1
|
Wang J, Zhang X, Jin D, Wu P. A critical review of sulfur autotrophic denitrification coupled with anammox. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125417. [PMID: 40288128 DOI: 10.1016/j.jenvman.2025.125417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Anaerobic ammonium oxidation (anammox) is an environmentally sustainable process with high nitrogen removal efficiency; however, nitrite serves as the limiting factor in this process. Sulfur autotrophic denitrification (SADN) employs sulfide as an electron donor to reduce nitrate to nitrite. Therefore, coupling SADN and anammox (SDA) can improve the nitrogen removal efficiency. This review analyzes the coupling mechanisms of three common SDA systems: S0-SDA, S2--SDA, and S2O32--SDA, as well as the dominant genera in the SDA process. This paper summarizes the influence of key operating parameters, including influent nitrogen loading, pH, and the N/S ratio, on the nitrogen removal efficiency of the SDA process and the effect of S2O32- addition on microbial structure in anammox. The application of the SDA process in real wastewater treatment is analyzed in detail. Overall, this overview of the SDA process plays an important role in the direction of the SDA development.
Collapse
Affiliation(s)
- Jianing Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
2
|
Chen X, Duan F, Yu X, Xie Y, Wang Z, El-Baz A, Ni BJ, Ni SQ. One-stage anammox and thiocyanate-driven autotrophic denitrification for simultaneous removal of thiocyanate and nitrogen: Pathway and mechanism. WATER RESEARCH 2024; 265:122268. [PMID: 39173358 DOI: 10.1016/j.watres.2024.122268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
The coupled process of anammox and reduced-sulfur driven autotrophic denitrification can simultaneously remove nitrogen and sulfur from wastewater, while minimizing energy consumption and sludge production. However, the research on the coupled process for removing naturally toxic thiocyanate (SCN-) is limited. This work successfully established and operated a one-stage coupled system by co-cultivating mature anammox and SCN--driven autotrophic denitrification sludge in a single reactor. In this one-stage coupled system, the average total nitrogen removal efficiency was 89.68±3.33 %, surpassing that of solo anammox (81.80±2.10 %) and SCN--driven autotrophic denitrification (85.20±1.54 %). Moreover, the average removal efficiency of SCN- reached 99.50±3.64 %, exceeding that of solo SCN--driven autotrophic denitrification (98.80±0.65 %). The results of the 15N stable isotope tracer labeling experiment revealed the respective reaction rates of anammox and denitrification as 106.38±10.37 μmol/L/h and 69.07±8.07 μmol/L/h. By analyzing metagenomic sequencing data, Thiobacillus_denitrificans was identified as the primary contributor to SCN- degradation in this coupled system. Furthermore, based on the comprehensive analysis of nitrogen and sulfur metabolic pathways, as well as the genes associated with SCN- degradation, it can be inferred that the cyanate (CNO) pathway was responsible for SCN- degradation. This work provided a deeper insight into coupling anammox with SCN--driven autotrophic denitrification in a one-stage coupled system, thereby contributing to the development of an effective approach for wastewater treatment involving both SCN- and nitrogen.
Collapse
Affiliation(s)
- Xue Chen
- School of Environmental Science and Engineering, Shandong University, Shandong 266237, China
| | - Fuang Duan
- School of Environmental Science and Engineering, Shandong University, Shandong 266237, China; The Fifth Prospecting Team of Shandong Coal Geology Bureau, Jinan, Shandong 250215, China
| | - Xi Yu
- The Fifth Prospecting Team of Shandong Coal Geology Bureau, Jinan, Shandong 250215, China
| | - Yuyang Xie
- School of Environmental Science and Engineering, Shandong University, Shandong 266237, China
| | - Zhibin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Amro El-Baz
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Shandong 266237, China.
| |
Collapse
|
3
|
Yan F, Wang S, Huang Z, Liu Y, He L, Qian F. Microbial ecological responses of partial nitritation/anammox granular sludge to real water matrices and its potential application. ENVIRONMENTAL RESEARCH 2023; 226:115701. [PMID: 36931374 DOI: 10.1016/j.envres.2023.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Granular sludges are commonly microbial aggregates used to apply partial nitritation/anammox (PN/A) processes during efficient biological nitrogen removal from ammonium-rich wastewater. Considering keystone taxa of anammox bacteria (AnAOB) in granules and their sensitivity to unfavorable environments, it is essential to investigate microbial responses of autotrophic PN/A granules to real water matrices containing organic and inorganic pollutants. In this study, tap water, surface water, and biotreated wastewater effluents were fed into a series of continuous PN/A granular reactors, respectively, and the differentiation in functional activity, sludge morphology, microbial community structure, and nitrogen metabolic pathways was analyzed by integrating kinetic batch testing, size characterization, and metagenomic sequencing. The results showed that feeding of biotreated wastewater effluents causes significant decreases in nitrogen removal activity and washout of AnAOB (dominated by Candidatus Kuenenia) from autotrophic PN/A granules due to the accumulation of heavy metals and formation of cavities. Microbial co-occurrence networks and nitrogen cycle-related genes provided evidence for the high dependence of symbiotic heterotrophs (such as Proteobacteria, Chloroflexi, and Bacteroidetes) on anammox metabolism. The enhancement of Nitrosomonas nitritation in the granules would be considered as an important contributor to greenhouse gas (N2O) emissions from real water matrices. In a novel view on the application of microbial responses, we suggest a bioassay of PN/A granules by size characterization of red-color cores in ecological risk assessment of water environments.
Collapse
Affiliation(s)
- Feng Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China
| | - Suqin Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China
| | - Ziheng Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China
| | - Yaru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China
| | - Lingli He
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China
| | - Feiyue Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China.
| |
Collapse
|
4
|
Li H, Cai T, Gao Y, Dai Q, Liu X, Chen X, Lu X, Zhen G. Long-term performance, microbial evolution and spatial microstructural characteristics of anammox granules in an upflow blanket filter (UBF) treating high-strength nitrogen wastewater. BIORESOURCE TECHNOLOGY 2023; 367:128206. [PMID: 36323371 DOI: 10.1016/j.biortech.2022.128206] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Granule formation, microstructure and microbial spatial distribution are crucial to granule stability and nitrogen removal. Here, an upflow blanket filter (UBF) reactor with porous fixed cylinder carriers was fabricated and operated for 234 days to investigate overall performance and the formation mechanism of anammox granules. Results showed that the UBF performed the highest nitrogen removal efficiency of 93.19 ± 3.39% under nitrogen loading rate of 3.6 kg-N/m3/d and HRT of 2 h. The tryptophan-like proteins as the key component in EPS were vital for granules formation. Further 16 s rRNA analysis indicated that SBR1031 with a relative abundance of 40.5% played an important role in cell aggregation. Thus, anammox granules were developed successfully with a two-layered spatial structure where outer-layer was ammonia oxidizing bacteria and inner-core was anaerobic ammonia oxidizing bacteria. Together, introduction of porous fixed cylinder carriers is a valid method to avoid biomass loss and floatation.
Collapse
Affiliation(s)
- Huan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Qicai Dai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xinyu Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xue Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N Zhongshan Rd, Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N Zhongshan Road, Shanghai 200062, PR China
| |
Collapse
|
5
|
Jiang L, Li J, Wang H, Ge Z, Zhang L, Peng Y. Segregation of effect between granules and flocs in PN/A system treating acrylic fiber wastewater: Performance and mechanism. CHEMOSPHERE 2022; 304:135344. [PMID: 35709850 DOI: 10.1016/j.chemosphere.2022.135344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen removal of petrochemical wastewater through partial nitritation/anammox (PN/A) is appealing, but its feasibility and stability under toxic inhibition remain unclear. This study started a PN/A granular sludge system in a membrane bioreactor and fed it with diluted acrylic fiber wastewater. During long-term operation, the nitritation and anammox performance remained stable at a 30% volume ratio, and declined with increasing volume ratio, resulting in deteriorated nitrogen removal. Meanwhile, the short-term inhibition batch tests further showed that ammonia oxidation bacteria (AOB) in the flocs were suppressed while anammox bacteria (AnAOB) in the granules were not affected. Further analysis indicated suppression of AnAOB over the long-term operation, which was mainly caused by the disintegration of granules as demonstrated by sludge morphology. This selective inhibition is associated with variational sludge morphology, and the distribution of functional bacteria plays an important role in the feasibility and stability of PN/A treating acrylic fiber wastewater. As above, this study demonstrated the feasibility of PN/A for acrylic fiber wastewater treatment, but wastewater dilution or pre-treatment is still required for efficient nitrogen removal.
Collapse
Affiliation(s)
- Ling Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, China
| | - Zheng Ge
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
6
|
Deng YF, Zan FX, Huang H, Wu D, Tang WT, Chen GH. Coupling sulfur-based denitrification with anammox for effective and stable nitrogen removal: A review. WATER RESEARCH 2022; 224:119051. [PMID: 36113234 DOI: 10.1016/j.watres.2022.119051] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Anoxic ammonium oxidation (anammox) is an energy-efficient nitrogen removal process for wastewater treatment. However, the unstable nitrite supply and residual nitrate in the anammox process have limited its wide application. Recent studies have proven coupling of sulfur-based denitrification with anammox (SDA) can achieve an effective nitrogen removal, owing to stable provision of substrate nitrite from the sulfur-based denitrification, thus making its process control more efficient in comparison with that of partial nitrification and anammox process. Meanwhile, the anammox-produced nitrate can be eliminated through sulfur-based denitrification, thereby enhancing SDA's overall nitrogen removal efficiency. Nonetheless, this process is governed by a complex microbial system that involves both complicated sulfur and nitrogen metabolisms as well as multiple interactions among sulfur-oxidising bacteria and anammox bacteria. A comprehensive understanding of the principles of the SDA process is the key to facilitating the development and application of this novel process. Hence, this review is conducted to systematically summarise various findings on the SDA process, including its associated biochemistry, biokinetic reactions, reactor performance, and application. The dominant functional bacteria and microbial interactions in the SDA process are further discussed. Finally, the advantages, challenges, and future research perspectives of SDA are outlined. Overall, this work gives an in-depth insight into the coupling mechanism of SDA and its potential application in biological nitrogen removal.
Collapse
Affiliation(s)
- Yang-Fan Deng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Fei-Xiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Huang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China; Center for Environmental and Energy Research, Ghent University Global Campus, Republic of Korea
| | - Wen-Tao Tang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China.
| |
Collapse
|
7
|
Fan NS, Fu JJ, Huang DQ, Ma YL, Lu ZY, Jin RC, Zheng P. Resistance genes and extracellular proteins relieve antibiotic stress on the anammox process. WATER RESEARCH 2021; 202:117453. [PMID: 34320444 DOI: 10.1016/j.watres.2021.117453] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process is regarded as a promising approach to treat antibiotic-containing wastewater. Therefore, it is urgent to elucidate the effects of various antibiotics on the anammox process. Moreover, the mechanism of extracellular polymeric substance (EPS) as protective barriers to relieve antibiotic stress remain unclear. Therefore, the single and combined effects of erythromycin (ETC) and sulfamethoxazole (SMZ), and interactions between EPS and antibiotics were investigated in this study. Based on a 228-day continuous flow experiment, high concentrations of ETC and SMZ had significant inhibitory effects on the nitrogen removal performance of the anammox process, with the abundances of corresponding antibiotic resistance genes (ARGs) increasing. In addition, the combined inhibitory effect of the two antibiotics on the anammox process was more significant and longer-lasting than that of the single. However, the anammox process was able to quickly recover from deterioration. The tolerance of anammox granules to the stress of low-concentration antibiotics was probably attributed to the increase in ARGs and secretion of EPS. Molecular docking simulation results showed that proteins in EPS could directly bind with SMZ and ETC at the sites of GLU-307, HYS-191, ASP-318 and THR-32, respectively. These findings improved our understanding of various antibiotic effects on the anammox process and the interaction mechanism between antibiotics and proteins in EPS.
Collapse
Affiliation(s)
- Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jin-Jin Fu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Dong-Qi Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuan-Long Ma
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zheng-Yang Lu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
8
|
Zhang S, Zhang L, Yao H, Rong H, Li S. Responses of anammox process to elevated Fe(III) stress: Reactor performance, microbial community and functional genes. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125051. [PMID: 33647612 DOI: 10.1016/j.jhazmat.2021.125051] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The aim of present study was to re-evaluate the impacts of elevated Fe(III) stress on anaerobic ammonium oxidation (anammox) process. The results indicated that long-term low concentration Fe(III) (5 and 10 mg/L) exposure significantly improved the nitrogen removal efficiency of anammox process, while high concentration Fe(III) (50 and 100 mg/L) significantly deteriorated the reactor performance. Batch assays showed that the specific anammox activity, heme c content and hydrazine dehydrogenase activity were significantly increased and decreased under low and high concentration Fe(III) exposure, respectively, indicating an enhancement and inhibition of anammox activity. Moreover, the presence of high concentration Fe(III) significantly shifted the anammox community structure. Ca. Brocadia was the predominant anammox genus, whose abundance decreased from 14.26% to 8.13% as Fe(III) concentration increased from 0 to 100 mg/L. In comparison, the abundance of denitrifiers progressively increased from 3.70% to 6.68% with increasing Fe(III) concentration. These suggested that different functional bacteria differed in their responses to Fe(III) stress. Furthermore, long-term Fe(III) exposure significantly up-regulated the abundances of genes associated with nitrogen metabolism and Fe(III) reduction. Overall, the obtained findings are expected to advances our understanding of the responses of anammox process to elevated Fe(III) stress.
Collapse
Affiliation(s)
- Shaoqing Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Liqiu Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Hainan Yao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Shugeng Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Ismail S, Elreedy A, Fujii M, Ni SQ, Tawfik A, Elsamadony M. Fatigue of anammox consortia under long-term 1,4-dioxane exposure and recovery potential: N-kinetics and microbial dynamics. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125533. [PMID: 34030408 DOI: 10.1016/j.jhazmat.2021.125533] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Long-term exposure of anammox process to 1,4-dioxane was investigated using periodic anammox baffled reactor (PABR) under different 1,4-dioxane concentrations. The results generally indicated that PABR (composed of 4 compartments) has robust resistance to 10 mg-dioxane/L. The 1st compartment acted as a shield to protect subsequent compartments from 1,4-dioxane toxicity through secretion of high extracellular polymeric substance (EPS) of 152.9 mg/gVSS at 10 mg-dioxane/L. However, increasing 1,4-dioxane to 50 mg/L significantly inhibited anammox bacteria; e.g., ~ 93% of total nitrogen removal was lost within 14 days. The inhibition of anammox process at this dosage was most likely due to bacterial cell lysis, resulting in the decrease of EPS secretion and specific anammox activity (SAA) to 105.9 mg/gVSS and 0.04 mg N/gVSS/h, respectively, in the 1st compartment. However, anammox bacteria were successfully self-recovered within 41 days after the cease of 1,4-dioxane exposure. The identification of microbial compositions further emphasized the negative impacts of 1,4-dioxane on abundance of C. Brocadia among samples. Furthermore, the development of genus Planococcus in the 1st compartment, where removal of 1,4-dioxane was consistently observed, highlights its potential role as anoxic 1,4-dioxane degrader. Overall, long-term exposure to 1,4-dioxane should be controlled not exceeding 10 mg/L for a successful application.
Collapse
Affiliation(s)
- Sherif Ismail
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Environmental Engineering Department, Zagazig University, Zagazig 44519, Egypt; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Ahmed Elreedy
- Sanitary Engineering Department, Alexandria University, Alexandria 21544, Egypt; Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Manabu Fujii
- Civil and Environmental Engineering Department, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8552, Japan
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China.
| | - Ahmed Tawfik
- Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Mohamed Elsamadony
- Civil and Environmental Engineering Department, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8552, Japan; Department of Public Works Engineering, Faculty of Engineering, Tanta University, 31521 Tanta City, Egypt
| |
Collapse
|
10
|
Yu X, Nishimura F, Hidaka T. Anammox reactor exposure to thiocyanate: Long-term performance and microbial community dynamics. BIORESOURCE TECHNOLOGY 2020; 317:123960. [PMID: 32822893 DOI: 10.1016/j.biortech.2020.123960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is an autotrophic denitrification process that has broad application potential for treating coking wastewaters. The present study estimated the effects of thiocyanate (SCN-), a common pollutant in coking wastewaters, on anammox processes and microbial communities in anammox reactors for over two years of continuous exposure. The addition of SCN- (from 50 to 200 mg L-1) showed negative effects on the denitrification performance of the anammox reactors. In SCN--dosed reactors, increased effluent ammonium concentrations indicated the occurrence of SCN--based biodegradation processes. Microbial analysis revealed that the anammox species almost disappeared in the reactor dosed with SCN- at over 100 mg L-1. Instead, an abundance of chemolithoautotrophic bacteria belonging to the Thiobacillus genus demonstrated a linear increase with SCN- addition. The competition between anammox species and SCN--degrading microorganisms was expected to dominate the inhibition effects of SCN- addition on the performance of anammox reactors.
Collapse
Affiliation(s)
- Xiaolong Yu
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C1, Kyoto daigaku-Katsura, Kyoto 615-8540, Japan; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Fumitake Nishimura
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C1, Kyoto daigaku-Katsura, Kyoto 615-8540, Japan
| | - Taira Hidaka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C1, Kyoto daigaku-Katsura, Kyoto 615-8540, Japan
| |
Collapse
|
11
|
Wang W, Wang H, Jiang Z, Wang Y. Visual evidence for anammox granules expanding their size by aggregation of anammox micro-granules. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141052. [PMID: 32738693 DOI: 10.1016/j.scitotenv.2020.141052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Granular sludge is superior in sustainable wastewater treatment; however, no consensus has achieved in its formation mechanism. In this study, we provide visual and experimental evidences to reveal how the large anammox granules formed. Micro-observation of anammox granules illustrated that some special anammox granules were clearly composed of numerous micro-granules, which enveloped by transparent extracellular polymeric substances (EPS). Static culture experiment proved that anammox granules were easy to aggregate and form a larger entirety within approximately 14 days when there were no severe external disturbances (mainly hydraulic shear force). Stratified EPS extraction and selective enzymatic digestion tests further elucidated that tightly-bound EPS and extracellular proteins were the most vital constituents in maintaining the structure of anammox granules, and the minimal size of anammox micro-granules that aggregated to form large anammox granules was approximately 100-150 μm in the reactor studied herein. Our findings highlight that anammox granules could expand their size and form larger granules by the aggregation of anammox micro-granules, representing a natural but significant granule formation and enlargement mechanism. Understanding the enlargement mechanism could consummate the granulation process and help to culture large size anammox granules.
Collapse
Affiliation(s)
- Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Zhuwu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
12
|
Kalinichev AV, Pokhvishcheva NV, Peshkova MA. Influence of Electrolyte Coextraction on the Response of Indicator-Based Cation-Selective Optodes. ACS Sens 2020; 5:3558-3567. [PMID: 33074653 DOI: 10.1021/acssensors.0c01747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report on systematic investigation of the impact of coextraction of the aqueous electrolyte and anion interference on the response of cation-selective bulk optodes. It is evident that to deliberately manage the properties of chemical sensors and to apply them in routine analysis, one should have exhaustive insight into their operation mechanism. Despite the extensive research in the field of ionophore-based optodes and numerous attempts for their practical application, the understanding of how coextraction of an aqueous electrolyte influences its response characteristics has not been developed thus far. Meanwhile, the electrolyte coextraction determines the detection limits of analogous ion-selective electrodes. A theoretical model based on phase distribution equilibrium is proposed to quantitatively describe the effect of Donnan exclusion failure on the response of polymeric plasticized optodes. The theoretical conclusions are confirmed by the results obtained with Na+/pH-selective optodes based on a neutral chromoionophore as a model system in solutions containing anions of various lipophilicities (Cl-, NO3-, I-, SCN-, and ClO4-). For the first time, it is shown that coextraction leads to a significant shift of the response range of the optodes as well as to nonmonotonic response curves due to the transition from cationic to anionic response. An approach to estimate the coextraction constants of electrolytes from the optode response curves is proposed. The limitations in the applicability of optodes due to co-ion interference are explored. It is found that neglecting anion interference can cause dramatic errors in the results of analyses with optical sensors.
Collapse
Affiliation(s)
- Andrey V. Kalinichev
- Chemistry Institute, Saint Petersburg State University, 26 Universitetskiy prospect, 198504 Saint Petersburg, Russia
| | - Nadezhda V. Pokhvishcheva
- Chemistry Institute, Saint Petersburg State University, 26 Universitetskiy prospect, 198504 Saint Petersburg, Russia
| | - Maria A. Peshkova
- Chemistry Institute, Saint Petersburg State University, 26 Universitetskiy prospect, 198504 Saint Petersburg, Russia
| |
Collapse
|
13
|
Tomar SK, Chakraborty S. Impact of high phenol loading on aerobic granules from two different kinds of industrial sludge along with thiocyanate and ammonium. BIORESOURCE TECHNOLOGY 2020; 315:123824. [PMID: 32688255 DOI: 10.1016/j.biortech.2020.123824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Two sequencing batch reactors inoculated with two different kinds of industrial sludge; refinery sludge (R1) and brewery sludge (R2), were operated to observe the impact of high phenol loading (5.71 kg COD m-3 day-1) along with 100 mg L-1 of ammonia-nitrogen and thiocyanate on the granular stability and performance. R2 granules were stable and degraded all the pollutants up to an organic loading of 5.71 kg COD m-3 day-1 with the large size and high extracellular polymeric substances of 2769.94 ± 62.26 µm and 114.83 ± 1.33 mg gVSS-1, respectively, whereas R1 granules disintegrated at an organic loading of more than 3.32 kg COD m-3 day-1. At higher phenol loading, granular biomass activity was 3.43 and 16.35 mg COD removed mgVSS-1 day-1 in R1 and R2, respectively, from the initial sludge activities of 8.01 (refinery sludge) and 6.56 (brewery sludge) mg COD removed mgVSS-1 day-1.
Collapse
Affiliation(s)
- Sachin Kumar Tomar
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Saswati Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
14
|
Zhu XL, Bai YH, Wu J, Xu LZJ, Cheng YF, Fan NS, Jin RC. Whether glycine betaine improves the thermotolerance of mesophilic anammox consortia. ENVIRONMENTAL TECHNOLOGY 2020; 41:3309-3317. [PMID: 30999824 DOI: 10.1080/09593330.2019.1606856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
While the application of mesophilic anammox process is currently the state of the art, the feasibility of a thermophilic anammox bioprocess is still unclear. In this study, we investigate whether glycine betaine (GB) addition can enhance the thermotolerance of mesophilic anammox biomass in the upflow anaerobic sludge blanket (UASB) reactors fed with synthetic wastewater at a nitrogen loading of approximately 4 kg N m-3 d-1. The results showed that during a long-term operation at 45°C with GB (0, 0.1, 1, 2 mM) addition, anammox performance became worse with the final effluent concentrations of NO2 -N of 145 ± 11.6 mg L-1 and nitrogen removal efficiency decreased from 92.3-6.9%. Specific anammox activity decreased from 392.1 ± 12.1-6.0 ± 0.8 mg N g-1 VSS d-1, which were not significantly higher than those in the control reactor. The content of heme c showed a stronger downward trend in T1 (with GB addition) than in the control reactor T0. The qPCR results showed that the relative abundance of Candidatus Kuenenia decreased in both the experimental (from 53.5-28.8%) and control reactors (from 54.1-35.1%). Overall, continuous addition of exogenous GB did not improve the thermotolerance of mesophilic anammox consortia at 45°C.
Collapse
Affiliation(s)
- Xiao-Ling Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Yu-Hui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Jing Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Nian-Si Fan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, People's Republic of China
| |
Collapse
|
15
|
Kang D, Li Y, Xu D, Li W, Li W, Ding A, Wang R, Zheng P. Deciphering correlation between chromaticity and activity of anammox sludge. WATER RESEARCH 2020; 185:116184. [PMID: 32726714 DOI: 10.1016/j.watres.2020.116184] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The red color is the most striking character of anaerobic ammonium-oxidizing bacteria (AnAOB) which has been used to estimate the anammox activity roughly. However, the quantitative relationship between the color and activity of anammox sludge still remains unknown. In this study, the chromaticity, activity and their correlation were systematically investigated at different steady-state nitrogen loading rates. The chromaticity of anammox sludge was digitalized by the CIE L*a*b* color space. The results revealed that the average chroma value was found to be significantly correlated with specific anammox activity (r = 0.940, p < 0.01) and the cluster centers of chromaticity coordinates (a*, b*) of anammox sludge were established to define the typical working states of anammox system. The visible spectra of anammox sludge were proved to originate from the cytochrome c. The correlation between chroma and heme c concentration of anammox sludge was consistent with the fully-reduced cytochrome c and the chroma was determined by both content and redox ratio of cytochrome c. The chromaticity of anammox sludge was able to be linked with the anammox activity via reduced cytochrome c content. The gene abundance of cytochrome c synthetase linked the chromaticity with AnAOB quantity via total cytochrome c content, while the enzyme activity of octaheme hydrazine dehydrogenase linked the chromaticity with AnAOB activity via reduced cytochrome c ratio. Moreover, the redundancy analysis proved that heme c, as the key component of cytochrome c, was the most important explanatory variable accounting for the maximum 69.6% of the total variation of the anammox community, which correlated positively with the relative abundance of dominant AnAOB (Candidatus Kuenenia). This work aimed at demonstrating the chromaticity of anammox sludge could be developed as an alternative intuitive anammox activity indicator which will promote the monitoring and optimization of anammox process.
Collapse
Affiliation(s)
- Da Kang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, China
| | - Yiyu Li
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, China
| | - Dongdong Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, China
| | - Wenji Li
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, China
| | - Wei Li
- School of Resources and Environmental Engineering, East China University of Science and Technology, China
| | - Aqiang Ding
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, China
| | - Ru Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, China.
| |
Collapse
|
16
|
Cui X, Wei T, Hao M, Qi Q, Wang H, Dai Z. Highly sensitive and selective colorimetric sensor for thiocyanate based on electrochemical oxidation-assisted complexation reaction with Gold nanostars etching. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122217. [PMID: 32062538 DOI: 10.1016/j.jhazmat.2020.122217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 05/18/2023]
Abstract
In this work, we developed an electrochemical oxidation-assisted complexation strategy for highly sensitive and selective detection of thiocyanate (SCN-). Gold nanostars (AuNSs) with uniform and sharp tips were first prepared, and we found they can be quickly etched to gold nanoparticles (AuNPs) under electrochemical oxidation with the existence of halide and halogen-like ions. Through introducing SCN--selective molecule: zinc phthalocyanine (ZnPc), the fabricated ZnPc-AuNSs/ITO electrode can rapidly and selectively response to SCN- under electrochemical oxidation, manifesting as a noticeable change in color from navy blue to red. Thus SCN- concentration can be easily reflected. The wide wavelength tuning range of AuNSs to AuNPs make the ZnPc-AuNSs/ITO sensor obtain a much wider detection range for SCN- (10 nM to 80 mM) than most other reported studies. In addition, the detection limit is as low as 3 nM. It renders the sensor to be easily used in much diluted matrixes, which can further lower the interference. We further applied the colorimetric sensor to SCN- detection in wastewater and milk, excellent performance was obtained. The proposed electrochemical oxidation-assisted complexation strategy will have good promise in developing colorimetric sensors with high selectivity and wide detection range, and will display more useful application in environmental monitoring.
Collapse
Affiliation(s)
- Xinwen Cui
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Mengyuan Hao
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Qi Qi
- School of Environment, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Huafeng Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China; Nanjing Normal University Center for Analysis and Testing, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
17
|
Li Z, Peng Y, Gao H. Enhanced long-term advanced denitrogenation from nitrate wastewater by anammox consortia: Dissimilatory nitrate reduction to ammonium (DNRA) coupling with anammox in an upflow biofilter reactor equipped with EDTA-2Na/Fe(II) ratio and pH control. BIORESOURCE TECHNOLOGY 2020; 305:123083. [PMID: 32145699 DOI: 10.1016/j.biortech.2020.123083] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
A long-term experiment in an anaerobic ammonium oxidation (anammox) reactor showed that anammox consortia could perform a stable and efficient Fe(II)-dependent dissimilatory nitrate reduction to ammonium (DNRA) coupled to the anammox (DNRA-anammox) process by controlling the EDTA-2Na/Fe(II) ratio and pH, with a total nitrogen removal rate (TNRR) of 0.23 ± 0.01 kg-N/m3/d. Anammox bacteria (Candidatus Kuenenia) were the dominant and functional microbes in such a nitrate wastewater treatment system. Visual MINTEQ analysis showed that the EDTA-2Na/Fe(II) molar ratio affected the influent composition of Fe and EDTA species and hence nitrate removal, while pH influenced both nitrate removal and the coupling degree of the Fe(II)-dependent DNRA-anammox process due to its own physiology. The kinetic simulation results showed that excess EDTA-2Na imposed a competitive inhibition on the Fe(II)-dependent DNRA-anammox process, and the Bell-shaped (A), (B), (C) and Ratkowsky models could be used to explore the pH dependency of the Fe(II)-dependent DNRA-anammox process.
Collapse
Affiliation(s)
- Zhixing Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Haijing Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
18
|
Fan NS, Zhu XL, Wu J, Tian Z, Bai YH, Huang BC, Jin RC. Deciphering the microbial and genetic responses of anammox biogranules to the single and joint stress of zinc and tetracycline. ENVIRONMENT INTERNATIONAL 2019; 132:105097. [PMID: 31434054 DOI: 10.1016/j.envint.2019.105097] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
The feasibility of using anaerobic ammonium oxidation (anammox) process to treat wastewaters containing antibiotics and heavy metals was evaluated in this study. The nitrogen removal performance and characteristic parameters were monitored during the whole experimental period of 258 d. The single and joint effects of zinc and tetracycline on the microbial community were studied in upflow anaerobic sludge blanket (UASB) reactors. The anammox performance remained at levels comparable with the initial state at the lower inhibitor concentrations (zinc, 0-2.26 mg L-1; tetracycline, 0-0.5 mg L-1). When the concentrations of zinc and tetracycline increased to 3.39 mg L-1 in R1 and 1.0 mg L-1 in R2, an obvious deterioration in performance was observed. Dual inhibitors with a total concentration of ≥3 mg L-1 caused dramatic decreases in the nitrogen removal efficiency of R3. The quantification results showed that the abundances of eight antibiotic resistance genes (ARGs), czcA and intI1 in the experimental reactors generally increased under stress from metals or/and antibiotics, with final values higher than in the control, while the functional gene abundances were lower. Moreover, most genes exhibited significant correlations. Microbial community analysis indicated that Planctomycetes (represented by Candidatus Kuenenia) was inhibited by both zinc and tetracycline, but still held the dominant position. Furthermore, Caldilinea (belonging to Chloroflexi) maintained a higher abundance during the inhibitory period, implying its potential resistance to both inhibitors. These findings suggested that anammox could be inhibited by metals and antibiotics, but it has the potential to remove nitrogen from wastewaters containing both of them within the concentration threshold.
Collapse
Affiliation(s)
- Nian-Si Fan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao-Ling Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhe Tian
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu-Hui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
19
|
Insights into Anammox activity inhibition under trivalent and hexavalent chromium stresses. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Wu D, Zhang Q, Xia WJ, Shi ZJ, Huang BC, Fan NS, Jin RC. Effect of divalent nickel on the anammox process in a UASB reactor. CHEMOSPHERE 2019; 226:934-944. [PMID: 31509923 DOI: 10.1016/j.chemosphere.2019.03.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/05/2019] [Accepted: 03/17/2019] [Indexed: 06/10/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has the advantages of a high nitrogen removal rate, low operational cost, and small footprint and has been successfully implemented to treat high-content ammonium wastewater. However, very little is known about the toxicity of the heavy metal element Ni(II) to the anammox process. In this study, the short- and long-term effects of Ni(II) on the anammox process in an upflow anaerobic sludge blanket (UASB) reactor were revealed. The results of the short-term batch test showed that the half maximal inhibitory concentration (IC50) of Ni(II) on anammox biomass was 14.6 mg L-1. A continuous-flow experiment was performed for 150 days of operation, and the results illustrated that after domestication, the achieved nitrogen removal efficiency was up to 93±0.03% at 10 mg L-1 Ni(II). The settling velocity, specific anammox activity and EPS content decreased as the Ni(II) concentration increased. Nevertheless, the content of heme c increased as the Ni(II) increased. These results indicate that short-term exposure to Ni(II) has an adverse impact on anammox process, but the anammox system could tolerate 10 mg L-1 Ni(II) stress after acclimation during continuous-flow operation for 150 days. High-throughput sequencing results indicated that the presence of Ni(II) had an impact on the microbial community composition in the anammox reactor, especially Candidatus Kuenenia. At Ni(II) concentrations of 0-10 mg L-1, the relative abundance of Candidatus Kuenenia decreased from 36.23% to 28.46%.
Collapse
Affiliation(s)
- Dan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Quan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wen-Jing Xia
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Zhi-Jian Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Bao-Cheng Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Nian-Si Fan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China.
| |
Collapse
|
21
|
Song G, Yu Y, Liu T, Xi H, Zhou Y. Performance of microaeration hydrolytic acidification process in the pretreatment of 2-butenal manufacture wastewater. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:465-473. [PMID: 30797115 DOI: 10.1016/j.jhazmat.2019.02.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/27/2019] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
The performance of the microaeration hydrolytic acidification (MAHA) process and microbial community were investigated under different organic loading rates (OLRs) for the pretreatment of 2-butenal manufacture wastewater (2-BMW). Results indicated that OLRs had different impact on the performance of MAHA process. More than 23.7 ± 2.3% of the chemical oxygen demand (COD) removal and the highest acidification degree (20.9 ± 3.1%) were obtained when OLRs were less than 4.0 ± 0.1 kgCOD/m3 d. However, further increasing OLRs to 6.1 ± 0.1 kgCOD/m3 d subsequently led to the significant reductions of COD removal and acidification degree. In addition, it could be preliminarily inferred that 2H-pyran-2-one tetrahydro-4-(2-methyl-1-propen-3-yl), 5-formyl-6-methyl-4,5-dihydropyran and ethyl sorbate were the main refractory and toxic organics for microorganisms in the wastewater. The soluble microbial product (SMP) and extracellular polymeric substance (EPS) contents (protein, polysaccharide, nucleic acid) had obvious changes under different OLRs. With parallel factor (PARAFAC) model, four fluorescent components were identified. The Fmax of protein-like substances in SMP significantly decreased with increasing OLRs to 6.1 ± 0.1 kgCOD/m3 d, which might attribute to fluorescence quenching. Illumina MiSeq sequencing revealed that Pseudomonas, Longilinea, T78, Clostridium, WCHB1-05, Acinetobacter, SHD-231 and Oscillospira were dominant genera at different OLRs.
Collapse
Affiliation(s)
- Guangqing Song
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China
| | - Yin Yu
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China
| | - Tao Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Hongbo Xi
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China.
| | - Yuexi Zhou
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China.
| |
Collapse
|
22
|
Chen QQ, Xu LZJ, Zhang ZZ, Sun FQ, Shi ZJ, Huang BC, Fan NS, Jin RC. Insight into the short- and long-term effects of quinoline on anammox granules: Inhibition and acclimatization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1294-1301. [PMID: 30360261 DOI: 10.1016/j.scitotenv.2018.09.285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/30/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
The short- and long-term influence of quinoline on the properties of anaerobic ammonium oxidation (anammox) biogranules was evaluated. During batch tests, the bioactivity of anammox granules in the presence of different quinoline concentrations was monitored, and the IC50 of quinoline was calculated to be 13.1 mg L-1 using a non-competitive inhibition model. The response of anammox granules to pre-exposure to quinoline was dependent on metabolic status, and the presence of both quinoline and NO2--N had a rapid detrimental effect, resulting in a 64.5% decrease within 12 h. During continuous-flow experiments, the nitrogen removal rate (NRR) of the reactor decreased sharply within 3 days in the presence of 10 mg L-1 quinoline and then was restored to 2.6 kg N m-3 d-1. In the presence of quinoline-induced stress, the specific anammox activity and levels of extracellular polymeric substance and heme c were decreased, while settling velocity persistently increased. After cultivation and acclimation obtained by adding a medium level of quinoline to the influent, the anammox granule sludge was able to tolerate 10 mg L-1 quinoline in 178 days.
Collapse
Affiliation(s)
- Qian-Qian Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Zao-Zao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Fan-Qi Sun
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Zhi-Jian Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Bao-Cheng Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Nian-Si Fan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
23
|
Oshiki M, Masuda Y, Yamaguchi T, Araki N. Synergistic inhibition of anaerobic ammonium oxidation (anammox) activity by phenol and thiocyanate. CHEMOSPHERE 2018; 213:498-506. [PMID: 30245226 DOI: 10.1016/j.chemosphere.2018.09.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/29/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Coke-oven wastewater discharged from the steel-manufacturing process is phenol and thiocyanate (SCN)-rich wastewater, which inhibits microbial activities in biological wastewater treatment processes. In the present study, synergistic inhibition of anaerobic ammonium oxidation (anammox) activity by phenol and SCN was examined by batch incubation and continuous operation of an anammox reactor. The comparison of anammox activities determined in the batch incubation, in which the anammox biomass was anoxically incubated with 10-250 mg L-1 of i) phenol, ii) SCN, or iii) both phenol and SCN, showed that synergistic inhibition by phenol and SCN was greater than the inhibitions by phenol or SCN alone. The synergistic inhibition by phenol and SCN was further investigated by operating an up-flow column anammox reactor for 262 d. The removal efficiencies of NH4+ and NO2- deteriorated when phenol and SCN concentrations in the influent increased to 16 and 32 mg L-1, respectively, and the inhibition of anammox activity was further investigated by a15NO2- tracer experiment. Addition of phenol and SCN resulted in a population shift of anammox bacteria, and the dominant species changed from "Candidatus Kuenenia stuttgartiensis" to "Ca. Brocadia sinica". The relative abundance of Azoarcus and Thiobacillus 16S rRNA gene reads increased during the operation, suggesting that they were responsible for the anaerobic phenol and SCN degradation. The present study is the first to document the synergistic inhibition of anammox activity by phenol and SCN and the microbial consortia involved in the nitrogen removal as well as the phenol and SCN degradations.
Collapse
Affiliation(s)
- Mamoru Oshiki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College, Nagaoka, Japan.
| | - Yoshiko Masuda
- Department of Civil Engineering, National Institute of Technology, Nagaoka College, Nagaoka, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Nobuo Araki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College, Nagaoka, Japan
| |
Collapse
|
24
|
Shi ZJ, Hu HY, Shen YY, Xu JJ, Shi ML, Jin RC. Long-term effects of oxytetracycline (OTC) on the granule-based anammox: Process performance and occurrence of antibiotic resistance genes. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Guo Q, Shi ZJ, Yang CC, Huang M, Xu JL, Xu YQ, Ni WM, Jin RC. Individual and combined inhibition of phenol and thiocyanate on microbial activity of partial nitritation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14207-14217. [PMID: 28421522 DOI: 10.1007/s11356-017-9024-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated the individual and interactive effect of phenol and thiocyanate (SCN-) on partial nitritation (PN) activity using batch test and response surface methodology. The IC50 of phenol and SCN- on PN sludge were 5.6 and 351 mg L-1, respectively. The PN sludge was insensitive to phenol and SCN- at levels lower than 1.77 and 43.3 mg L-1, respectively. A regression model equation was developed and validated to predict the relative specific respiration rate (RSRR) of PN sludge exposed to different phenol and SCN- concentrations. In the range of independent variables, the most severe inhibition was observed with a valley value (17%) for RSRR, when the phenol and SCN- concentrations were 4.08 and 198 mg L-1, respectively. An isobole plot was used to judge the combined toxicity of phenol and SCN-, and the joint inhibitory effect was variable depending on the composition and concentration of the toxic components. Furthermore, the toxic compounds showed independent effects, which is the most common type of combined toxicity.
Collapse
Affiliation(s)
- Qiong Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Zhi-Jian Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Chen-Chen Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Mei Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jia-Li Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yi-Qun Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wei-Min Ni
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China.
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China.
| |
Collapse
|
26
|
Chen H, Jin RC. Summary of the preservation techniques and the evolution of the anammox bacteria characteristics during preservation. Appl Microbiol Biotechnol 2017; 101:4349-4362. [DOI: 10.1007/s00253-017-8289-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 11/27/2022]
|