1
|
Salucci S, Giordani M, Betti M, Valentini L, Gobbi P, Mattioli M. The in vitro cytotoxic effects of natural (fibrous epsomite crystals) and synthetic (Epsom salt) magnesium sulfate. Microsc Res Tech 2024; 87:685-694. [PMID: 37982323 DOI: 10.1002/jemt.24458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/18/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
Exposure to mineral fibers represents an occupational and environmental hazard since particulate inhalation leads to several health disorders. However, few data are available on the effect of fibers with high solubility like natural epsomite, a water-soluble fiber with an inhalable size that allows it to penetrate biological systems, with regard to the respiratory tract. This study evaluated the natural (fibrous epsomite) and synthetic (Epsom salt) magnesium sulfate pathogenicity. Investigations have been performed through morpho-functional and biochemical analyses, in an in vitro cell model that usually grows as monocytes, but that under appropriate conditions differentiates into macrophages. These latter, known as alveolar macrophages, if referred to lungs, represent the first line of defense against harmful inhaled stimuli. Morphological observations reveal that, if Epsom salt induces osmotic stress on cell culture, natural epsomite fibers lead to cellular alterations including thickening of the nuclear envelope and degenerated mitochondria. Moreover, the insoluble fraction (impurities) internalized by cells induces diffuse damage characterized at the highest dosage and exposure time by secondary necrosis or necrotic cell death features. Biochemical analyses confirm this mineral behavior that involves MAPK pathway activation, resulting in many different cellular responses ranging from proliferation control to cell death. Epsom salt leads to MAPK/ERK activation, a marker predictive of overall survival. Unlike, natural epsomite induces upregulation of MAPK/p38 protein involved in the phosphorylation of downstream targets driving necrotic cell death. These findings demonstrate natural epsomite toxicity on U937 cell culture, making the inhalation of these fibers potentially hazardous for human health. RESEARCH HIGHLIGHTS: Natural epsomite and synthetic Epsom salt effects have been evaluated in U937 cell model. Epsom salt induces an osmotic cellular stress. Natural epsomite fibers lead to cellular damage and can be considered potentially dangerous for human health.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matteo Giordani
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Betti
- Department of Biomolecular Sciences (DISB), University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Valentini
- Department of Biomolecular Sciences (DISB), University of Urbino Carlo Bo, Urbino, Italy
| | - Pietro Gobbi
- Department of Biomolecular Sciences (DISB), University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Mattioli
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
2
|
Stevens ME, Paustenbach DJ, Lockhart NJ, Busboom DE, Deckard BM, Brew DW. The presence of erionite in North American geologies and the estimated mesothelioma potency by region. Inhal Toxicol 2024; 36:158-173. [PMID: 38583132 DOI: 10.1080/08958378.2024.2322496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 04/08/2024]
Abstract
OBJECTIVE Erionite is a naturally occurring fibrous mineral found in soils in some geographical regions. Known for its potency for causing mesothelioma in the Cappadocia region of Turkey, the erionite fiber has attracted interest in the United States due to its presence in a band of rock that extends from Mexico to Montana. There are few toxicology studies of erionite, but all show it to have unusually high chronic toxicity. Despite its high potency compared to asbestos fibers, erionite has no occupational or environmental exposure limits. This paper takes what has been learned about the chemical and physical characteristics of the various forms of asbestos (chrysotile, amosite, anthophyllite, and crocidolite) and predicts the potency of North American erionite fibers. MATERIALS AND METHODS Based on the fiber potency model in Korchevskiy et al. (2019) and the available published information on erionite, the estimated mesothelioma potency factors (the proportion of mesothelioma mortality per unit cumulative exposure (f/cc-year)) for erionites in the western United States were determined. RESULTS AND DISCUSSION The model predicted potency factors ranged from 0.19 to 11.25 (average ∼3.5), depending on the region. For reference, crocidolite (the most potent commercial form of asbestos) is assigned a potency factor ∼0.5. CONCLUSION The model predicted mesothelioma potency of Turkish erionite (4.53) falls in this same range of potencies as erionite found in North America. Although it can vary by region, a reasonable ratio of average mesothelioma potency based on this model is 3,000:500:100:1 comparing North American erionite, crocidolite, amosite, and chrysotile (from most potent to least potent).
Collapse
|
3
|
El-Moemen AA, Shata SA, Pashameah RA, AlSubhi SA, Alzahrani E, Farouk AE, Zaki ZI, Mahmoud MHH, Mostafa NY. Recycling silica-rich wastes in sustainable mechanochemical-hydrothermal production of zeolite Y for ammonia remediation in aquaculture. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 2023; 106:10-22. [DOI: 10.1007/s10971-023-06066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/08/2023] [Indexed: 09/01/2023]
|
4
|
Potential Toxicity of Natural Fibrous Zeolites: In Vitro Study Using Jurkat and HT22 Cell Lines. MINERALS 2022. [DOI: 10.3390/min12080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An emerging problem for human health is the exposure to non-regulated mineral fibers with an asbestos-like crystal habit, particularly fibrous zeolites. This study aimed to determine if and how selected fibrous zeolites (erionite, mesolite, and thomsonite) induce toxicity effects on two different in vitro cellular models, the adherent murine hippocampal (HT22) and human immortalized T lymphocyte (Jurkat) cell lines. Before proceeding with the cellular tests, the three zeolite samples were investigated using scanning electron microscopy–energy-dispersive spectroscopy and X-ray powder diffraction techniques. The cells were treated with 0.1 µM and 1 µM of fibrous erionite, mesolite, and thomsonite for 12, 24, and 48 h. Results showed a cytotoxic effect of erionite in both cellular models and revealed different toxic behaviors of the mesolite and thomsonite fibers, suggesting other potential mechanisms of action. The outcome of this study would be a first step for further research on fine biochemical interactions of zeolite fibers with cells and future in vivo investigations.
Collapse
|
5
|
Abstract
This study explored morphological, mineralogical, and physicochemical features of suspected toxic mordenite fibers from Northern Italy. All the mordenite samples (FAS1, GC1, SP1) show similar structural and chemical character, are Na-rich (Na > Ca > K), and the Al content decrease reflects the unit cell volumes in the series: FAS1 > SP1 > GC1. The aerodynamic diameter (Dae) values of the mordenite fibers are 1.19 μm for the GC1 sample, 2.69 μm for FAS1, and 3.91 μm for SP1. All the studied mordenite samples are characterized by “respirable” fibers despite the size differences, which could reach the deeper parts of the lungs. For this reason, fibrous mordenite could represent a potential health hazard and then need to be handled with attention, but further toxicity studies are needed.
Collapse
|
6
|
Fibrous Ferrierite from Northern Italy: Mineralogical Characterization, Surface Properties, and Assessment of Potential Toxicity. MINERALS 2022. [DOI: 10.3390/min12050626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, fibrous minerals pose as significant health hazards to humans, and exposure to these fibers can lead to the development of severe pulmonary diseases. This work investigated the morphology, crystal structure, chemistry, and surface activity of fibrous ferrierite recently found in northern Italy through an integrated approach using scanning electron microscopy–energy dispersive spectroscopy, electron microprobe, inductively coupled plasma atomic emission spectrometry, X-ray powder diffraction, and electron paramagnetic resonance. Our results show that a notable amount of ferrierite fibers are breathable (average length ~22 µm, average diameter 0.9 µm, diameter-length ratio >> 1:3) and able to reach the alveolar space (average Dae value 2.5 μm). The prevailing extra-framework cations are in the Mg > (Ca ≈ K) relationship, R is from 0.81 to 0.83, and the Si/Al ratio is high (4.2–4.8). The <T-O> bond distances suggest the occurrence of some degree of Si,Al ordering, with Al showing a site-specific occupation preference T1 > T2 > T3 > T4. Ferrierite fibers show high amounts of adsorbed EPR probes, suggesting a high ability to adsorb and interact with related chemicals. According to these results, fibrous ferrierite can be considered a potential health hazard, and a precautionary approach should be applied when this material is handled. Future in vitro and in vivo tests are necessary to provide further experimental confirmation of the outcome of this work.
Collapse
|
7
|
Giordani M, Meli MA, Roselli C, Betti M, Peruzzi F, Taussi M, Valentini L, Fagiolino I, Mattioli M. Could soluble minerals be hazardous to human health? Evidence from fibrous epsomite. ENVIRONMENTAL RESEARCH 2022; 206:112579. [PMID: 34968437 DOI: 10.1016/j.envres.2021.112579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
From a toxicological point of view, particulates and fibres with high solubility in water and/or in biological environments have not been considered in detail and the knowledge to date in this area is very scarce. In this study, the water-soluble natural epsomite fibres from Perticara Mine (Italy) were investigated using SEM-EDS, XRPD, ICP-AES and alpha spectrometry measurements which were combined and integrated to characterise the fibres' morphology, crystal chemistry and mineralogy. The morphological and morphometric results showed that most of the fibres are of inhalable size (Dae 5.09 μm) and can be potentially adsorbed from all parts of the respiratory tract. Chemical analysis reveals significant amounts of toxic elements (As, Co, Fe, Mn, Ni, Sr, Ti, Zn) and surprisingly high contents of radioactive isotopes (210Po and 228Th) in epsomite crystals, making the inhalation of these fibres potentially hazardous to human health. Through this study, we want to focus on soluble minerals, such as epsomite, which can be present in both natural and anthropic environments and have never been considered from the point of view of their potential hazard.
Collapse
Affiliation(s)
- Matteo Giordani
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Maria Assunta Meli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Carla Roselli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Betti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Fabio Peruzzi
- Speleological Federation of the Emilia-Romagna Region, Bologna, Italy
| | - Marco Taussi
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Valentini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Michele Mattioli
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
8
|
Shaaban H, Issa SY, Ahmad R, Mostafa A, Refai S, Alkharraa N, Albaqshi BT, Hussien D, Alqarni AM. Investigation on the elemental profiles of lip cosmetic products: Concentrations, distribution and assessment of potential carcinogenic and non-carcinogenic human health risk for consumer safety. Saudi Pharm J 2022; 30:779-792. [PMID: 35812155 PMCID: PMC9257854 DOI: 10.1016/j.jsps.2022.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/25/2022] [Indexed: 10/25/2022] Open
|
9
|
Giordani M, Mattioli M, Cangiotti M, Fattori A, Ottaviani MF, Betti M, Ballirano P, Pacella A, Di Giuseppe D, Scognamiglio V, Hanuskova M, Gualtieri AF. Characterisation of potentially toxic natural fibrous zeolites by means of electron paramagnetic resonance spectroscopy and morphological-mineralogical studies. CHEMOSPHERE 2022; 291:133067. [PMID: 34838598 DOI: 10.1016/j.chemosphere.2021.133067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/27/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
This study explored the morphological, mineralogical, and physico-chemical features of carcinogenic erionite and other possibly hazardous zeolites, such as mesolite and thomsonite, while also investigating the interacting capability of the mineral surface at the liquid/solid interface. Extremely fibrous erionite is K+ and Ca2+-rich and shows the highest Si/Al ratio (3.38) and specific surface area (8.14 m2/g). Fibrous mesolite is Na+ and Ca2+-rich and displays both a lower Si/Al ratio (1.56) and a smaller specific surface area (1.56 m2/g). The thomsonite composition shows the lowest values of Si/Al ratio (1.23) and specific surface area (0.38 m2/g). Electron paramagnetic resonance data from selected spin probes reveal that erionite has a homogeneous site distribution and interacts well with all spin probes. The surfaces of mesolite and thomsonite are less homogeneous and closer polar sites were found through consequent interaction with the probes. The mesolite surface can also clearly interact but with a lower strength and may represent a potential health hazard for humans, though with a lower degree if compared to erionite. The thomsonite surface is not inert and interacts with the probes with a low-grade capability. We can expect small fragments of thomsonite to interact with the biological environment, though with a low-grade intensity.
Collapse
Affiliation(s)
- Matteo Giordani
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Michele Mattioli
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy.
| | - Michela Cangiotti
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Alberto Fattori
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | | | - Michele Betti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Paolo Ballirano
- Department of Earth Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Alessandro Pacella
- Department of Earth Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Dario Di Giuseppe
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, I-41125, Modena, Italy
| | - Valentina Scognamiglio
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, I-41125, Modena, Italy
| | - Miriam Hanuskova
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, I-41125, Modena, Italy
| | - Alessandro F Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, I-41125, Modena, Italy
| |
Collapse
|
10
|
Di Giuseppe D, Scarfì S, Alessandrini A, Bassi AM, Mirata S, Almonti V, Ragazzini G, Mescola A, Filaferro M, Avallone R, Vitale G, Scognamiglio V, Gualtieri AF. Acute cytotoxicity of mineral fibres observed by time-lapse video microscopy. Toxicology 2022; 466:153081. [PMID: 34953976 DOI: 10.1016/j.tox.2021.153081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023]
Abstract
Inhalation of mineral fibres is associated with the onset of an inflammatory activity in the lungs and the pleura responsible for the development of fatal malignancies. It is known that cell damage is a necessary step for triggering the inflammatory response. However, the mechanisms by which mineral fibres exert cytotoxic activity are not fully understood. In this work, the kinetics of the early cytotoxicity mechanisms of three mineral fibres (i.e., chrysotile, crocidolite and fibrous erionite) classified as carcinogenic by the International Agency for Research on Cancer, was determined for the first time in a comparative manner using time-lapse video microscopy coupled with in vitro assays. All tests were performed using the THP-1 cell line, differentiated into M0 macrophages (M0-THP-1) and exposed for short times (8 h) to 25 μg/mL aliquots of chrysotile, crocidolite and fibrous erionite. The toxic action of fibrous erionite on M0-THP-1 cells is manifested since the early steps (2 h) of the experiment while the cytotoxicity of crocidolite and chrysotile gradually increases during the time span of the experiment. Chrysotile and crocidolite prompt cell death mainly via apoptosis, while erionite exposure is also probably associated to a necrotic-like effect. The potential mechanisms underlying these different toxicity behaviours are discussed in the light of the different morphological, and chemical-physical properties of the three fibres.
Collapse
Affiliation(s)
- Dario Di Giuseppe
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy; CNR-Nanoscience Institute-S3, Modena, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Serena Mirata
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Vanessa Almonti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Gregorio Ragazzini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy; CNR-Nanoscience Institute-S3, Modena, Italy
| | | | - Monica Filaferro
- Department of Biomedical, Metabolic and Neural Sciences, The University of Modena and Reggio Emilia, Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Vitale
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Scognamiglio
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro F Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
11
|
Li Y, Fang Y, Liu Z, Zhang Y, Liu K, Jiang L, Yang B, Yang Y, Song Y, Liu C. Trace Metal Lead Exposure in Typical Lip Cosmetics From Electronic Commercial Platform: Investigation, Health Risk Assessment and Blood Lead Level Analysis. Front Public Health 2021; 9:766984. [PMID: 34869181 PMCID: PMC8637816 DOI: 10.3389/fpubh.2021.766984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Lead (Pb) in lipstick products has become an increasing concern, which can cause safety problems to human body directly with diet. To investigate the Pb exposure and potential health risk level of typical popular lip cosmetics in Chinese e-commerce market, Python crawler was introduced to identify and select 34 typical popular lip cosmetics, including 12 lipsticks, 13 lip glosses, and 9 lip balms. And then this study used ICP-MS to determine the content of Pb. Furthermore, the ingestion health risk assessment method issued by United States Environmental Protection Agency (USEPA) and Monte Carlo simulation algorithm were applied to assess the probabilistic health risks of adults exposure. Finally, taking the possible exposure of children contacting with lip products, the health risk assessment of children blood Pb was carried out. The results showed that the concentration of Pb in lip products ranged from 0 to 0.5237 mg/kg, which was far lower than the limit set by various countries. The probabilistic non-carcinogenic risks and carcinogenic risks were 4.93 ×10-7~2.82 ×10-3 and 1.68 ×10-12~9.59 ×10-9, respectively, which were in an acceptable level. The results of blood Pb assessment suggested that the Pb content of lip cosmetics had no obvious influence on blood Pb concentration of children, and background Pb exposure is the main factor affecting children's blood Pb level (BLL). Overall, the samples of lip products are selected by Python crawler in this study, which are more objective and representative. This study focuses on deeper study of Pb, especially for the health risk assessment of blood Pb in children exposed to lip products. These results perhaps could provide useful information for the safety cosmetics usage for people in China and even the global world.
Collapse
Affiliation(s)
- Yanan Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,School of Business Administration, Zhongnan University of Economics and Law, Wuhan, China
| | - Yanyan Fang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,Department of Environmental Science and Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Zehua Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,Department of Environmental Science and Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Yahan Zhang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,Department of Environmental Science and Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Kangli Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China
| | - Luping Jiang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,School of Business Administration, Zhongnan University of Economics and Law, Wuhan, China
| | - Boyuan Yang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,Department of Environmental Science and Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Yongdie Yang
- Department of Environmental Science and Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Yongwei Song
- Department of Environmental Science and Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Chaoyang Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,Department of Environmental Science and Engineering, Zhongnan University of Economics and Law, Wuhan, China.,Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Di Giuseppe D, Scognamiglio V, Malferrari D, Nodari L, Pasquali L, Lassinantti Gualtieri M, Scarfì S, Mirata S, Tessari U, Hanuskova M, Gualtieri AF. Characterization of Fibrous Wollastonite NYAD G in View of Its Use as Negative Standard for In Vitro Toxicity Tests. MINERALS 2021; 11:1378. [DOI: 10.3390/min11121378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Today, despite considerable efforts undertaken by the scientific community, the mechanisms of carcinogenesis of mineral fibres remain poorly understood. A crucial role in disclosing the mechanisms of action of mineral fibres is played by in vitro and in vivo models. Such models require experimental design based on negative and positive controls. Commonly used positive controls are amosite and crocidolite UICC standards, while negative controls have not been identified so far. The extensive characterisation and assessment of toxicity/pathogenicity potential carried out in this work indicate that the commercial fibrous wollastonite NYAD G may be considered as a negative standard control for biological and biomedical tests involving mineral fibres. Preliminary in vitro tests suggest that wollastonite NYAD G is not genotoxic. This material is nearly pure and is characterized by very long (46.6 µm), thick (3.74 µm) and non-biodurable fibres with a low content of metals. According to the fibre potential toxicity index (FPTI) model, wollastonite NYAD G is an inert mineral fibre that is expected to exert a low biological response during in vitro/in vivo testing.
Collapse
Affiliation(s)
- Dario Di Giuseppe
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Valentina Scognamiglio
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Daniele Malferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Luca Nodari
- CNR-ICMATE Institute of Condensed Matter Chemistry and Technologies for Energy, Italian National Research Council, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Luca Pasquali
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41125 Modena, Italy
- Istituto Officina dei Materiali (IOM), The Italian National Research Council (CNR), AREA Science Park, Basovizza, 34149 Trieste, Italy
- Department of Physics, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| | - Magdalena Lassinantti Gualtieri
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41125 Modena, Italy
- Interdepartmental Research Centre for Applied Research and Services in the Advanced Mechanics and Motor Sector, University of Modena and Reggio Emilia, Via Pietro Vivarelli 2, 41125 Modena, Italy
| | - Sonia Scarfì
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Serena Mirata
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy
| | - Umberto Tessari
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy
| | - Miriam Hanuskova
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41125 Modena, Italy
| | - Alessandro F. Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
13
|
Li Y, Liu Z, Zhang Y, Jiang L, Cai Y, Chen X, Zhou X, Li H, Li F, Zhang J, Liu C. Investigation and probabilistic health risk assessment of trace elements in good sale lip cosmetics crawled by Python from Chinese e-commerce market. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124279. [PMID: 33144021 DOI: 10.1016/j.jhazmat.2020.124279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/26/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
A growing body of evidence suggests that the lip products are polluted by heavy metals, which would inevitably cause safety problems with long-term exposure, but few studies have focused on their deeper health risk assessments. This study sets out to identify the lip cosmetics in good sale from Chinese e-commerce market utilizing Python crawler and then explore the probabilistic health risks caused by 6 trace elements in 34 most popular lip cosmetics with Monte Carlo simulation. The results found that there was no obvious non-carcinogenic risk to humans. As for high users, the carcinogenic risk levels of Cr exceeded the acceptable risk recommended by USEPA, approximately 10% and 25% for lipsticks and lip glosses, respectively. Cr was regarded as the priority metal for risk control in the present study. Finally, it was recommended that the minimum use period limit for using up one lip product ranged from 0.54 months to 5.74 months. Overall, this study appears to be the first to conduct a probabilistic health risk assessment of trace elements in lip products, which would be of significance for policy makers to take effective strategies to minimize exposure health risk and contamination.
Collapse
Affiliation(s)
- Yanan Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Zehua Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Yahan Zhang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Luping Jiang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Ying Cai
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Xiyao Chen
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Xinyun Zhou
- School of Management, Huazhong University of Science and Technology, China
| | - Honghu Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Fei Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Key Laboratory of Virtual Geographic Environment (Ministry of Education), Nanjing Normal University, Nanjing 210023, China
| | - Jingdong Zhang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Chaoyang Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430073, China.
| |
Collapse
|
14
|
Characterization of Fibrous Mordenite: A First Step for the Evaluation of Its Potential Toxicity. CRYSTALS 2020. [DOI: 10.3390/cryst10090769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In nature, a huge number of unregulated minerals fibers share the same characteristics as asbestos and therefore have potential adverse health effects. However, in addition to asbestos minerals, only fluoro-edenite and erionite are currently classified as toxic/pathogenic agents by the International Agency for Research on Cancer (IARC). Mordenite is one of the most abundant zeolites in nature and commonly occurs with a fibrous crystalline habit. The goal of this paper is to highlight how fibrous mordenite shares several common features with the well-known carcinogenic fibrous erionite. In particular, this study has shown that the morphology, biodurability, and surface characteristics of mordenite fibers are similar to those of erionite and asbestos. These properties make fibrous mordenite potentially toxic and exposure to its fibers can be associated with deadly diseases such as those associated with regulated mineral fibers. Since the presence of fibrous mordenite concerns widespread geological formations, this mineral fiber should be considered dangerous for health and the precautionary approach should be applied when this material is handled. Future in vitro and in vivo tests are necessary to provide further experimental confirmation of the outcome of this work.
Collapse
|
15
|
Mattioli M, Cenni M. Mineralogical dataset of natural zeolites from Lessini Mounts, Northern Italy: Analcime, natrolite, phillipsite and harmotome chemical composition. Data Brief 2020; 31:105791. [PMID: 32577445 PMCID: PMC7300132 DOI: 10.1016/j.dib.2020.105791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 11/28/2022] Open
Abstract
This dataset article contains mineralogical and chemical data of some natural zeolites such as analcime, natrolite, phillipsite and harmotome. These minerals were found as secondary phases within vesicles and veins in the basaltic rocks of the Lessini Mounts, Northern Italy. Methods for obtaining the datasets include optical microscopy, X-ray diffraction, scanning electron microscopy and electron probe microanalysis. Analcime forms well-developed, transparent to milky crystals with a typical icositetrahedron habit. The average composition of analcime is calculated as Na13.79Ca0.01K0.03Ba0.03[Al14.28Si33.82O96] 16H2O, with all of the extra-framework sites occupied by sodium. Natrolite usually forms hemispherical aggregates with glassy, colourless to white thin prismatic crystals, which generally radiate from a central point. The average chemical composition of natrolite is Na14.28Ca0.14K0.01[Al15.60Si24.59O80] 16H2O. Crystals of phillipsite-harmotome serie occur in a variety of forms and display a highly variable chemical composition, from almost pure compositions to intermediate values. Phillipsite is more common and its average chemical composition is Ca1.40Na0.29K1.08Ba0.27[Al4.68Si11.28O32] 12H2O, while harmotome is rare and has an average chemical composition of Ca0.97Na0.20K0.36Ba0.91[Al4.60Si11.46O32] 12H2O. The obtained dataset can be used for various purposes: it can be used by other authors to compare morphological features and chemical compositions of similar zeolites crystals discovered in other parts of the world, it can be compared with those obtained from similar geologic environments encouraging studies on hydrothermal processes, and it could represent the starting point for a potential exploration of zeolites from an industrial point of view.
Collapse
|
16
|
Di Giuseppe D, Harper M, Bailey M, Erskine B, Della Ventura G, Ardit M, Pasquali L, Tomaino G, Ray R, Mason H, Dyar MD, Hanuskova M, Giacobbe C, Zoboli A, Gualtieri AF. Characterization and assessment of the potential toxicity/pathogenicity of fibrous glaucophane. ENVIRONMENTAL RESEARCH 2019; 178:108723. [PMID: 31539822 DOI: 10.1016/j.envres.2019.108723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
In California, the metamorphic blueschist occurrences within the Franciscan Complex are commonly composed of glaucophane, which can be found with a fibrous habit. Fibrous glaucophane's potential toxicity/pathogenicity has never been determined and it has not been considered by the International Agency for Research on Cancer (IARC) as a potential carcinogen to date. Notwithstanding, outcrops hosting fibrous glaucophane are being excavated today in California for building/construction purposes (see for example the Calaveras Dam Replacement Project - CDRP). Dust generated by these excavation activities may expose workforces and the general population to this potential natural hazard. In this work, the potential toxicity/pathogenicity of fibrous glaucophane has been determined using the fibre potential toxicity index (FPTI). This model has been applied to a representative glaucophane-rich sample collected at San Anselmo, Marin County (CA, USA), characterized using a suite of experimental techniques to determine morphometric, crystal-chemical parameters, surface reactivity, biodurability and related parameters. With respect to the asbestos minerals, the FPTI of fibrous glaucophane is remarkably higher than that of chrysotile, and comparable to that of tremolite, thus supporting the application of the precautionary approach when excavating fibrous glaucophane-rich blueschist rocks. Because fibrous glaucophane can be considered a potential health hazard, just like amphibole asbestos, it should be taken into consideration in the standard procedures for the identification and assessment of minerals fibres in soil and air samples.
Collapse
Affiliation(s)
- Dario Di Giuseppe
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, 41125, Italy.
| | - Martin Harper
- Zefon International, Inc., 5350 SW 1st Lane, Ocala, FL, 34474, USA; Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, 32603, USA
| | - Mark Bailey
- Asbestos TEM Laboratories, 600 Bancroft Way, Suite A, Berkeley, CA, 94710, USA
| | | | - Giancarlo Della Ventura
- Department of Sciences, University of Roma Tre, Largo San Leonardo Murialdo 1, Rome, 00146, Italy; INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044, Frascati, Rome. Italy
| | - Matteo Ardit
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, Ferrara, 44122, Italy
| | - Luca Pasquali
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Gary Tomaino
- Minerals Technologies Inc., 640 North 13th Street, Easton, PA, 18042, USA
| | - Robyn Ray
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, New Jersey, 08077, USA
| | - Harris Mason
- Lawrence Livermore National Laboratory, 7000 East Ave. L-231, Livermore, CA, 94550, USA
| | - Melinda D Dyar
- Department of Astronomy, Mount Holyoke College, 217 Kendade Hall, 50 College St., South Hadley, MA, 01075, USA
| | - Miriam Hanuskova
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Carlotta Giacobbe
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38040, Grenoble, France
| | - Alessandro Zoboli
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, 41125, Italy
| | - Alessandro F Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, 41125, Italy
| |
Collapse
|
17
|
Real-Time Observation of Fibrous Zeolites Reactivity in Contact with Simulated Lung Fluids (SLFs) Obtained by Atomic Force Microscope (AFM). MINERALS 2019. [DOI: 10.3390/min9020083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhalation of fibrous erionite particles has been linked to malignant mesothelioma. Accordingly, erionite is considered the most carcinogenic mineral. The reactivity and the nature of erionite biotoxicity has been the subject of intensive research. Despite very close chemical and structural relationships between erionite and offretite, the reactivity of offretite in lung fluids remains unknown. In this paper, the interaction of erionite and offretite surfaces with simulated lung fluids was investigated by means of in situ atomic force microscope (AFM). To simulate different environments in the lungs, artificial lysosomal fluid (ALF) and Gamble’s solution were used. In ALF (4.15 < pH < 4.31) the dissolution of erionite and offretite surfaces was detected, as well as an evident removal of particles (mainly attributed to impurities) from the crystal faces. Instead, the growth of a layer of a yet unknown phase on the surface of both zeolites was observed during the interaction with Gamble’s solution (7.4 < pH < 8.48). The thickness of this layer reached a few tens of nanometers and covered all the observed areas. The understanding of the observed processes is of paramount importance, since they could be potentially involved in the mechanisms triggering the toxicological effects of erionite fibres.
Collapse
|
18
|
Prismatic to Asbestiform Offretite from Northern Italy: Occurrence, Morphology and Crystal-Chemistry of a New Potentially Hazardous Zeolite. MINERALS 2018. [DOI: 10.3390/min8020069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Different Erionite Species Bind Iron into the Structure: A Potential Explanation for Fibrous Erionite Toxicity. MINERALS 2018. [DOI: 10.3390/min8020036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Thermal Stability of Woolly Erionite-K and Considerations about the Heat-Induced Behaviour of the Erionite Group. MINERALS 2018. [DOI: 10.3390/min8010028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Cangiotti M, Salucci S, Battistelli M, Falcieri E, Mattioli M, Giordani M, Ottaviani MF. EPR, TEM and cell viability study of asbestiform zeolite fibers in cell media. Colloids Surf B Biointerfaces 2018; 161:147-155. [DOI: 10.1016/j.colsurfb.2017.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/13/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022]
|
22
|
Pacella A, Cremisini C, Nardi E, Montereali MR, Pettiti I, Ballirano P. The mechanism of iron binding processes in erionite fibres. Sci Rep 2017; 7:1319. [PMID: 28465523 PMCID: PMC5431018 DOI: 10.1038/s41598-017-01477-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/29/2017] [Indexed: 11/09/2022] Open
Abstract
Fibrous erionite-Na from Rome (Oregon, USA) was K-exchanged and characterized from the structural point of view. In addition, the modifications experienced after contact with a Fe(II) source were investigated for evaluating if the large potassium ions, blocking off nearly all the erionite cavity openings, might prevent the Fe(II) binding process, which is currently assumed to be one of the reasons of the toxicity of erionite. The K-exchanged sample had a 95% reduction of the BET surface area indicating that it behaves as a mesoporous material. Exchanged K is segregated at K2 and at OW sites commonly occupied by H2O. The latter K cations provide a relevant contribution to the reduction of the surface area. Surprisingly, despite the collapse of its surface area the sample preserves the tendency to bind Fe(II). Therefore, yet in the case of a peculiar and potentially hostile structural environment the Fe(II) ion-exchange process has essentially the same kinetics observed in a typical erionite sample. This is a clear evidence of the very limited effect of the chemical composition of erionite on the Fe(II) binding process and reasonably it does not play a significant role in its toxicity.
Collapse
Affiliation(s)
- Alessandro Pacella
- Department of Earth Sciences, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Carlo Cremisini
- ENEA, C. R. Casaccia, Via Anguillarese 301, I-00123, Roma, Italy
| | - Elisa Nardi
- ENEA, C. R. Casaccia, Via Anguillarese 301, I-00123, Roma, Italy
| | | | - Ida Pettiti
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Paolo Ballirano
- Department of Earth Sciences, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185, Roma, Italy.
- Rectorial Laboratory Fibres and Inorganic Particulate, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185, Roma, Italy.
| |
Collapse
|
23
|
Giordani M, Mattioli M, Ballirano P, Pacella A, Cenni M, Boscardin M, Valentini L. Geological occurrence, mineralogical characterization, and risk assessment of potentially carcinogenic erionite in Italy. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:81-103. [PMID: 28339348 DOI: 10.1080/10937404.2016.1263586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Erionite is a zeolite representing a well-known health hazard. In fact, exposure of humans to its fibers has been unequivocally associated with occurrence of malignant mesothelioma. For this reason, a multi-methodological approach, based upon field investigation, morphological characterization, scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS) chemical analysis, and structure refinement through X-ray powder diffraction (XRPD), was applied to different samples of potentially carcinogenic erionite from Northern Italy. The studied crystals have a chemical composition ranging from erionite-Ca to erionite-Na and display variable morphologies, varying from prismatic, through acicular and fibrous, to extremely fibrous asbestiform habits. The fibrous samples were characterized by an unusual preferred partition of aluminum (Al) at tetrahedral site T1 instead of tetrahedral site T2. Further, a mismatch between the a-parameter of erionite-Ca and levyne-Ca that are intergrown in the asbestiform sample was detected. This misfit was coupled to a relevant micro-strain to maintain structure coherency at the boundary. Erionite occurs in 65% of the investigated sites, with an estimated quantity of 10 to 40 vol% of the associated minerals. The presence of this mineral is of concern for risk to human health, especially if one considers the vast number of quarries and mining-related activities that are operating in the zeolite host rocks. The discovery of fibrous and asbestiform erionite in Northern Italy suggests the need for a detailed risk assessment in all Italian areas showing the same potential hazard, with specific studies such as a quantification of the potentially respirable airborne fibers and targeted epidemiological surveillance.
Collapse
Affiliation(s)
- Matteo Giordani
- a Dipartimento di Scienze Pure e Applicate , Università di Urbino Carlo Bo , Urbino , Italy
| | - Michele Mattioli
- a Dipartimento di Scienze Pure e Applicate , Università di Urbino Carlo Bo , Urbino , Italy
| | - Paolo Ballirano
- b Dipartimento di Scienze della Terra , Sapienza Università di Roma , Roma , Italy
- c Laboratorio Fibre e Particolato Inorganico , Sapienza Università di Roma , Roma , Italy
| | - Alessandro Pacella
- b Dipartimento di Scienze della Terra , Sapienza Università di Roma , Roma , Italy
| | - Marco Cenni
- a Dipartimento di Scienze Pure e Applicate , Università di Urbino Carlo Bo , Urbino , Italy
| | - Matteo Boscardin
- d Museo di Archeologia e Scienze Naturali "G. Zannato" , Montecchio Maggiore , VI , Italy
| | - Laura Valentini
- e Dipartimento di Scienze Biomolecolari , Università di Urbino Carlo Bo , Urbino , Italy
| |
Collapse
|
24
|
Cangiotti M, Battistelli M, Salucci S, Falcieri E, Mattioli M, Giordani M, Ottaviani MF. Electron paramagnetic resonance and transmission electron microscopy study of the interactions between asbestiform zeolite fibers and model membranes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:171-187. [PMID: 28277034 DOI: 10.1080/15287394.2016.1275901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Different asbestiform zeolite fibers of the erionite (termed GF1 and MD8, demonstrated carcinogenic) and offretite (termed BV12, suspected carcinogenic) families were investigated by analyzing the electron paramagnetic resonance (EPR) spectra of selected surfactant spin probes and transmission electron microscopy (TEM) images in the presence of model membranes-cetyltrimethylammonium (CTAB) micelles, egg-lecithin liposomes, and dimyristoylphosphatidylcholine (DMPC) liposomes. This was undertaken to obtain information on interactions occurring at a molecular level between fibers and membranes which correlate with entrance of fibers into the membrane model or location of the fibers at the external or internal membrane interfaces. For CTAB micelles, all fibers were able to enter the micelles, but the hair-like structure and chemical surface characteristics of GF1 modified the micelle structure toward a bilayer-like organization, while MD8 and BV12, being shorter fibers and with a high density of surface interacting groups, partially destroyed the micelles. For liposomes, GF1 fibers partially penetrated the core solution, but DMPC liposomes showed increasing rigidity and organization of the bilayer. Conversely, for MD8 and BV12, the fibers did not cross the membrane demonstrating a smaller membrane structure perturbation. Scolecite fibers (termed SC1), used for comparison, presented poor interactions with the model membranes. The carcinogenicity of the zeolites, as postulated in the series SC1<BV12<MD8<GF1, may be related to the structural modifications of the model membranes when interacting with these zeolite fibers.
Collapse
Affiliation(s)
- Michela Cangiotti
- a Department of Pure and Applied Sciences , University of Urbino , Urbino , Italy
| | - Michela Battistelli
- b Department of Biomolecular Sciences , University of Urbino , Urbino , Italy
| | - Sara Salucci
- b Department of Biomolecular Sciences , University of Urbino , Urbino , Italy
| | - Elisabetta Falcieri
- b Department of Biomolecular Sciences , University of Urbino , Urbino , Italy
| | - Michele Mattioli
- a Department of Pure and Applied Sciences , University of Urbino , Urbino , Italy
| | - Matteo Giordani
- a Department of Pure and Applied Sciences , University of Urbino , Urbino , Italy
| | | |
Collapse
|
25
|
Gualtieri AF, Gandolfi NB, Pollastri S, Pollok K, Langenhorst F. Where is iron in erionite? A multidisciplinary study on fibrous erionite-Na from Jersey (Nevada, USA). Sci Rep 2016; 6:37981. [PMID: 27892512 PMCID: PMC5125093 DOI: 10.1038/srep37981] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/31/2016] [Indexed: 01/21/2023] Open
Abstract
Fibrous erionite is a mineral fibre of great concern but to date mechanisms by which it induces cyto- and geno-toxic damage, and especially the role of iron associated to this zeolite species, remain poorly understood. One of the reasons is that we still don't know exactly where iron is in natural erionite. This work is focused on fibrous erionite-Na from Jersey (Nevada, USA) and attempts to draw a general model of occurrence of iron in erionite and relationship with toxicity mechanisms. It was found that iron is present as 6-fold coordinated Fe3+ not part of the zeolite structure. The heterogeneous nature of the sample was revealed as receptacle of different iron-bearing impurities (amorphous iron-rich nanoparticles, micro-particles of iron oxides/hydroxides, and flakes of nontronite). If iron is not part of the structure, its role should be considered irrelevant for erionite toxicity, and other factors like biopersistence should be invoked. An alternative perspective to the proposed model is that iron rich nano-particles and nontronite dissolve in the intracellular acidic environment, leaving a residue of iron atoms at specific surface sites anchored to the windows of the zeolite channels. These sites may be active later as low nuclearity groups.
Collapse
Affiliation(s)
- Alessandro F Gualtieri
- Chemistry and Earth Sciences Department, The University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena (Italy)
| | - Nicola Bursi Gandolfi
- Chemistry and Earth Sciences Department, The University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena (Italy)
| | - Simone Pollastri
- Chemistry and Earth Sciences Department, The University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena (Italy)
| | - Kilian Pollok
- Institut für Geowissenschaften Mineralogie, Friedrich-Schiller-Universität Jena, Carl-Zeiss-Promenade 10, D-07745 Jena (Germany)
| | - Falko Langenhorst
- Institut für Geowissenschaften Mineralogie, Friedrich-Schiller-Universität Jena, Carl-Zeiss-Promenade 10, D-07745 Jena (Germany)
| |
Collapse
|
26
|
Giordani M, Mattioli M, Dogan M, Dogan AU. Potential carcinogenic erionite from Lessini Mounts, NE Italy: Morphological, mineralogical and chemical characterization. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:808-824. [PMID: 27434646 DOI: 10.1080/15287394.2016.1182453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Exposure of humans to erionite fibers of suitable morphology and dimension has been unambiguously linked to the occurrence of malignant mesothelioma. For this reason, a morphological, morphometrical, mineralogical, and chemical investigation was performed on two representative samples of potential carcinogenic, fibrous erionite from Lessini Mounts, northeastern (NE) Italy, which has not apparently been examined previously. The first sample is erionite-Ca with an extremely fibrous, hair-like and flexible appearance, and growth in intimate association with levyne. The second sample is erionite-Ca with prismatic to acicular crystals and rigid behavior, enriched in K(+) and Ca(2+) extra-framework cations. Although erionite is a nominally Fe-free phase, iron (Fe) was detected in low amounts in all the analyzed crystals. In both the investigated samples, erionite is present as individual fibers of respirable size. Considering that the toxicity and carcinogenic potential of erionite is associated with its size parameters, together with its in vivo durability and high surface area, most of the investigated fibers may also be potentially carcinogenic. The presence of erionite in extensively quarried and largely employed volcanic rocks, suggesting the need for detailed health-based studies in the region.
Collapse
Affiliation(s)
- Matteo Giordani
- a Department of Pure and Applied Sciences , University of Urbino Carlo Bo , Urbino , Italy
| | - Michele Mattioli
- a Department of Pure and Applied Sciences , University of Urbino Carlo Bo , Urbino , Italy
| | - Meral Dogan
- b Geological Engineering Department , Hacettepe University , Beytepe , Ankara , Turkey
- c Center for Global and Regional Environmental Research, University of Iowa , Iowa City , Iowa , USA
| | - Ahmet Umran Dogan
- c Center for Global and Regional Environmental Research, University of Iowa , Iowa City , Iowa , USA
- d Chemical and Biochemical Engineering Department , University of Iowa , Iowa City , Iowa , USA
| |
Collapse
|