1
|
Hadavand N, Khazalpour S, Fotouhi L, Nematollahi D. Electrochemical degradation of Cephalexin on Ti/TiO 2/βPbO 2 anode modified by sodium dodecyl sulfate. Sci Rep 2025; 15:10243. [PMID: 40133483 PMCID: PMC11937302 DOI: 10.1038/s41598-025-94543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
The possible environmental dangers of antibiotics include excessive use, wastewater discharge, and resistance to biodegradability. Therefore, efficient and environmentally friendly methods to remove such pollutants are necessary to preserve global ecosystems and human life. Electrochemical oxidation using lead-based electrodes is an effective approach for the treatment of resistant organic pollutants. In this research, a Ti/TiO2-βPbO2 electrode was synthesized for the electrochemical degradation of Cephalexin. To increase the efficiency and stability of the electrode, βPbO2 electrodeposition was performed in the presence of sodium dodecyl sulfate. The performance of the electrode in the degradation and mineralization of Cephalexin was evaluated using cyclic voltammetry and differential pulse voltammetry, and the maximum degradation efficiency and maximum COD removal of 97.60% and 70.27%, respectively, were obtained. In addition, the degradation mechanism was studied using liquid chromatography coupled with tandem mass spectrometry. The findings indicated that the Ti/TiO2-βPbO2 electrode exhibited desirable electrocatalytic performance in the degradation and mineralization of Cephalexin. Therefore, wastewater contaminated with antibiotic residues can be treated before discharging into the sewage system and the environment by this approach.
Collapse
Affiliation(s)
- Nasrin Hadavand
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Sadegh Khazalpour
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
| | - Lida Fotouhi
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
- Analytical and Bioanalytical Research Center (ABRC), Alzahra University, Tehran, Iran
| | - Davood Nematollahi
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
2
|
Li S, Ye L, Cen W, Sun D. Electrocatalytic biomass upgrading coupled with hydrogen evolution and CO 2 reduction. NANOSCALE 2025; 17:6308-6328. [PMID: 39937545 DOI: 10.1039/d4nr04433a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Clean energy production and CO2 utilization have attracted increasing interest. Electrocatalysis represents an effective way to produce green hydrogen from water and reduce CO2 to valuable compounds. However, for either the hydrogen evolution reaction (HER) or the CO2 reduction reaction (CO2RR), the reaction efficiency is significantly limited by the slow kinetics of the oxygen evolution reaction (OER) at the anode, which consumes most of the input energy. Therefore, great efforts have been made to replace the OER with organic oxidation reactions at the anode to decrease the reaction energy barrier. Biomass has an advantage of broad source, and when it is employed as an OER alternative in the anode oxidation reactions, not only can the reduction reaction efficiency at the cathode including the HER and CO2RR be enhanced but high-value chemicals can also be obtained, representing an attractive OER alternative. This review comprehensively summarizes the recent achievements in electrocatalytic biomass upgrading coupled with the HER and CO2RR, cataloged based on the type of biomass. The design of electrocatalysts for such coupled reaction systems is discussed. Finally, the challenges and perspectives in the field of this energy-saving and value-added coupling system are provided to inspire more efforts in pushing forward the development of this field.
Collapse
Affiliation(s)
- Shuke Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lin Ye
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Wanglai Cen
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
| | - Dengrong Sun
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
3
|
Kirti, Balar SJ, Biradar AV, Srivastava DN. Empowering Sustainable Energy: Lead-Coated Plastic Chip Electrodes for Effective CO 2 Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1927-1936. [PMID: 39801306 DOI: 10.1021/acs.langmuir.4c04407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Electrochemical CO2 reduction is crucial in combatting climate change and advancing sustainable energy practices by converting CO2 into valuable chemicals and fuels, thereby reducing atmospheric CO2 levels and enabling the storage and utilization of renewable energy from intermittent sources like solar and wind. The selection of electrode materials and platform design plays a critical role in enhancing reaction efficiency and product selectivity during CO2 reduction. Various metals, both in their solid forms and coated over substrates, have been used in electrochemical CO2RR. In this study, we utilized electrodeposition to modify the plastic chip electrode (PCE), depositing lead metal onto it through a galvanostatic method at a current density of 100 mA/cm2 from a 0.1 M Pb(NO3)2 aqueous solution. Pb-coated electrodes are crucial due to their high selectivity, efficiency, cost-effectiveness, and flexibility as electrode materials. Their good stability and durability make them ideal for long-term applications. The electrochemical reduction of carbon dioxide using the Pb/PCE electrode as the cathode has been investigated, focusing on assessing how different electrolysis potentials influenced the faradaic efficiency of formic acid production. Our results demonstrated that the peak faradaic efficiency, reaching 86.2%, was achieved at -0.7 V vs RHE over a 5 h electrolysis period.
Collapse
Affiliation(s)
- Kirti
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián 20014, Spain
| | - Smit J Balar
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Ankush V Biradar
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Divesh N Srivastava
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
Boukhchina S, Berling D, Bousselmi L, El-Bassi L, Vidal L, Karkouch I, Akrout H. Zirconium-doped lead dioxide anodes prepared by sol-gel method for ampicillin removal from simulated pharmaceutical polluted wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61451-61468. [PMID: 39422864 DOI: 10.1007/s11356-024-35282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
New anodes consisting of zirconium-doped PbO2 coating, growth on titanium dioxide interlayer, were deposited on titanium substrates using spin coating method and have been tested for the removal of ampicillin, a β-lactam antibiotic, from water. Morphological, structural, and electrochemical properties of the prepared coatings were characterized by scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), and electrochemical impendence spectroscopy (EIS). Results showed that the incorporation of zirconium dopant had a noticeable modification in the morphology of anodes. An increase in the surface roughness and the specific active area were observed with Ti/TiO2/PbO2- 10% Zr electrode compared to other anodes. The electrochemical measurements indicated that the anode doped with 10% Zr showed a more protective coating performance than the undoped and 20% Zr-doped PbO2 electrodes. The experiments on ampicillin degradation revealed that doped lead dioxide anodes have excellent electrocatalytic activity. The major byproduct generated during anodic oxidation treatment has been identified as ampicilloic acid by liquid chromatography-mass spectroscopy (LC-MS) analysis. Results demonstrated that Ti/TiO2/PbO2- 10% Zr anode presents the best removal rate of ampicillin with a minimum intermediate amount, which leads to conclude that 10% is the optimum percentage of zirconium dopant for antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Sahar Boukhchina
- Laboratory of Wastewater and Environment, Center of Water Researches and Technologies (CERTE) Technopark of Borj Cédria PB 273, 8020, Soliman, Tunisia
- National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Tunis, Tunisia
| | - Dominique Berling
- Institute of Materials Science of Mulhouse (IS2M), UMR 7361, Université de Haute Alsace, 68100, Mulhouse, France
- Université de Strasbourg, Strasbourg, France
| | - Latifa Bousselmi
- Laboratory of Wastewater and Environment, Center of Water Researches and Technologies (CERTE) Technopark of Borj Cédria PB 273, 8020, Soliman, Tunisia
| | - Leila El-Bassi
- Laboratory of Wastewater and Environment, Center of Water Researches and Technologies (CERTE) Technopark of Borj Cédria PB 273, 8020, Soliman, Tunisia
| | - Loic Vidal
- Institute of Materials Science of Mulhouse (IS2M), UMR 7361, Université de Haute Alsace, 68100, Mulhouse, France
- Université de Strasbourg, Strasbourg, France
| | - Ines Karkouch
- Biotechnology Center of Borj-Cedria, Bioactive Substances Laboratory, BP 901, 2050, Hammam-Lif, Tunisia
| | - Hanene Akrout
- Laboratory of Wastewater and Environment, Center of Water Researches and Technologies (CERTE) Technopark of Borj Cédria PB 273, 8020, Soliman, Tunisia.
| |
Collapse
|
5
|
de Aguiar Pedott V, Della Rocca DG, Weschenfelder SE, Mazur LP, Gomez Gonzalez SY, Andrade CJD, Moreira RFPM. Principles, challenges and prospects for electro-oxidation treatment of oilfield produced water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122638. [PMID: 39342833 DOI: 10.1016/j.jenvman.2024.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The oil industry is facing substantial environmental challenges, especially in managing waste streams such as Oilfield Produced Water (OPW), which represents a significant component of the industrial ecological footprint. Conventional treatment methods often fail to effectively remove dissolved oils and grease compounds, leading to operational difficulties and incomplete remediation. Electrochemical oxidation (EO) has emerged as a promising alternative due to its operational simplicity and ability to degrade pollutants directly and indirectly, which has already been applied in treating several effluents containing organic compounds. The application of EO treatment for OPW is still in an initial stage, due to the intricate nature of this matrix and scattered information about it. This study provides a technological overview of EO technology for OPW treatment, from laboratory scale to the development of large-scale prototypes, identifying design and process parameters that can potentially permit high efficiency, applicability, and commercial deployment. Research in this domain has demonstrated notable rates of removal of recalcitrant pollutants (>90%), utilizing active and non-active electrodes. Electro-generated active species, primarily from chloride, play a pivotal role in the oxidation of organic compounds. However, the highly saline conditions in OPW hinder the complete mineralization of these organics, which can be improved by using non-active anodes and lower salinity levels. The performance of electrodes greatly influences the efficiency and effectiveness of OPW treatment. Various factors must be considered when selecting the electrode material, such as its conductivity, stability, surface area, corrosion resistance, and cost. Additionally, the specific contaminants present in the OPW, and their electrochemical reactivity must be considered to ensure optimal treatment outcomes. Balancing these considerations can be challenging, but it is crucial for achieving successful OPW treatment. Active electrode materials exhibit a high affinity for chloride molecules, generating more active species than non-active materials, which exhibit more significant degradation potential due to the production of hydroxyl radicals. Regarding scale-up, key challenges include low current efficiency, the formation of by-products, electrode deactivation, and limitations in mass transfer. To address these issues, enhanced mass transfer rates and appropriate residence times can be achieved using flow-through mesh anodes and moderate current densities, which have proven to be the optimal configuration for this process.
Collapse
Affiliation(s)
- Victor de Aguiar Pedott
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniela Gier Della Rocca
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Luciana Prazeres Mazur
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Sergio Yesid Gomez Gonzalez
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Cristiano José de Andrade
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Regina F P M Moreira
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
6
|
Pei Z, Liu X, Chen J, Wang H, Li H. Research Progress on Lignin Depolymerization Strategies: A Review. Polymers (Basel) 2024; 16:2388. [PMID: 39274021 PMCID: PMC11397036 DOI: 10.3390/polym16172388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
As the only natural source of aromatic biopolymers, lignin can be converted into value-added chemicals and biofuels, showing great potential in realizing the development of green chemistry. At present, lignin is predominantly used for combustion to generate energy, and the real value of lignin is difficult to maximize. Accordingly, the depolymerization of lignin is of great significance for its high-value utilization. This review discusses the latest progress in the field of lignin depolymerization, including catalytic conversion systems using various thermochemical, chemocatalytic, photocatalytic, electrocatalytic, and biological depolymerization methods, as well as the involved reaction mechanisms and obtained products of various protocols, focusing on green and efficient lignin depolymerization strategies. In addition, the challenges faced by lignin depolymerization are also expounded, putting forward possible directions of developing lignin depolymerization strategies in the future.
Collapse
Affiliation(s)
- Zhengfei Pei
- Key Laboratory of Surveillance and Management, Invasive Alien Species in Guizhou Education Department, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Xiaofang Liu
- Key Laboratory of Surveillance and Management, Invasive Alien Species in Guizhou Education Department, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Jiasheng Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Huan Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Hu Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Wang Z, Zhang L, Su R, Yang L, Xiao F, Chen L, He P, Yang D, Zeng Y, Zhou Y, Wan Y, Tang B. PANI/GO and Sm co-modified Ti/PbO 2 dimensionally stable anode for highly efficient amoxicillin degradation: Performance assessment, impact parameters and degradation mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121435. [PMID: 38889646 DOI: 10.1016/j.jenvman.2024.121435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The abuse and uncontrolled discharge of antibiotics present a severe threat to environment and human health, necessitating the development of efficient and sustainable treatment technology. In this work, we employ a facile one-step electrodeposition method to prepare polyaniline/graphite oxide (PANI/GO) and samarium (Sm) co-modified Ti/PbO2 (Ti/PbO2-PANI/GO-Sm) electrode for the degradation of amoxicillin (AMX). Compared with traditional Ti/PbO2 electrode, Ti/PbO2-PANI/GO-Sm electrode exhibits more excellent oxygen evolution potential (2.63 V) and longer service life (56 h). In degradation experiment, under optimized conditions (50 mg L-1 AMX, 20 mA cm-2, pH 3, 0.050 M Na2SO4, 25 °C), Ti/PbO2-PANI/GO-Sm electrode achieves remarkable removal efficiencies of 88.76% for AMX and 79.92% for chemical oxygen demand at 90 min. In addition, trapping experiment confirms that ·OH plays a major role in the degradation process. Based on theoretical calculation and liquid chromatography-mass spectrometer results, the heterocyclic portion of AMX molecule is more susceptible to ·OH attacks. Thus, this novel electrode offers a sustainable and efficient solution to address environmental challenges posed by antibiotic-contaminated wastewater.
Collapse
Affiliation(s)
- Zeyi Wang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Luyao Zhang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Rong Su
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; School of Science, Xichang University, Xichang, 615000, PR China
| | - Lu Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Feng Xiao
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lichuan Chen
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Dingming Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Yali Zeng
- Sichuan Mianyang 404 Hospital, Mianyang, 621000, PR China
| | - Yun Zhou
- Sichuan Mianyang 404 Hospital, Mianyang, 621000, PR China.
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, PR China
| | - Bin Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
8
|
Li Y, Ma H, Li Q, Yan G, Guo S. One-step synthesis of Pt-Nd co-doped Ti/SnO 2-Sb nanosphere electrodes used to degrade nitrobenzene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4528-4538. [PMID: 38102431 DOI: 10.1007/s11356-023-31406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Ti/SnO2-Sb electrodes possess high catalytic activity and efficiently degrade nitrobenzene (NB); however, their low service life limits their wide application. In this study, we used one-step hydrothermal synthesis to successfully prepare Pt-Nd co-doped Ti/SnO2-Sb nanosphere electrodes. Scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were applied to characterize the surface morphology, microstructure, and chemical composition of the electrodes, respectively. The electrochemical activity and stability of the electrodes were characterized via linear sweep and cyclic voltammetry, electrochemical impedance spectroscopy, and an accelerated service life test; their performance for NB degradation was also studied. An appropriate amount of Pt-Nd co-doping refined the average grain size of SnO2 and formed a uniform and compact coating on the electrode surface. The oxygen evolution potential, total voltammetric charge, and electron transfer resistance of the Ti/SnO2-Sb-Nd-Pt electrodes were 1.88 V, 3.77 mC/cm2, and 11.50 Ω, respectively. Hydroxy radical was the main active radical species during the electrolytic degradation of nitrobenzene with Ti/SnO2-Sb-Nd-Pt. After Pt-Nd co-doping, the accelerated service life of the electrodes was extended from 8.0 min to 78.2 h (500 mA/cm2); although the NB degradation rate decreased from 94.1 to 80.6%, the total amount of theoretical catalytic degradation of NB in the effective working time increased from 17.4 to 8754.1 mg/cm2. These findings reveal good application potential for the electrodes and provide a reference for developing efficient and stable electrode materials.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Hairun Ma
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qianwei Li
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Guangxu Yan
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shaohui Guo
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
9
|
Dolatabadi M, Ehrampoush MH, Pournamdari M, Ebrahimi AA, Fallahzadeh H, Ahmadzadeh S. Catalytic electrodes' characterization study serving polluted water treatment: environmental healthcare and ecological risk assessment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:594-602. [PMID: 37605342 DOI: 10.1080/03601234.2023.2247943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Pesticide residues in the environment have irreparable effects on human health and other organisms. Hence, it is necessary to treat and degrade them from polluted water. In the current work, the electrochemical removal of the fenitrothion (FT), trifluralin (TF), and chlorothalonil (CT) pesticides were performed by catalytic electrode. The characteristics of SnO2-Sb2O3, PbO2, and Bi-PbO2 electrodes were described by FE-SEM and XRD. Dynamic electrochemical techniques including cyclic voltammetry, electrochemical impedance spectroscopy, accelerated life, and linear polarization were employed to investigate the electrochemical performance of fabricated electrodes. Moreover, evaluate the risk of toxic metals release from the catalytic electrode during treatment process was investigated. The maximum degradation efficiency of 99.8, 100, and 100% for FT, TF, and CT was found under the optimal condition of FT, TF, and CT concentration 15.0 mg L-1, pH 7.0, current density 7.0 mA cm-2, and electrolysis time of 120 min. The Bi-PbO2, PbO2, and SnO2-Sb2O3 electrodes revealed the oxygen evolution potential of 2.089, 1.983, 1.914 V, and the service lifetime of 82, 144, and 323 h, respectively. The results showed that after 5.0 h of electrolysis, none of the heavy metals such as Bi, Pb, Sb, Sn, and Ti were detected in the treated solution.
Collapse
Affiliation(s)
- Maryam Dolatabadi
- Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Environmental Science and Technology Research Center, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Environmental Science and Technology Research Center, Yazd, Iran
| | - Mostafa Pournamdari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Asghar Ebrahimi
- Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Environmental Science and Technology Research Center, Yazd, Iran
| | - Hossein Fallahzadeh
- Department of Biostatistics and Epidemiology, Research Center of Prevention and Epidemiology of Non-Communicable Disease, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saeid Ahmadzadeh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Zhang C, Gao C, Yang S, He X, Chen Y, Qin X, Tang Y. Electrochemical oxidation of chloramphenicol by modified Sm-PEG-PbO 2 anodes: Performance and mechanism. CHEMOSPHERE 2023; 327:138518. [PMID: 37001761 DOI: 10.1016/j.chemosphere.2023.138518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Chloramphenicol (CAP) is used extensively in industry and daily life, but its abuse has seriously affected the environment and public health. In this paper, a new composite PbO2 electrode was obtained through the modification Sm and polyethylene glycol (PEG), and an electrocatalytic oxidation technology of CAP degradation was investigated. The results showed that the catalytic degradation ability and industrial service life of the PEG-Sm-PbO2 composite electrode were significantly enhanced. Co-doping inhibited the growth of grains, resulting in the formation of refined pyramidal grains on the surface of the electrode, which increased the number of active spots. The industrial service life of the modified electrode was improved by 87.0%. In addition, the degradation effect under different conditions and mechanism of CAP were also explored. The optimal conditions for CAP degradation were explored, at which time the CAP degradation rate reached 99.1%. The degradation process was in accordance with the primary reaction kinetics, and the apparent rate constant of CAP at the PEG-Sm-PbO2 electrode was raised by 57.1% in comparison with the unmodified electrode, indicating that the modification facilitated the degradation of CAP in the electrode. Finally, two possible CAP degradation pathways were deduced. The results will provide technical support and a theoretical basis for the degradation of persistent organic pollutants.
Collapse
Affiliation(s)
- Chaoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Water Supply, Water Saving and Water Environment Treatment for Towns in the Yangtze River Delta, Ministry of Water Resources, Shanghai, 200092, China
| | - Conghao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, China
| | - Shumin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Water Supply, Water Saving and Water Environment Treatment for Towns in the Yangtze River Delta, Ministry of Water Resources, Shanghai, 200092, China
| | - Xin He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Water Supply, Water Saving and Water Environment Treatment for Towns in the Yangtze River Delta, Ministry of Water Resources, Shanghai, 200092, China
| | - Yue Chen
- Hebei Haikuo Environmental Protection Technology Co., LTD, Baoding, 071000, China
| | - Xiao Qin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, China
| | - Yulin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Water Supply, Water Saving and Water Environment Treatment for Towns in the Yangtze River Delta, Ministry of Water Resources, Shanghai, 200092, China.
| |
Collapse
|
11
|
Dolatabadi M, Ehrampoush MH, Pournamdari M, Ebrahimi AA, Fallahzadeh H, Ahmadzadeh S. Enhanced electrocatalytic elimination of fenitrothion, trifluralin, and chlorothalonil from groundwater and industrial wastewater using modified Cu-PbO2 electrode. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
12
|
Wu Z, Zhang X, Fan H, Han X, Wen Y, Li G, Li H. Allyl halide induced electrochemical degradation of lignin into double-bonded phenolic monomers. Int J Biol Macromol 2023; 242:124947. [PMID: 37211078 DOI: 10.1016/j.ijbiomac.2023.124947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Lignin is one of the major macromolecule in nature that contains an aromatic ring structure, and also a potential source of high-value products such as biofuels and chemicals. However, Lignin is a kind of complex heterogeneous polymer which can produce many degradation products during processing or treatment. These degradation products are difficult to separate, making it challenging to use lignin directly for high-value applications. This study proposes an electrocatalytic method to degrade lignin by using allyl halides to induce double-bonded phenolic monomers, while avoiding separation. In an alkaline solution, the three basic structural units (G, S, and H) of lignin were transformed into phenolic monomers by introducing allyl halide, which could effectively expand lignin application space. This reaction was achieved using a Pb/PbO2 electrode as the anode and copper as the cathode. It was further confirmed that double-bonded phenolic monomers were obtained by degradation. 3-allylbromide has more active allyl radicals and significantly higher product yields than 3-allylchloride. The yields of 4-allyl-2-methoxyphenol, 4-allyl-2,6-dimethoxyphenol and 2-allylphenol could reach 17.21 g/kg-lignin, 7.75 g/kg-lignin, and 0.67 g/kg-lignin respectively. These mixed double-bond monomers can be used as monomer materials for in-situ polymerization without further separation, which lays the foundation for high value-added applications of lignin.
Collapse
Affiliation(s)
- Zeqing Wu
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xinxin Zhang
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hongxian Fan
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Xiao Han
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yeqian Wen
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Gang Li
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Hao Li
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
13
|
Nguyen Tien H, Mwazighe F. Preparation of Ti/SnO 2-Sb/La-βPbO 2 electrode and its application in the degradation of some pollutants including prednisolone and 8-Hydroxyquinoline. CHEMOSPHERE 2023; 333:138933. [PMID: 37187380 DOI: 10.1016/j.chemosphere.2023.138933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
In this work, a novel La-doped βPbO2 (Ti/SnO2-Sb/La-βPbO2) was prepared using electrodeposition method and applied to the degradation of prednisolone (PRD), 8-Hydroxyquinoline (8-HQ), and other typical organic pollutants. Compared with the conventional electrode Ti/SnO2-Sb/βPbO2, La2O3 doping enhanced oxygen evolution potential (OEP), reactive surface area, stability and repeatability of the electrode. The 10 g L-1 of La2O3 doping exhibited the highest electrochemical oxidation capability of the electrode with [•OH]ss being determined at 5.6 × 10-13 M. The quenching experiments were conducted to confirm the main oxidizing species (here: •OH) in the electrochemical process. The study showed that the pollutants were removed in the electrochemical (EC) process with different degradation rates and indicated that the second-order rate constant of organic pollutants towards •OH (kOP,•OH) has a linear relationship with the degradation rate of organic pollutants (kOP) in the electrochemical process. Another new finding in this work is that a regression line of kOP,•OH and kOP can be used to estimate kOP,•OH of an organic chemical, which cannot be determined using the competition method. kPRD,•OH and k8-HQ,•OH were determined to be 7.4 × 109 M-1 s-1 and (4.6-5.5) × 109 M-1 s-1, respectively. Compared with conventional supporting electrolyte (like SO42-), H2PO4- and HPO42- improved kPRD and k8-HQ by 1.3-1.6-fold, while SO32- and HCO3- inhibited kPRD and k8-HQ significantly, down to 80%. Additionally, the degradation pathway of 8-HQ was proposed based on the detection of intermediates from GC-MS.
Collapse
Affiliation(s)
- Hoang Nguyen Tien
- The University of Da Nang, University of Science and Education, 459 Ton Duc Thang st., Lien Chieu, Da Nang, 550000, Viet Nam; The University of Da Nang, Environmental Protection and Research Center, 54 Nguyen Luong Bang st., Da Nang, 550000, Viet Nam.
| | - Fredrick Mwazighe
- Department of Chemistry, Faculty of Science and Technology, University of Nairobi, P. O. Box 30197, 00100, Nairobi, Kenya
| |
Collapse
|
14
|
El Aggadi S, Ennouhi M, Boutakiout A, Ennoukh FE, El Hourch A. Iron (III)-doped PbO 2 and its application as electrocatalyst for decomposition of phthalocyanine dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27332-3. [PMID: 37145356 DOI: 10.1007/s11356-023-27332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The textile industry contributes significantly to environmental pollution through dyeing and finishing processes that release dyes into wastewater. Even small amounts of dyes can have harmful effects and cause negative impacts. These effluents have carcinogenic, toxic, and teratogenic properties and can take a long time to be naturally degraded through photo/bio-degradation processes. This work investigates degradation of Reactive Blue 21 (RB21) phthalocyanine dye using anodic oxidation process with PbO2 anode doped with iron III (0.1 M) (marked as Ti/PbO2-0.1Fe) and compared with pure PbO2. Ti/PbO2 films with and without doping were successfully prepared by electrodeposition technology on Ti substrates. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDS) was used to characterize the electrode morphology. Also, linear scanning voltammetry (LSV) and cyclic voltammetry (CV) tests were conducted to investigate the electrochemical response of these electrodes. The influence of operational variables on the mineralization efficiency was studied as a function of pH, temperature, and current density. Doping Ti/PbO2 with Fe3+ (0.1 M) could reduce the particle to a smaller dimension and slightly increase the oxygen evolution potential (OEP). A large anodic peak was found for both electrodes prepared in the CV test, indicating that oxidation of the RB21 dye was easily achieved on the surface of the prepared anodes. No significant effect of initial pH on the mineralization of RB21 was observed. RB21 decolorization was more rapid at room temperature and increases with increasing current density. A possible degradation pathway for the anodic oxidation of RB21 in aqueous solution is proposed based on the identified reaction products. In general, it can be said that from the findings it was observed that the Ti/PbO2 and Ti/PbO2-0.1Fe electrodes show good performance on RB21 degradation. However, it was noted that the Ti/PbO2 electrode tends to deteriorate over time and exhibits poor substrate adhesion, while the Ti/PbO2-0.1Fe electrode displays superior substrate adhesion and stability.
Collapse
Affiliation(s)
- Sanaa El Aggadi
- Laboratory of Materials, Nanotechnologies and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP:1014, Rabat, Morocco.
| | - Mariem Ennouhi
- Laboratory of Materials, Nanotechnologies and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP:1014, Rabat, Morocco
| | - Amale Boutakiout
- Laboratory of Materials, Nanotechnologies and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP:1014, Rabat, Morocco
| | - Fatima Ezzahra Ennoukh
- Laboratory of Materials, Nanotechnologies and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP:1014, Rabat, Morocco
| | - Abderrahim El Hourch
- Laboratory of Materials, Nanotechnologies and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP:1014, Rabat, Morocco
| |
Collapse
|
15
|
Sharifidarabad H, Zakeri A, Adeli M. Parametric study on the electrochemical performance and stability of PbO2-coated titanium electrodes for electrowinning applications. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
16
|
Ionic liquids enhance the electrocatalysis of lignin model compounds towards generating valuable aromatic molecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Elaboration and characterization of Fe/C-doped lead dioxide-modified anodes for electrocatalytic degradation of Reactive Yellow 14. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Huang J, Jian Y, Zhou M, Wu H. Oxidative C−C bond cleavage of lignin via electrocatalysis. Front Chem 2022; 10:1007707. [PMID: 36186593 PMCID: PMC9522476 DOI: 10.3389/fchem.2022.1007707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Lignin, which is an important component of biomass in nature and is constantly produced in industry, becomes potential raw material for sustainable production of fine chemicals and biofuels. Electrocatalysis has been extensively involved in the activation of simple molecules and cleavage-recasting of complex scaffolds in an elegant environment. As such, electrocatalytic cleavage of C−C(O) in β-O-4 model molecules of lignin to value-added chemicals has received much attention in recent years. This mini-review introduces various anodes (e.g., Pb, Pt, Ni, Co., and Ir) developed for electro-oxidative lignin degradation (EOLD) under mild conditions. Attention was placed to understand the conversion pathways and involved reaction mechanisms during EOLD, with emphasis on the product distribution caused by different electrodes.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Yumei Jian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Min Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang, China
- *Correspondence: Hongguo Wu,
| |
Collapse
|
19
|
Ji W, Wang Y, Xiong Y, Zhang TC, Yuan S. Hydrophobic Ce-doped β-PbO2-SDS anode achieving synergistic effects for enhanced electrocatalytic oxidation of As(III). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Zhou Q, Zhou X, Zheng R, Liu Z, Wang J. Application of lead oxide electrodes in wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150088. [PMID: 34563906 DOI: 10.1016/j.scitotenv.2021.150088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical oxidation (EO) based on hydroxyl radicals (·OH) generated on lead dioxide has become a typical advanced oxidation process (AOP). Titanium-based lead dioxide electrodes (PbO2/Ti) play an increasingly important role in EO. To further improve the efficiency, the structure and properties of the lead dioxide active surface layer can be modified by doping transition metals, rare earth metals, nonmetals, etc. Here, we compare the common preparation methods of lead dioxide. The EO performance of lead dioxide in wastewater containing dyes, pesticides, drugs, landfill leachate, coal, petrochemicals, etc., is discussed along with their suitable operating conditions. Finally, the factors influencing the contaminant removal kinetics on lead dioxide are systematically analysed.
Collapse
Affiliation(s)
- Qingqing Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xule Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ruihao Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zifeng Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
21
|
Fazlinezhad S, Jafarzadeh K, Shooshtari Gugtapeh H, Mirali S. Characterization and electrochemical properties of stable Ni2+ and F- co-doped PbO2 coating on titanium substrate. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Fu X, Han Y, Xu H, Su Z, Liu L. Electrochemical study of a novel high-efficiency PbO 2 anode based on a cerium-graphene oxide co-doping strategy: Electrodeposition mechanism, parameter optimization, and degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126890. [PMID: 34418839 DOI: 10.1016/j.jhazmat.2021.126890] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
A novel and efficient Ti/SnO2-Sb/PbO2-GO-Ce electrode was successfully fabricated based on the co-deposition of Ce ions and graphene oxide (GO) into β-PbO2 crystals and used as an anode for electrocatalytic oxidation of phenol. The electrodeposition mechanism, parameter optimization, mechanism analysis, and potential degradation pathways were discussed in depth. The co-doping of GO and Ce resulted in the high directional specificity of β(301), orderly and dense grain arrangement of PbO2 crystals. At the same time, the oxygen evolution potential, •OH generation capacity and lifetime were also improved. The effects of experimental parameters on phenol removal efficiency were evaluated, including the applied current density, electrode gap, supporting electrolyte, initial NaCl concentration, initial pH, and initial phenol concentration. Under the optimal conditions, the removal efficiency of phenol can reach 375.6 g m-2 h-1 for 20 min electrolysis, which is about 1.2 times that of the pure PbO2 electrode. The active oxygen species (•OH, ClO- and HClO) were important attributes to the degradation of phenol. Additionally, a potential degradation pathway for phenol was proposed. After 10 successive recycles, there was no significant difference of the electro-generated •OH, cell voltage and phenol removal rate, which confirms the stability and admirable reusability of Ti/SnO2-Sb/PbO2-GO-Ce electrode.
Collapse
Affiliation(s)
- Xiaolu Fu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yanhe Han
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Han Xu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zhimin Su
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Lina Liu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|
23
|
Fabrication of a Ti/PbO2 electrode with Sb doped SnO2 nanoflowers as the middle layer for the degradation of methylene blue, norfloxacin and p-dihydroxybenzene. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Chen B, Yu Q, Chen Z, Zhu W, Li S, You H, Lv Z, Liu Y, Hu Q, Zheng Z, Farhana Y. Polystyrene microsphere assisted synthesis of a Co/PEG comodified PbO2 anode and its electrocatalytic oxidation performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Wang Q, Tu S, Wang W, Chen W, Duan X, Chang L. Optimized Indium modified Ti/PbO2 anode for electrochemical degradation of antibiotic cefalexin in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Electrochemical oxidation of hydroquinone using Eu-doped PbO2 electrodes: Electrode characterization, influencing factors and degradation pathways. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Cui T, Ma L, Wang S, Ye C, Liang X, Zhang Z, Meng G, Zheng L, Hu HS, Zhang J, Duan H, Wang D, Li Y. Atomically Dispersed Pt-N 3C 1 Sites Enabling Efficient and Selective Electrocatalytic C-C Bond Cleavage in Lignin Models under Ambient Conditions. J Am Chem Soc 2021; 143:9429-9439. [PMID: 34138542 DOI: 10.1021/jacs.1c02328] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective cleavage of C-C linkages is the key and a challenge for lignin degradation to harvest value-added aromatic compounds. To this end, electrocatalytic oxidation presents a promising technique by virtue of mild reaction conditions and strong sustainability. However, the existing electrocatalysts (traditional bulk metal and metal oxides) for C-C bond oxidative cleavage suffer from poor selectivity and low product yields. We show for the first time that atomically dispersed Pt-N3C1 sites planted on nitrogen-doped carbon nanotubes (Pt1/N-CNTs), constructed via a stepwise polymerization-carbonization-electrostatic adsorption strategy, are highly active and selective toward Cα-Cβ bond cleavage in β-O-4 model compounds under ambient conditions. Pt1/N-CNTs exhibits 99% substrate conversion with 81% yield of benzaldehyde, which is exceptional and unprecedented compared with previously reported electrocatalysts. Moreover, Pt1/N-CNTs using only 0.41 wt % Pt achieved a much higher benzaldehyde yield than those of the state-of-the-art bulk Pt electrode (100 wt % Pt) and commercial Pt/C catalyst (20 wt % Pt). Systematic experimental investigation together with density functional theory (DFT) calculation suggests that the superior performance of Pt1/N-CNTs arises from the atomically dispersed Pt-N3C1 sites facilitating the formation of a key Cβ radical intermediate, further inducing a radical/radical cross-coupling path to break the Cα-Cβ bond. This work opens up opportunities in lignin valorization via a green and sustainable electrochemical route with ultralow noble metal usage.
Collapse
Affiliation(s)
- Tingting Cui
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lina Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shibin Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chenliang Ye
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ge Meng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Shi Hu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Fabrication of a stable Ti/Pb-TiOxNWs/PbO2 anode and its application in benzoquinone degradation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Garedew M, Lin F, Song B, DeWinter TM, Jackson JE, Saffron CM, Lam CH, Anastas PT. Greener Routes to Biomass Waste Valorization: Lignin Transformation Through Electrocatalysis for Renewable Chemicals and Fuels Production. CHEMSUSCHEM 2020; 13:4214-4237. [PMID: 32460408 DOI: 10.1002/cssc.202000987] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Lignin valorization is essential for biorefineries to produce fuels and chemicals for a sustainable future. Today's biorefineries pursue profitable value propositions for cellulose and hemicellulose; however, lignin is typically used mainly for its thermal energy value. To enhance the profit potential for biorefineries, lignin valorization would be a necessary practice. Lignin valorization is greatly advantaged when biomass carbon is retained in the fuel and chemical products and when energy quality is enhanced by electrochemical upgrading. Though lignin upgrading and valorization are very desirable in principle, many barriers involved in lignin pretreatment, extraction, and depolymerization must be overcome to unlock its full potential. This Review addresses the electrochemical transformation of various lignins with the aim of gaining a better understanding of many of the barriers that currently exist in such technologies. These studies give insight into electrochemical lignin depolymerization and upgrading to value-added commodities with the end goal of achieving a global low-carbon circular economy.
Collapse
Affiliation(s)
- Mahlet Garedew
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
| | - Fang Lin
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Bing Song
- Scion, 49 Sala Street, Private Bag 3020, Rotorua, 3020, New Zealand
| | - Tamara M DeWinter
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
| | - James E Jackson
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Christopher M Saffron
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Chun Ho Lam
- City University of Hong Kong, School of Energy and Environment, Kowloon Tong, China
| | - Paul T Anastas
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
- School of Public Health, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
30
|
Du X, Zhang H, Sullivan KP, Gogoi P, Deng Y. Electrochemical Lignin Conversion. CHEMSUSCHEM 2020; 13:4318-4343. [PMID: 33448690 DOI: 10.1002/cssc.202001187] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/17/2020] [Indexed: 06/12/2023]
Abstract
Lignin is the largest source of renewable aromatic compounds, making the recovery of aromatic compounds from this material a significant scientific goal. Recently, many studies have reported on lignin depolymerization and upgrading strategies. Electrochemical approaches are considered to be low cost, reagent free, and environmentally friendly, and can be carried out under mild reaction conditions. In this Review, different electrochemical lignin conversion strategies, including electrooxidation, electroreduction, hybrid electro-oxidation and reduction, and combinations of electrochemical and other processes (e. g., biological, solar) for lignin depolymerization and upgrading are discussed in detail. In addition to lignin conversion, electrochemical lignin fractionation from biomass and black liquor is also briefly discussed. Finally, the outlook and challenges for electrochemical lignin conversion are presented.
Collapse
Affiliation(s)
- Xu Du
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Haichuan Zhang
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 303320620, USA
- Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Kevin P Sullivan
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Parikshit Gogoi
- Department of Chemistry, Nowgong College, Nagaon, 782001, Assam, India
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 303320620, USA
| |
Collapse
|
31
|
Chang X, van der Zalm J, Thind SS, Chen A. Reprint of "Electrochemical oxidation of lignin at electrochemically reduced TiO2 nanotubes". J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Chang X, van der Zalm J, Thind SS, Chen A. Electrochemical oxidation of lignin at electrochemically reduced TiO2 nanotubes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Wang W, Duan X, Sui X, Wang Q, Xu F, Chang L. Surface characterization and electrochemical properties of PbO2/SnO2 composite anodes for electrocatalytic oxidation of m-nitrophenol. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135649] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Yang K, Xu J, Lin H, Xie R, Wang K, Lv S, Liao J, Liu X, Chen J, Yang Z. Developing a low-pressure and super stable electrochemical tubular reactive filter: Outstanding efficiency for wastewater purification. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Tan X, Zhao Y, Sun W, Jin C, Chen L, Wei H, Sun C. Three-dimensional hierarchically porous PbO2 electrode for electrochemical degradation of m-cresol. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113726] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
36
|
Tang CB, Lu YX, Wang F, Niu H, Yu LH, Xue JQ. Influence of a MnO2-WC interlayer on the stability and electrocatalytic activity of titanium-based PbO2 anodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135381] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Electrochemical degradation of neutral red on PbO2/α-Al2O3 composite electrodes: Electrode characterization, byproducts and degradation mechanism. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115684] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
A 2.5D Electrode System Constructed of Magnetic Sb–SnO2 Particles and a PbO2 Electrode and Its Electrocatalysis Application on Acid Red G Degradation. Catalysts 2019. [DOI: 10.3390/catal9110875] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A novel electrode consisting of a Ti/PbO2 shell and Fe3O4/Sb–SnO2 particles was developed for electrochemical oxidation treatment of wastewater. Scanning electron microscope (SEM), X-ray diffraction (XRD), the current limiting method, toxicity experiments, and high-performance liquid chromatography were adopted to characterize its morphology, crystal structure, electrochemical properties, the toxicity of the wastewater, and hydroxyl radicals. Acid Red G (ARG), a typical azo dye, was additionally used to test the oxidation ability of the electrode. Results indicated that the 2.5D electrode could significantly improve the mass transfer coefficient and •OH content of the 2D electrode, thereby enhancing the decolorization, degradation, and mineralization effect of ARG, and reducing the toxicity of the wastewater. The experiments revealed that, at higher current density, lower dye concentration and higher temperature, the electrochemical oxidation of ARG favored. Under the condition of 50 mA/cm2, 25 °C, and 100 ppm, the ARG, Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiency reached 100%, 65.89%, and 52.52%, respectively, and the energy consumption and the current efficiency were 1.06 kWh/g COD, 8.29%, and energy consumption for TOC and mineralization current efficiency were 3.81 kWh/g COD, 9.01%. Besides, the Fe3O4/Sb–SnO2 particles after electrolysis for 50 h still had remarkable stability. These results indicated that the ARG solution could be adequately removed on the 2.5D electrode, providing an effective method for wastewater treatment.
Collapse
|
39
|
Zhao B, Yu H, Lu Y, Qu J, Zhu S, Huo M. Polyethylene glycol assisted synthesis of a praseodymium-doped PbO2 electrode and its enhanced electrocatalytic oxidation performance. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Sui X, Duan X, Xu F, Chang L. Fabrication of three-dimensional networked PbO2 anode for electrochemical oxidation of organic pollutants in aqueous solution. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
41
|
Electrochemical oxidation of acetamiprid using Yb-doped PbO2 electrodes: Electrode characterization, influencing factors and degradation pathways. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Voltammetric determination of venlafaxine as an antidepressant drug employing Gd2O3 nanoparticles graphite screen printed electrode. J RARE EARTH 2019. [DOI: 10.1016/j.jre.2018.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Elaissaoui I, Akrout H, Grassini S, Fulginiti D, Bousselmi L. Effect of coating method on the structure and properties of a novel PbO 2 anode for electrochemical oxidation of Amaranth dye. CHEMOSPHERE 2019; 217:26-34. [PMID: 30396047 DOI: 10.1016/j.chemosphere.2018.10.161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
This study deals with the electrochemical degradation of Amaranth in aqueous solution by means of stainless steel (SS) electrodes coated with a SiOx interlayer deposited by Plasma Enhanced Chemical Vapour Deposition and a modified PbO2 top layer deposited by continuous galvanostatic electrodeposition. The morphological characterization of the PbO2 top-layer performed by Field Emission Scanning Electron Microscope put in evidence that the SiOx, interlayer allows obtaining a more integrated PbO2/SS electrode with a very homogeneous PbO2 film. The composition of the lead oxide layer was investigated by X-ray Diffractometry, showing that the β-PbO2/α-PbO2 ratio in the top layer deposited on the SiOx film was four times higher respect to the one deposited directly on the stainless steel surface. In addition, the electrochemical behaviour of SS/SiOx/PbO2 interfaces was studied by electrochemical impedance spectroscopy (EIS). The EIS results showed that the presence of SiOx favors electron transfer within the oxide layer which improves electro-oxidation capability. Moreover, bulk electrolysis showed that over 100% colour removal and 84% COD removal, using SS/SiOx/PbO2 at acidic pH were reached after 300 min. High Performance Liquid Chromatography analysis was used for the quantitative determinations of initial Amaranth dye molecule removal and to evaluate its specific degradation rate. In order to evaluate the phototoxicity of treated solution with different by-products, different tests of germination were performed and proved that the electrochemical treatment with modified PbO2 could be as an efficient technology for reducing hazardous wastewater toxicity and able to produce water available for reuse.
Collapse
Affiliation(s)
- Ines Elaissaoui
- Laboratory of Wastewaters and Environment, Center of Water Researches & Technology (CERTE), Borj Cédria PB 273, Soliman 8020, Tunisia
| | - Hanene Akrout
- Laboratory of Wastewaters and Environment, Center of Water Researches & Technology (CERTE), Borj Cédria PB 273, Soliman 8020, Tunisia.
| | - Sabrina Grassini
- Department of Applied Science and Technology, Polytechnic of Turin, Turin, Italy
| | - Daniele Fulginiti
- Department of Applied Science and Technology, Polytechnic of Turin, Turin, Italy
| | - Latifa Bousselmi
- Laboratory of Wastewaters and Environment, Center of Water Researches & Technology (CERTE), Borj Cédria PB 273, Soliman 8020, Tunisia
| |
Collapse
|
44
|
Shao D, Zhang X, Lyu W, Zhang Y, Tan G, Xu H, Yan W. Magnetic Assembled Anode Combining PbO 2 and Sb-SnO 2 Organically as An Effective and Sustainable Electrocatalyst for Wastewater Treatment with Adjustable Attribution and Construction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44385-44395. [PMID: 30525405 DOI: 10.1021/acsami.8b14592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new electrode consisting of a Ti/PbO2 shell as main electrode (ME) and numerous Fe3O4/Sb-SnO2 granules as auxiliary electrodes (AEs) was developed for flexible electrochemical oxidation (EO) treatment of wastewater. Material and electrochemical characterizations were carried out to study the impacts of the loading amount of the AEs on the attribution and construction of the electrode. Lignin, a complex group of polymeric macromolecules, was selected as the representative actual contaminant to test the real EO capability of the assembled electrodes with different AE loading amounts. The stability and recyclability of the electrodes were also investigated. Results showed that the roughness and the surface area of the electrode were increased with the increased loading amount of AEs, while improvement of the electrode properties was achieved only with the appropriate amounts of AEs. The optimum AE loading (such as 0.25 and 0.5 g on 6 cm2 ME) boosted the EO performance of the anode toward lignin by ∼20%, making the electrode more capable in benzene ring opening. Excessive AEs were found to be unavailing, which only increased the percentage of the less accessible catalytic active sites. Moreover, a preliminary operating mechanism of this 2.5D electrode was proposed to evaluate the effect of AEs and further reveal the relationships of structure and activity of the 2.5D electrode. Finally, the electrode's lifetime was lengthened and further boosted via loading AEs and the subsequent recycling of AEs.
Collapse
Affiliation(s)
- Dan Shao
- School of Materials Science and Engineering , Shaanxi University of Science & Technology , Xi'an , Shaanxi 710021 , China
| | - Xinlei Zhang
- School of Materials Science and Engineering , Shaanxi University of Science & Technology , Xi'an , Shaanxi 710021 , China
| | - Wei Lyu
- Department of Environmental Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , China
| | - Yuanyuan Zhang
- School of Materials Science and Engineering , Shaanxi University of Science & Technology , Xi'an , Shaanxi 710021 , China
| | - Guoqiang Tan
- School of Materials Science and Engineering , Shaanxi University of Science & Technology , Xi'an , Shaanxi 710021 , China
| | - Hao Xu
- Department of Environmental Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , China
| | - Wei Yan
- Department of Environmental Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , China
| |
Collapse
|
45
|
Fabrication of a hydrophobic SDBS-PbO2 anode for electrochemical degradation of nitrobenzene in aqueous solution. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.098] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
He Y, Wang X, Huang W, Chen R, Zhang W, Li H, Lin H. Hydrophobic networked PbO 2 electrode for electrochemical oxidation of paracetamol drug and degradation mechanism kinetics. CHEMOSPHERE 2018; 193:89-99. [PMID: 29127839 DOI: 10.1016/j.chemosphere.2017.10.144] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
A hydrophobic networked PbO2 electrode was deposited on mesh titanium substrate and utilized for the electrochemical elimination towards paracetamol drug. Three dimensional growth mechanism of PbO2 layer provided more loading capacity of active materials and network structure greatly reduced the mass transfer for the electrochemical degradation. The active electrochemical surface area based on voltammetric charge quantity of networked PbO2 electrode is about 2.1 times for traditional PbO2 electrode while lower charge transfer resistance (6.78 Ω cm2) could be achieved on networked PbO2 electrode. The electrochemical incineration kinetics of paracetamol drug followed a pseudo first-order behavior and the corresponding rate constant were 0.354, 0.658 and 0.880 h-1 for traditional, networked PbO2 and boron doped diamond electrode. Higher electrochemical elimination kinetics could be achieved on networked PbO2 electrode and the performance can be equal to boron doped diamond electrode in result. Based on the quantification of reactive oxidants (hydroxyl radicals), the utilization rate of hydroxyl radicals could reach as high as 90% on networked PbO2 electrode. The enhancement of excellent electrochemical oxidation capacity towards paracetamol drug was related to the properties of higher loading capacity, enhanced mass transfer and hydrophobic surface. The possible degradation mechanism and pathway of paracetamol on networked PbO2 electrode were proposed in details accordingly based on the intermediate products.
Collapse
Affiliation(s)
- Yapeng He
- College of Chemistry, Jilin University, Changchun 130012, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xue Wang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Weimin Huang
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Rongling Chen
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Wenli Zhang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongdong Li
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Haibo Lin
- College of Chemistry, Jilin University, Changchun 130012, China; Guangdong Guanghua Sci-Tech Co., Ltd., Shantou 515061, China.
| |
Collapse
|
47
|
Cai P, Fan H, Cao S, Qi J, Zhang S, Li G. Electrochemical conversion of corn stover lignin to biomass-based chemicals between Cu/Ni Mo Co cathode and Pb/PbO 2 anode in alkali solution. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.111] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Jia Y, Wen Y, Han X, Qi J, Liu Z, Zhang S, Li G. Electrocatalytic degradation of rice straw lignin in alkaline solution through oxidation on a Ti/SnO2–Sb2O3/α-PbO2/β-PbO2 anode and reduction on an iron or tin doped titanium cathode. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00307f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel procedure for selective production of biomass-based compounds by electrochemical conversion has been developed in this work.
Collapse
Affiliation(s)
- Yongqiang Jia
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Yeqian Wen
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Xiao Han
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Jian Qi
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Zhihua Liu
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Songmei Zhang
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Gang Li
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| |
Collapse
|
49
|
Yang K, Liu Y, Qiao J. Electrodeposition preparation of Ce-doped Ti/SnO2-Sb electrodes by using selected addition agents for efficient electrocatalytic oxidation of methylene blue in water. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.08.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Duan X, Zhao C, Liu W, Zhao X, Chang L. Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.04.114] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|