATIONAL 2017; 98:1-17. [PMID: 27745949 DOI: 10.1016/j.envint.2016.09.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Despite the wide application of quantum dots (QDs) in electronics, pharmacy and nanomedicine, limited data is available on their environmental health risk. To advance our current understanding of the environmental impact of these engineered nanomaterials, the aim of this review is to give a detailed insight on the existing information concerning the behaviour, transformation and fate of QDs in the aquatic environment, as well as on its mode of action (MoA), ecotoxicity, trophic transfer and biomagnification at various trophic levels (micro-organisms, aquatic invertebrates and vertebrates). Data show that several types of Cd-based QDs, even at low concentrations (<mgCdL-1), induce different toxic effects compared to their dissolved counterpart, indicating nano-specific ecotoxicity. QD ecotoxicity at different trophic levels is highly dependent on its physico-chemical properties, environmental conditions, concentration and exposure time, as well as, species, while UV irradiation increases its toxicity. The state of the art regarding the MoA of QDs according to taxonomic groups is summarised and illustrated. Accumulation and trophic transfer of QDs was observed in freshwater and seawater species, while limited biomagnification and detoxification processes were detected. Finally, current knowledge gaps are discussed and recommendations for future research identified. Overall, the knowledge available indicates that in order to develop sustainable nanotechnologies there is an urgent need to develop Cd-free QDs and new "core-shell-conjugate" QD structures.
Collapse
Affiliation(s)
- Thiago Lopes Rocha
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Laboratory of Cellular Behavior, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Nélia C Mestre
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | - Maria João Bebianno
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
37
|
Xu G, Lin G, Lin S, Wu N, Deng Y, Feng G, Chen Q, Qu J, Chen D, Chen S, Niu H, Mei S, Yong KT, Wang X. The Reproductive Toxicity of CdSe/ZnS Quantum Dots on the in vivo Ovarian Function and in vitro Fertilization. Sci Rep 2016; 6:37677. [PMID: 27876896 PMCID: PMC5120285 DOI: 10.1038/srep37677] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/01/2016] [Indexed: 11/09/2022] Open
Abstract
Despite the usefulness of quantum dots (QDs) in biomedicine and optoelectronics, their toxicity risks remain a major obstacle for clinical usages. Hence, we studied the reproductive toxicity of CdSe/ZnS QDs on two aspects, (i) in vivo ovarian functions and (ii) in vitro fertilization process. The body weight, estrous cycles, biodistribution of QDs, and oocyte maturation are evaluated on female mice treated with QDs. The mRNA level of the follicle-stimulating hormone receptor (FSHr) and luteinizing hormone receptor (LHr) in ovaries are assayed. Then, the matured cumulus-oocyte-complexes are harvested to co-culture with in vitro capacitated sperms, and the in vitro fertilization is performed. The result revealed that QDs are found in the ovaries, but no changes are detected on the behavior and estrous cycle on the female mice. The mRNA downregulations of FSHr and LHr are observed and the number of matured oocytes has shown a significant decrease when the QDs dosage was above 1.0 pmol/day. Additionally, we found the presence of QDs has reduced the in vitro fertilization success rate. This study highly suggests that the exposure of CdSe/ZnS QDs to female mice can cause adverse effects to the ovary functions and such QDs may have limited applications in clinical usage.
Collapse
Affiliation(s)
- Gaixia Xu
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China.,CINTRA CNRS/NTU/THALES, Singapore 637553, Singapore
| | - Guimiao Lin
- School of Medicine, The Research Institute of Urinary and Reproduction, The Engineering Lab of Synthetic Biology, Shenzhen Key laboratory of Biomedical Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Suxia Lin
- Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Na Wu
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yueyue Deng
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
| | - Gang Feng
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China.,School of Medicine, The Research Institute of Urinary and Reproduction, The Engineering Lab of Synthetic Biology, Shenzhen Key laboratory of Biomedical Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qiang Chen
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China.,School of Medicine, The Research Institute of Urinary and Reproduction, The Engineering Lab of Synthetic Biology, Shenzhen Key laboratory of Biomedical Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
| | - Danni Chen
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
| | - Siping Chen
- School of Medicine, The Research Institute of Urinary and Reproduction, The Engineering Lab of Synthetic Biology, Shenzhen Key laboratory of Biomedical Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Hanben Niu
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shujiang Mei
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518020, P. R. China
| | - Ken-Tye Yong
- CINTRA CNRS/NTU/THALES, Singapore 637553, Singapore.,School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaomei Wang
- School of Medicine, The Research Institute of Urinary and Reproduction, The Engineering Lab of Synthetic Biology, Shenzhen Key laboratory of Biomedical Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
38
|
Zhao Y, Zhi L, Wu Q, Yu Y, Sun Q, Wang D. p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans. Nanotoxicology 2016; 10:1469-1479. [PMID: 27615004 DOI: 10.1080/17435390.2016.1235738] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Biological barrier plays a crucial role for organisms against the possible toxicity from engineered nanomaterials (ENMs). Graphene oxide (GO) has been proven to cause potential toxicity on organisms. However, the molecular mechanisms for intestinal barrier of animals against GO toxicity are largely unclear. Using in vivo assay system of Caenorhabditis elegans, we found that mutation of genes encoding core p38 mitogen-activated protein kinase (MAPK) signaling pathway caused susceptible property to GO toxicity and enhanced translocation of GO into the body of nematodes. Genetic assays indicated that SKN-1/Nrf functioned downstream of p38 MAPK signaling pathway to regulate GO toxicity and translocation. Transcription factor of SKN-1 could regulate GO toxicity and translocation at least through function of its targeted gene of gst-4 encoding one of phase II detoxification proteins. Moreover, intestine-specific RNA interference (RNAi) assay demonstrated that the p38 MAPK-SKN-1/Nrf signaling cascade could function in intestine to regulate GO toxicity and intestinal permeability in GO exposed nematodes. Therefore, p38 MAPK-SKN-1/Nrf signaling cascade may act as an important molecular basis for intestinal barrier against GO toxicity in organisms. Exposure to GO induced significantly increased expression of genes encoding p38 MAPK-SKN-1/Nrf signaling cascade, which further implies that the identified p38 MAPK-SKN-1/Nrf signaling cascade may encode a protection mechanism for nematodes in intestine to be against GO toxicity.
Collapse
Affiliation(s)
- Yunli Zhao
- a Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University , Nanjing , China , and.,b Department of Preventive Medicine , Bengbu Medical College , Bengbu , China
| | - Lingtong Zhi
- a Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University , Nanjing , China , and
| | - Qiuli Wu
- a Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University , Nanjing , China , and
| | - Yonglin Yu
- a Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University , Nanjing , China , and
| | - Qiqing Sun
- a Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University , Nanjing , China , and
| | - Dayong Wang
- a Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University , Nanjing , China , and
| |
Collapse
|
39
|
Zhuang Z, Li M, Liu H, Luo L, Gu W, Wu Q, Wang D. Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans. Sci Rep 2016; 6:32409. [PMID: 27573184 PMCID: PMC5004105 DOI: 10.1038/srep32409] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/04/2016] [Indexed: 01/04/2023] Open
Abstract
Caenorhabditis elegans is an important non-mammalian alternative assay model for toxicological study. Previous study has indicated that exposure to multi-walled carbon nanotubes (MWCNTs) dysregulated the transcriptional expression of mir-259. In this study, we examined the molecular basis for mir-259 in regulating MWCNTs toxicity in nematodes. Mutation of mir-259 induced a susceptible property to MWCNTs toxicity, and MWCNTs exposure induced a significant increase in mir-259::GFP in pharyngeal/intestinal valve and reproductive tract, implying that mir-259 might mediate a protection mechanisms for nematodes against MWCNTs toxicity. RSKS-1, a putative ribosomal protein S6 kinase, acted as the target for mir-259 in regulating MWCNTs toxicity, and mutation of rsks-1 suppressed the susceptible property of mir-259 mutant to MWCNTs toxicity. Moreover, mir-259 functioned in pharynx-intestinal valve and RSKS-1 functioned in pharynx to regulate MWCNTs toxicity. Furthermore, RSKS-1 regulated MWCNTs toxicity by suppressing the function of AAK-2-DAF-16 signaling cascade. Our results will strengthen our understanding the microRNAs mediated protection mechanisms for animals against the toxicity from certain nanomaterials.
Collapse
Affiliation(s)
- Ziheng Zhuang
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213164, China.,Changzhou No. 7 People's Hospital, Changzhou 213011, China
| | - Min Li
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213164, China.,Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Hui Liu
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213164, China
| | - Libo Luo
- Changzhou No. 7 People's Hospital, Changzhou 213011, China
| | - Weidong Gu
- Changzhou No. 7 People's Hospital, Changzhou 213011, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
40
|
Wu Q, Zhi L, Qu Y, Wang D. Quantum dots increased fat storage in intestine of Caenorhabditis elegans by influencing molecular basis for fatty acid metabolism. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1175-84. [DOI: 10.1016/j.nano.2016.01.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/23/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023]
|
41
|
Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide. Biomaterials 2016; 102:277-91. [PMID: 27348851 DOI: 10.1016/j.biomaterials.2016.06.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 11/23/2022]
Abstract
Long noncoding RNAs (lncRNAs), which are defined as noncoding RNAs having at least 200 nucleotides, can potentially regulate various biological processes. However, the roles of lncRNAs in regulating cellular response to engineered nanomaterials (ENMs) are still unclear. Using Hiseq 2000 sequencing technique, we performed a genome-wide screen to identify lncRNAs involved in the control of toxicity of graphene oxide (GO) using in vivo Caenorhabditis elegans assay system. HiSeq 2000 sequencing, followed by quantitative analysis, identified only 34 dysregulated lncRNAs in GO exposed nematodes. Bioinformatics analysis implies the biological processes and signaling pathways mediated by candidate lncRNAs involved in the control of GO toxicity. A lncRNAs-miRNAs network possibly involved in the control of GO toxicity was further raised. Moreover, we identified the shared lncRNAs based on the molecular regulation basis for chemical surface modifications and/or genetic mutations in reducing GO toxicity. We further provide direct evidence that these shared lncRNAs, linc-37 and linc-14, were involved in the control of chemical surface modifications and genetic mutations in reducing GO toxicity. linc-37 binding to transcriptional factor FOXO/DAF-16 might be important for the control of GO toxicity. Our whole-genome identification and functional analysis of lncRNAs highlights the important roles of lncRNAs based molecular mechanisms for cellular responses to ENMs in organisms.
Collapse
|
42
|
Wu T, He K, Ang S, Ying J, Zhang S, Zhang T, Xue Y, Tang M. Impairments of spatial learning and memory following intrahippocampal injection in rats of 3-mercaptopropionic acid-modified CdTe quantum dots and molecular mechanisms. Int J Nanomedicine 2016; 11:2737-55. [PMID: 27358562 PMCID: PMC4912344 DOI: 10.2147/ijn.s104985] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With the rapid development of nanotechnology, quantum dots (QDs) as advanced nanotechnology products have been widely used in neuroscience, including basic neurological studies and diagnosis or therapy for neurological disorders, due to their superior optical properties. In recent years, there has been intense concern regarding the toxicity of QDs, with a growing number of studies. However, knowledge of neurotoxic consequences of QDs applied in living organisms is lagging behind their development, even if several studies have attempted to evaluate the toxicity of QDs on neural cells. The aim of this study was to evaluate the adverse effects of intrahippocampal injection in rats of 3-mercaptopropionic acid (MPA)-modified CdTe QDs and underlying mechanisms. First of all, we observed impairments in learning efficiency and spatial memory in the MPA-modified CdTe QD-treated rats by using open-field and Y-maze tests, which could be attributed to pathological changes and disruption of ultrastructure of neurons and synapses in the hippocampus. In order to find the mechanisms causing these effects, transcriptome sequencing (RNA-seq), an advanced technology, was used to gain the potentially molecular targets of MPA-modified CdTe QDs. According to ample data from RNA-seq, we chose the signaling pathways of PI3K–Akt and MPAK–ERK to do a thorough investigation, because they play important roles in synaptic plasticity, long-term potentiation, and spatial memory. The data demonstrated that phosphorylated Akt (p-Akt), p-ERK1/2, and c-FOS signal transductions in the hippocampus of rats were involved in the mechanism underlying spatial learning and memory impairments caused by 3.5 nm MPA-modified CdTe QDs.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Keyu He
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Shengjun Ang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Jiali Ying
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Shihan Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
43
|
Wang D. Biological effects, translocation, and metabolism of quantum dots in the nematode Caenorhabditis elegans. Toxicol Res (Camb) 2016; 5:1003-1011. [PMID: 30090407 DOI: 10.1039/c6tx00056h] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
Quantum dots (QDs), semiconductor nanomaterials with tiny light-emitting particles, act as important alternatives to conventional fluorescent dyes for biomedical imaging. With the increased tendency towards QD applications, concerns about the likelihood of adverse health impacts from exposure to QDs have also received attention. The nematode Caenorhabditis elegans is an important non-mammalian alternative model for the toxicological study of environmental toxicants including engineered nanomaterials. In this review, we summarize recent progress on the biological effects, translocation, and metabolism of QDs in the in vivo assay system of C. elegans. Moreover, certain perspectives or suggestions are further raised for the future toxicological study of QDs in nematodes.
Collapse
Affiliation(s)
- Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| |
Collapse
|
44
|
Zhao Y, Jia R, Qiao Y, Wang D. Glycyrrhizic acid, active component from Glycyrrhizae radix , prevents toxicity of graphene oxide by influencing functions of microRNAs in nematode Caenorhabditis elegans. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:735-744. [DOI: 10.1016/j.nano.2015.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/07/2015] [Accepted: 10/10/2015] [Indexed: 10/22/2022]
|
45
|
A MicroRNA-Mediated Insulin Signaling Pathway Regulates the Toxicity of Multi-Walled Carbon Nanotubes in Nematode Caenorhabditis elegans. Sci Rep 2016; 6:23234. [PMID: 26984256 PMCID: PMC4794644 DOI: 10.1038/srep23234] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/02/2016] [Indexed: 12/25/2022] Open
Abstract
The underlying mechanisms for functions of microRNAs (miRNAs) in regulating toxicity of nanomaterials are largely unclear. Using Illumina HiSeq(TM) 2000 sequencing technique, we obtained the dysregulated mRNA profiling in multi-walled carbon nanotubes (MWCNTs) exposed nematodes. Some dysregulated genes encode insulin signaling pathway. Genetic experiments confirmed the functions of these dysregulated genes in regulating MWCNTs toxicity. In the insulin signaling pathway, DAF-2/insulin receptor regulated MWCNTs toxicity by suppressing function of DAF-16/FOXO transcription factor. Moreover, we raised a miRNAs-mRNAs network involved in the control of MWCNTs toxicity. In this network, mir-355 might regulate MWCNTs toxicity by inhibiting functions of its targeted gene of daf-2, suggesting that mir-355 may regulate functions of the entire insulin signaling pathway by acting as an upregulator of DAF-2, the initiator of insulin signaling pathway, in MWCNTs exposed nematodes. Our results provides highlight on understanding the crucial role of miRNAs in regulating toxicity of nanomaterials in organisms.
Collapse
|
46
|
Sun L, Wu Q, Liao K, Yu P, Cui Q, Rui Q, Wang D. Contribution of heavy metals to toxicity of coal combustion related fine particulate matter (PM2.5) in Caenorhabditis elegans with wild-type or susceptible genetic background. CHEMOSPHERE 2016; 144:2392-400. [PMID: 26610299 DOI: 10.1016/j.chemosphere.2015.11.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/24/2015] [Accepted: 11/08/2015] [Indexed: 05/16/2023]
Abstract
Contribution of chemical components in coal combustion related fine particulate matter (PM2.5) to its toxicity is largely unclear. We focused on heavy metals in PM2.5 to investigate their contribution to toxicity formation in Caenorhabditis elegans. Among 8 heavy metals examined (Fe, Zn, Pb, As, Cd, Cr, Cu, and Ni), Pb, Cr, and Cu potentially contributed to PM2.5 toxicity in wild-type nematodes. Combinational exposure to any two of these three heavy metals caused higher toxicity than exposure to Pb, Cr, or Cu alone. Toxicity from the combinational exposure to Pb, Cr, and Cu at the examined concentrations was higher than exposure to PM2.5 (100 mg/L). Moreover, mutation of sod-2 or sod-3 gene encoding Mn-SOD increased susceptibility in nematodes exposed to Fe, Zn, or Ni, although Fe, Zn, or Ni at the examined concentration did not lead to toxicity in wild-type nematodes. Our results highlight the potential contribution of heavy metals to PM2.5 toxicity in environmental organisms.
Collapse
Affiliation(s)
- Lingmei Sun
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Quli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Kai Liao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Peihang Yu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Qiuhong Cui
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China.
| |
Collapse
|
47
|
Tejeda-Benitez L, Olivero-Verbel J. Caenorhabditis elegans, a Biological Model for Research in Toxicology. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 237:1-35. [PMID: 26613986 DOI: 10.1007/978-3-319-23573-8_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Caenorhabditis elegans is a nematode of microscopic size which, due to its biological characteristics, has been used since the 1970s as a model for research in molecular biology, medicine, pharmacology, and toxicology. It was the first animal whose genome was completely sequenced and has played a key role in the understanding of apoptosis and RNA interference. The transparency of its body, short lifespan, ability to self-fertilize and ease of culture are advantages that make it ideal as a model in toxicology. Due to the fact that some of its biochemical pathways are similar to those of humans, it has been employed in research in several fields. C. elegans' use as a biological model in environmental toxicological assessments allows the determination of multiple endpoints. Some of these utilize the effects on the biological functions of the nematode and others use molecular markers. Endpoints such as lethality, growth, reproduction, and locomotion are the most studied, and usually employ the wild type Bristol N2 strain. Other endpoints use reporter genes, such as green fluorescence protein, driven by regulatory sequences from other genes related to different mechanisms of toxicity, such as heat shock, oxidative stress, CYP system, and metallothioneins among others, allowing the study of gene expression in a manner both rapid and easy. These transgenic strains of C. elegans represent a powerful tool to assess toxicity pathways for mixtures and environmental samples, and their numbers are growing in diversity and selectivity. However, other molecular biology techniques, including DNA microarrays and MicroRNAs have been explored to assess the effects of different toxicants and samples. C. elegans has allowed the assessment of neurotoxic effects for heavy metals and pesticides, among those more frequently studied, as the nematode has a very well defined nervous system. More recently, nanoparticles are emergent pollutants whose toxicity can be explored using this nematode. Overall, almost every type of known toxicant has been tested with this animal model. In the near future, the available knowledge on the life cycle of C. elegans should allow more studies on reproduction and transgenerational toxicity for newly developed chemicals and materials, facilitating their introduction in the market. The great diversity of endpoints and possibilities of this animal makes it an easy first-choice for rapid toxicity screening or to detail signaling pathways involved in mechanisms of toxicity.
Collapse
Affiliation(s)
- Lesly Tejeda-Benitez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
48
|
Wu T, He K, Zhan Q, Ang S, Ying J, Zhang S, Zhang T, Xue Y, Tang M. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both. NANOSCALE 2015; 7:20460-20473. [PMID: 26583374 DOI: 10.1039/c5nr05914c] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As quantum dots (QDs) are widely used in biomedical applications, the number of studies focusing on their biological properties is increasing. While several studies have attempted to evaluate the toxicity of QDs towards neural cells, the in vivo toxic effects on the nervous system and the molecular mechanisms are unclear. The aim of the present study was to investigate the neurotoxic effects and the underlying mechanisms of water-soluble cadmium telluride (CdTe) QDs capped with 3-mercaptopropionic acid (MPA) in Caenorhabditis elegans (C. elegans). Our results showed that exposure to MPA-capped CdTe QDs induced behavioral defects, including alterations to body bending, head thrashing, pharyngeal pumping and defecation intervals, as well as impaired learning and memory behavior plasticity, based on chemotaxis or thermotaxis, in a dose-, time- and size-dependent manner. Further investigations suggested that MPA-capped CdTe QDs exposure inhibited the transporters and receptors of glutamate, serotonin and dopamine in C. elegans at the genetic level within 24 h, while opposite results were observed after 72 h. Additionally, excessive reactive oxygen species (ROS) generation was observed in the CdTe QD-treated worms, which confirmed the common nanotoxicity mechanism of oxidative stress damage, and might overcome the increased gene expression of neurotransmitter transporters and receptors in C. elegans induced by long-term QD exposure, resulting in more severe behavioral impairments.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhao Y, Yu X, Jia R, Yang R, Rui Q, Wang D. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds. Sci Rep 2015; 5:17233. [PMID: 26611622 PMCID: PMC4661518 DOI: 10.1038/srep17233] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/27/2015] [Indexed: 11/23/2022] Open
Abstract
Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.
Collapse
Affiliation(s)
- Yunli Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
- Department of Preventive Medicine, Bengbu Medical College, Bengbu 233020, China
| | - Xiaoming Yu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Ruhan Jia
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Ruilong Yang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
50
|
Wu T, Zhang T, Chen Y, Tang M. Research advances on potential neurotoxicity of quantum dots. J Appl Toxicol 2015; 36:345-51. [DOI: 10.1002/jat.3229] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing China
| | - Yilu Chen
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; Nanjing China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing China
| |
Collapse
|