1
|
Zeng X, Wang Y, Shen X, Wang H, Xu ZL. Application of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry for Identification of Foodborne Pathogens: Current Developments and Future Trends. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22001-22014. [PMID: 39344132 DOI: 10.1021/acs.jafc.4c06552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Foodborne pathogens have gained sustained public attention, exerted significant pressure on food manufacturers, and posed serious health risks to human. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been employed for quick and accurate identification of microorganisms in the prevention of foodborne epidemics in recent years. Herein, we first summarize the principle of MALDI and its workflow for foodborne pathogens. Subsequently, we review the recent progress and applications of MALDI-TOF MS in foodborne pathogen determination. Additionally, we outline the expanded utilization of MALDI-based techniques for the identification of closely related species. We also assess the current gaps and propose possible solutions to address the existing challenges. MALDI-TOF MS is a promising biotool for rapid and accurate identification of foodborne microbes at the species and genus level in food samples. Database expansion and direct quantification of spoilage microbes are two promising areas for future progress in MALDI-TOF MS applications.
Collapse
Affiliation(s)
- Xi Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangzhou Institute of Food Inspection, Guangzhou 511400, China
| | - Yu Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangzhou Institute of Food Inspection, Guangzhou 511400, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Yoon SR, Ha S, Park B, Yang JS, Dang YM, Ha JH. Effect of Ultraviolet-C Light-Emitting Diode Treatment on Disinfection of Norovirus in Processing Water for Reuse of Brine Water. Front Microbiol 2022; 13:885413. [PMID: 35663872 PMCID: PMC9161207 DOI: 10.3389/fmicb.2022.885413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
Processes in the food industry that use large amounts of water have been an important cause of waterborne disease outbreaks, as they expose individuals to risks for waterborne disease transmission. Developing technologies to ensure the hygiene and safety of food-processing steps is an urgent concern from an economic perspective. Furthermore, economic benefits can be derived if the processed water can be reused under microbiologically safe conditions. Among the major manufacturing processes in the kimchi industry, the brining process for salted kimchi cabbages requires a considerable amount of brine (approximately 2,000–2,500 l/1,000 kg of raw cabbage). The aim of this study was to establish virucidal conditions with ultraviolet-C light-emitting diodes (UVC LEDs) that can ensure the microbiological safety of brine water samples with various turbidities for reuse after disinfection. For quantitative analysis, first of all, magnetic bead separation (MBS) technique was used to capture and recover the human norovirus (HuNoV) virus particles; propidium monoazide (PMA) combined with RT-qPCR (PMA-RT-qPCR) was subsequently used to selectively detect infectious norovirus. Overall, as the turbidity of the brine water samples increased, the reduction in the HuNoV genogroup II genotype 4 (HuNoV GII.4) levels by UVC LED disinfection decreased. The derived inactivation rate constant (kinac) and inactivation curves (calculated using the log-linear model) were studied as a function of turbidity based on the exponential one-phase inactivation kinetics of HuNoV. Using an impeller system set at 100 rotations/min (rpm) with an eight-nephelometric turbidity unit (NTU) sample (the lowest turbidity studied), the kinact based on the levels of viral genomic RNA concentrations was approximately 2.15-fold higher than that observed without rotation (0 rpm). Moreover, the kinact increased 1.69-fold with a 56-NTU sample (the highest turbidity studied) when the impeller system was set at 100 rpm. UVC LED treatment decreased the HuNoV GII.4 population more effectively in conjunction with the impeller system (100 rpm) than without the impeller system. Our novel findings and model provide fundamental and scientific data that may help reuse brine water and ensure its microbiological safety through disinfection. Our study highlights the benefits of UVC LED treatment in successfully eliminating waterborne viruses in a prompt, resistance-reducing, and energy-efficient approach at the laboratory scale, which lays the foundation for future plant-scale studies of UVC LED-disinfection systems.
Collapse
Affiliation(s)
- So-Ra Yoon
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, South Korea
| | - Sanghyun Ha
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, South Korea
| | - Boyeon Park
- Eco-friendly Process Technology Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Ji-Su Yang
- Industrial Solution Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Yun-Mi Dang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, South Korea
| | - Ji-Hyoung Ha
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, South Korea
- *Correspondence: Ji-Hyoung Ha,
| |
Collapse
|
3
|
Song H, Dang YM, Ha S, Ha JH. Evaluation of Virucidal Efficacy of Human Norovirus Using Combined Sprayed Slightly Acidic Electrolyzed Water and Ultraviolet C-Light-Emitting Diode Irradiation Treatment Based on Optimized Capture Assay for Quantitative RT-qPCR. Front Microbiol 2022; 13:841108. [PMID: 35547136 PMCID: PMC9082547 DOI: 10.3389/fmicb.2022.841108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Slightly acidic electrolyzed water (SAEW), an effective non-thermal virucidal treatment, is used widely to prevent infectious viral cross-contamination. Surface disinfection technologies using ultraviolet C-light-emitting diode (UVC-LED) irradiation have recently attracted considerable attention. The SAEW sprayer technique is an efficient approach to preventing the spread of infectious viral pathogens in the public healthcare sector. Therefore, we investigated a small-scale system comprising sprayed SAEW disinfection combined with UVC-LED irradiation to inactivate the human norovirus (HuNoV) in the environment. A stainless-steel surface was inoculated with a HuNoV genogroup II genotype 4 (GII.4) to achieve maximum reduction values of 3.21 log10 genomic copies. For optimal disinfection conditions, the response surface methodology based on the Box–Behnken design revealed that the specific treatment conditions for inactivation of HuNoV GII.4 were an SAEW droplet volume of 180 μL, 30 ppm available chlorine concentration of SAEW, and a UVC-LED exposure dose of 2 mJ/cm2. The results indicate that the combined disinfection treatment could efficiently prevent the spread of HuNoVs in environment. Furthermore, the quadratic polynomial equations of the 3-D response surface can be employed to predict the effects of combined disinfection treatment on HuNoV contamination on environmental surfaces. Therefore, sprayed SAEW disinfection combined with UVC-LED irradiation proposed in this study may offer insights for designing optimal control strategies and techniques to prevent the transmission of infectious diseases, particularly HuNoV.
Collapse
Affiliation(s)
- Hyeyeon Song
- Hygienic Safety and Distribution Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Yun-Mi Dang
- Hygienic Safety and Distribution Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Sanghyun Ha
- Hygienic Safety and Distribution Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Ji-Hyoung Ha
- Hygienic Safety and Distribution Research Group, World Institute of Kimchi, Gwangju, South Korea
| |
Collapse
|
4
|
Bojórquez-Velázquez E, Llamas-García ML, Elizalde-Contreras JM, Zamora-Briseño JA, Ruiz-May E. Mass Spectrometry Approaches for SARS-CoV-2 Detection: Harnessing for Application in Food and Environmental Samples. Viruses 2022; 14:872. [PMID: 35632614 PMCID: PMC9144875 DOI: 10.3390/v14050872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
The public health crisis caused by the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in 2019 has drastically changed our lifestyle in virtually all contexts around the world. SARS-CoV-2 is mainly airborne, transmitted by the salivary droplets produced when infected people cough or sneeze. In addition, diarrhea symptoms and the detection of SARS-CoV-2 in feces suggest a fecal-oral route of contagion. Currently, the high demand for SARS-CoV-2 diagnosis has surpassed the availability of PCR and immunodetection probes and has prompted the development of other diagnostic alternatives. In this context, mass spectrometry (MS) represents a mature, robust alternative platform for detection of SARS-CoV-2 and other human viruses. This possibility has raised great interest worldwide. Therefore, it is time for the global application of MS as a feasible option for detecting SARS-CoV-2, not only in human fluids, but also in other matrices such as foods and wastewater. This review covers the most relevant established methods for MS-based SARS-CoV-2 detection and discusses the future application of these tools in different matrices. Significance: The Coronavirus Disease 2019 (COVID-19) pandemic highlighted the pros and cons of currently available PCR and immunodetection tools. The great concern over the infective potential of SARS-CoV-2 viral particles that can persist for several hours on different surfaces under various conditions further evidenced the need for reliable alternatives and high-throughput methods to meet the needs for mass detection of SARS-CoV-2. In this context, MS-based proteomics emerging from fundamental studies in life science can offer a robust option for SARS-CoV-2 detection in human fluids and other matrices. In addition, the substantial efforts towards detecting SARS-CoV-2 in clinal samples, position MS to support the detection of this virus in different matrices such as the surfaces of the packing food process, frozen foods, and wastewaters. Proteomics and mass spectrometry are, therefore, well positioned to play a role in the epidemiological control of COVID-19 and other future diseases. We are currently witnessing the opportunity to generate technologies to overcome prolonged pandemics for the first time in human history.
Collapse
Affiliation(s)
- Esaú Bojórquez-Velázquez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Xalapa, Veracruz CP 91073, Mexico; (J.M.E.-C.); (J.A.Z.-B.)
| | - Miriam Livier Llamas-García
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, San Luis Potosí, San Luis Potosí CP 78216, Mexico;
| | - José M. Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Xalapa, Veracruz CP 91073, Mexico; (J.M.E.-C.); (J.A.Z.-B.)
| | - Jesús Alejandro Zamora-Briseño
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Xalapa, Veracruz CP 91073, Mexico; (J.M.E.-C.); (J.A.Z.-B.)
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Xalapa, Veracruz CP 91073, Mexico; (J.M.E.-C.); (J.A.Z.-B.)
| |
Collapse
|
5
|
Optimizing Operating Parameters of Electric Ultra-Low Volume Sprayer with Slightly Acidic Electrolyzed Solution for Efficient Virucidal Activity on Environmental Surfaces. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910183. [PMID: 34639485 PMCID: PMC8508509 DOI: 10.3390/ijerph181910183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Accepted: 09/26/2021] [Indexed: 11/22/2022]
Abstract
Recently, and considering the COVID-19 pandemic, there has been a growing consensus that the disinfection of surfaces contaminated with pathogenic viral particles is essential. Chemical disinfectant sprays are effective at preventing the spread of infectious human noroviruses (Hu-NoVs) in healthcare and public areas. We assessed the virucidal activity of slightly acidic electrolyzed water (SAEW) spray on fomite surfaces. A multivariate statistical assessment that combined a response surface methodology (RSM) and a Box–Behnken design (BBD) was performed to define the optimal parameters of, and correlations among, experimental conditions. Spraying SAEW disinfectant (oxidation-reduction potential: 1123 mV, pH range: 5.12, available chlorine concentration: 33.22 ppm) resulted in the successful decontamination of Hu-NoV, with a 4-log reduction in viral particles on polyvinyl chloride, stainless steel, ceramic tile, and glass surfaces. Our experimental data revealed optimized treatment conditions for decontaminating Hu-NoV GI.6 and GII.4, using the numerical multiple optimized method (spraying rate: 218 mL/min, spraying time: 4.9 s, spraying distance: 0.9 m). These findings offer significant insights for designing optimal strategic control practices to prevent infectious disease, particularly Hu-NoV, transmission.
Collapse
|
6
|
Moon EW, Lee HW, Rok JH, Ha JH. Photocatalytic inactivation of viral particles of human norovirus by Cu-doped TiO 2 non-woven fabric under UVA-LED wavelengths. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141574. [PMID: 32814207 DOI: 10.1016/j.scitotenv.2020.141574] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Metal-doped TiO2 photocatalysis are recognized as effective materials for eliminating human norovirus (HuNoVs). In recent years, the airborne transmission of viral particles of HuNoVs has been a cause for concern. In this study, we evaluated the virucidal effects of a Cu/TiO2 non-woven fabric (NWF) on viral particles of HuNoV genogroup II genotype 4 (HuNoV GII.4) under an ultraviolet A light-emitting diode (UVA-LED) source. For the optimized parameters, a multivariate statistical analysis using the Box-Behnken design (BBD) technique combined with the response surface methodology (RSM) was applied. The experimental results showed that the Cu/TiO2-based NWF degraded HuNoV viral particles in the air samples. The BBD-based RSM indicated that the optimum treatment conditions for inactivating the HuNoV GII.4 droplets with the Cu/TiO2 NWF were a 1:7.7 ratio of Cu:TiO2 and the use of a 373-nm UVA-LED source for 48.08 min. The optimal conditions for the photocatalytic efficacy in HuNoV GII.4 of Cu/TiO2 NWF were verified experimentally, giving a value of 2.89 ± 0.11 log10 genomic copies, which was the same as the predicted value (2.91611) within experimental uncertainty. This result adequately validated the predicted model and confirmed that viral particles of HuNoVs could efficiently be disinfected using Cu/TiO2 NWF stimulated by UVA-LED light.
Collapse
Affiliation(s)
- Eun Woo Moon
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Hae-Won Lee
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jeong Hee Rok
- PREPOLL Co., Ltd., 74, Daejeodongseo-ro 229beonga-gil, Gangseo-gu, Busan 46719, Republic of Korea
| | - Ji-Hyoung Ha
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| |
Collapse
|
7
|
Duncan MW, Nedelkov D, Walsh R, Hattan SJ. Applications of MALDI Mass Spectrometry in Clinical Chemistry. Clin Chem 2015; 62:134-43. [PMID: 26585930 DOI: 10.1373/clinchem.2015.239491] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/02/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND MALDI-TOF mass spectrometry (MS) is set to make inroads into clinical chemistry because it offers advantages over other analytical platforms. These advantages include low acquisition and operating costs, ease of use, ruggedness, and high throughput. When coupled with innovative front-end strategies and applied to important clinical problems, it can deliver rapid, sensitive, and cost-effective assays. CONTENT This review describes the general principles of MALDI-TOF MS, highlights the unique features of the platform, and discusses some practical methods based upon it. There is substantial potential for MALDI-TOF MS to make further inroads into clinical chemistry because of the selectivity of mass detection and its ability to independently quantify proteoforms. SUMMARY MALDI-TOF MS has already transformed the practice of clinical microbiology and this review illustrates how and why it is now set to play an increasingly important role in in vitro diagnostics in particular, and clinical chemistry in general.
Collapse
Affiliation(s)
- Mark W Duncan
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO; Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| | - Dobrin Nedelkov
- Molecular Biomarkers Laboratory, Biodesign Institute, Arizona State University, Tempe, AZ
| | - Ryan Walsh
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | | |
Collapse
|
8
|
Smolira A, Hałas S, Wessely-Szponder J. Quantification of the PR-39 cathelicidin compound in porcine blood by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1811-1816. [PMID: 26331932 DOI: 10.1002/rcm.7284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE The PR-39 porcine cathelicidin occurs naturally in animal neutrophils. Its main function is antimicrobial activity, which potentially can be used in antibiotic treatments in veterinary medicine. Investigations concerning such a use require the detection and quantification of PR-39 in a given sample. The aim of this work is to determine the concentration of PR-39 contained in porcine blood. METHODS Prior to matrix-assisted laser desorption/ionization (MALDI) analysis, the porcine blood sample was subjected to crude extraction in order to release the active form of PR-39 from the neutrophil granules. Next, gel filtration chromatography was performed to separate PR-39 from other cathelicidins present in porcine blood. Positive ion MALDI time-of-flight (TOF) mass spectra of the resulting portion of lyophilisate with unknown PR-39 content were acquired in linear mode. To quantify PR-39 in the lyophilisate sample, the standard addition method was applied. The PR-39 concentration obtained in the lyophilisate sample was then converted into the peptide concentration in porcine blood. RESULTS The linear fit function of the constructed calibration curve indicates an excellent correlation between the PR-39 peak intensity and the added quantity of synthetic PR-39 (R(2) = 0.994) and a low relative standard deviation of the slope = 1.98%. From the x-intercept of the straight line, we estimated the PR-39 concentration in porcine blood to be 20.5 ± 4.6 ng/mL. CONCLUSIONS The MALDI method was successfully applied for the quantitative analysis of PR-39 found in porcine blood. Compared with other available methods, it is relatively easy, inexpensive and not time-consuming. Despite the method having lower accuracy than the enzyme-linked immunosorbent assay (ELISA), the results obtained here, by a much simpler method, are in good agreement with the literature data.
Collapse
Affiliation(s)
- Anna Smolira
- Mass Spectrometry Laboratory, Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| | - Stanisław Hałas
- Mass Spectrometry Laboratory, Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| | - Joanna Wessely-Szponder
- Department of Pathophysiology, Chair of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| |
Collapse
|