1
|
Lee Y, Yang HM, Jeong Y, Lee GE. Inkjet-based facile fabrication of a copper ferrocyanide-embedded magnetic alginate microadsorbent for highly enhanced cesium removal. Carbohydr Polym 2025; 348:122877. [PMID: 39567118 DOI: 10.1016/j.carbpol.2024.122877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/26/2024] [Accepted: 10/13/2024] [Indexed: 11/22/2024]
Abstract
For the first time, simple and facile fabrication of a magnetic alginate microadsorbent via piezoelectric inkjet technology was developed for the selective removal of 137Cs via magnetic separation. Through the ejection of an alginate solution containing potassium ferrocyanide and magnetic nanoparticles (MNPs) into a Cu2+ solution via an inkjet device, the fabrication of a copper ferrocyanide-embedded magnetic alginate microadsorbent (CuFC-MAM) with an average size of 39.38 μm was easily achieved in a one-pot fabrication process; here, the Cu2+ ions acted as both a cross-linker for the gelation of alginate and a Cu source for the in situ synthesis of CuFC with potassium ferrocyanide. The Cs adsorption behavior of CuFC-MAM was effectively fitted by the pseudo-second-order kinetic model and Langmuir isotherm. Owing to the increased specific surface area of CuFC-MAM, its pseudo-second-order rate constant and maximum adsorption capacity were 76.54 and 1.486 times greater than those of CuFC-embedded magnetic alginate macroadsorbents fabricated without inkjet devices. Compared with other Cs adsorbents, CuFC-MAM presented the highest maximum capacity and Kd value; these results were attributed to the high content of CuFC in CuFC-MAM (50.15%). In addition, our CuFC-MAM exhibited an excellent removal efficiency of radioactive Cs, exceeding 99% from seawater.
Collapse
Affiliation(s)
- Yeonsoo Lee
- Hydrogen energy research center, Korea research institute of chemical technology, 141, gajeong-ro, yuseong-gu, Daejeon 34114, Republic of Korea
| | - Hee-Man Yang
- Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, 989-111 Daedukdaero, Yuseong, Daejeon 34057, Republic of Korea; Quantum Energy Chemical Engineering, University of Science and Technology (UST), 217, Gajeong-ro, Daejeon 34113, Republic of Korea.
| | - Yewon Jeong
- Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, 989-111 Daedukdaero, Yuseong, Daejeon 34057, Republic of Korea; Quantum Energy Chemical Engineering, University of Science and Technology (UST), 217, Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Ga-Eun Lee
- Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, 989-111 Daedukdaero, Yuseong, Daejeon 34057, Republic of Korea
| |
Collapse
|
2
|
Yaqub M, Mee-Ngern L, Lee W. Cesium adsorption from an aqueous medium for environmental remediation: A comprehensive analysis of adsorbents, sources, factors, models, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175368. [PMID: 39122022 DOI: 10.1016/j.scitotenv.2024.175368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Considering the widespread and indispensable nature of nuclear energy for future power generation, there is a concurrent increase in the discharge of radioactive Cs into water streams. Recent studies have demonstrated that adsorption is crucial in removing Cs from wastewater for environmental remediation. However, the existing literature lacks comprehensive studies on various adsorption methods, the capacities or efficiencies of adsorbents, influencing factors, isotherm and kinetic models of the Cs adsorption process. A bibliometric and comprehensive analysis was conducted using 1179 publications from the Web of Science Core Collection spanning from 2014 to 2023. It reviews and summarizes current publication trends, active countries, adsorption methods, adsorption capacities or efficiencies of adsorbents, tested water sources, influencing factors, isotherm, and kinetic models of Cs adsorption. The selection of suitable adsorbents and operating parameters is identified as a crucial factor. Over the past decade, due to their notable capacity for Cs adsorption, considerable research has focused on novel adsorbents, such as Prussian blue, graphene oxide, hydrogel, and nanoadsorbents (NA). However, there remains a need for further development of application-oriented laboratory-scale experiments. Future research directions should encompass exploring adsorption mechanisms, developing new adsorbents or their combinations, practical applications of lab-scale studies, and recycling radioactive Cs from wastewater. Drawing upon this literature review, we present the most recent research patterns concerning adsorbents to remove Cs, outline potential avenues for future research, and delineate the obstacles hindering effective adsorption. This comprehensive bibliometric review provides valuable insights into prevalent research focal points and emerging trends, serving as a helpful resource for researchers and policymakers seeking to understand the dynamics of adsorbents for Cs removal from water.
Collapse
Affiliation(s)
- Muhammad Yaqub
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| | - Ladawan Mee-Ngern
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Wontae Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| |
Collapse
|
3
|
Oliveira HALD, Gomide G, Vieira CADM, Guerra AAAM, Depeyrot J, Campos AFC. Hybrid magnetic CoFe 2O 4@γ-Fe 2O 3@CTAB nanocomposites as efficient and reusable adsorbents for Remazol Brilliant Blue R dye. ENVIRONMENTAL TECHNOLOGY 2024; 45:581-597. [PMID: 35986550 DOI: 10.1080/09593330.2022.2115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The main goal of the present survey was to elaborate, characterize and evaluate the efficiency of ferrite-based nanoparticles modified with cetyltrimethylammonium bromide (CTAB) as potential magnetic nanoadsorbents to remove Remazol Brilliant Blue R (RBBR) from water. It is proposed an innovative nanomaterial architecture based on highly magnetic and chemically stable core@shell nanoparticles covered by an adsorptive surface layer of CTAB (CoFe2O4@γ-Fe2O3@CTAB). Samples of two different mean sizes (7.5 and 14.6 nm) were synthesized using a hydrothermal coprecipitation followed by surface treatment and functionalization. Batch tests were performed to evaluate the influence of contact time, temperature, pH, shaking rate, presence of interferents and mean size on the performance of the proposed nanomaterials. The kinetics of the adsorption process followed the pseudo-second-order model with an equilibrium time of 20 min. The adsorption capacity was estimated by the Langmuir isotherm model and was found to be 56.3 mg/g (smaller size) and 45.6 mg/g (larger size) at pH = 3 and a shaking rate of 400 rpm. The process was spontaneous, exothermic, and showed increased randomness. Sulphate ions negatively impacted the removal of RBBR. The best performance of the nanoadsorbent based on smaller mean sizes can be correlated to its larger surface area. Regeneration and readsorption tests showed that the nanoadsorbents retain more than 80% of their original removal capacity, therefore they can be effectively recycled and reused.
Collapse
Affiliation(s)
- Helena Augusta Lisboa de Oliveira
- Faculty UnB - Planaltina, Laboratory for Environmental and Applied Nanoscience, University of Brasília, Brasília-DF, Brazil
- Institute of Chemistry, University of Brasília, Brasília-DF, Brazil
| | - Guilherme Gomide
- Complex Fluids Group, Institute of Physics, University of Brasília, Brasília-DF, Brazil
| | | | - Ana Alice Andrade Meireles Guerra
- Faculty UnB - Planaltina, Laboratory for Environmental and Applied Nanoscience, University of Brasília, Brasília-DF, Brazil
- Institute of Chemistry, University of Brasília, Brasília-DF, Brazil
| | - Jerome Depeyrot
- Complex Fluids Group, Institute of Physics, University of Brasília, Brasília-DF, Brazil
| | - Alex Fabiano Cortez Campos
- Faculty UnB - Planaltina, Laboratory for Environmental and Applied Nanoscience, University of Brasília, Brasília-DF, Brazil
- Institute of Chemistry, University of Brasília, Brasília-DF, Brazil
| |
Collapse
|
4
|
Hierarchical Porous Magnetite Structures: From Nanoparticle Assembly to Monolithic Aerogels. J Colloid Interface Sci 2022; 615:206-214. [DOI: 10.1016/j.jcis.2022.01.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
|
5
|
Layered ammonium vanadate nanobelt as efficient adsorbents for removal of Sr2+ and Cs+ from contaminated water. J Colloid Interface Sci 2022; 615:110-123. [DOI: 10.1016/j.jcis.2022.01.164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022]
|
6
|
Two tetravalent uranium silicate and germanate crystals with three membered single-ring by molten salt method: K2USi3O9 and Cs2UGe3O9. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Amin S, Alavi SA, Aghayan H, Yousefnia H. Efficient adsorption of cesium using a novel composite inorganic ion-exchanger based on metal organic framework (Ni[(BDC)(TED)]) modified matal hexacyanoferrate. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Metwally AM, Azab MM, Mahmoud AA, Ali HM, Shaaban AF. Core–shell polymer nanocomposite based on free radical copolymerization of anthranilic acid and o-amino phenol in the presence of copper hexacyanoferrates nanoparticles and its adsorption properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02933-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractCore–shell polymer nanocomposite (CSNC) of copper hexacyanoferrate-copolymer of anthranilic acid with o-aminophenol (CHCF-poly(AA-co-OAP)) was synthesized and used as ion exchanger for the sorption of cesium ions from aqueous solution. The nanocomposite was prepared by implantation of CHCF nanoparticles into copolymer of poly(AA-co-OAP) during the polymerization process. The surface morphology and the porous structure were investigated through transmission electron microscope (TEM), scanning electron microscope (SEM) and Brunauer–Emmett–Teller (BET). The characterization of the prepared (CSNC) was carried out by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Thermogravimetric (TGA). Which SEM and TEM images confirmed the nano-size of the prepared CSNC. The values of adsorption capacity of CSNC towards cesium ions and the factors influence on the removal of cesium from solutions were investigated as function in pH, metal ion concentration, temperature and contact time. The results illustrated that the highest value of sorption capacity of the prepared CSNC towards Cs+ ions was 2.1 mmol g−1 at pH 11, 10 mmol L−1 Cs+ and 25 °C. Four modeling include on Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherms models were studied. According to the obtained data, Langmuir model considered the most suitable model, which suggest that the uptake of Cs+ was monolayer and homogeneous. Also, the adsorption kinetics data was fitted well to pseudo-second-order model. Thermodynamic parameters were calculated in the temperature from 25 to 60 °C and the data revealed that Cs+ sorption was endothermic, spontaneous, and more favorable at higher temperature. Up to 92% desorption of Cs+ was completed with 2 M KCl.
Collapse
|
9
|
Kim Y, Kim H, Kim K, Eom HH, Su X, Lee JW. Electrosorption of cadmium ions in aqueous solutions using a copper-gallate metal-organic framework. CHEMOSPHERE 2022; 286:131853. [PMID: 34403904 DOI: 10.1016/j.chemosphere.2021.131853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Recently, there is a recognized need for green technologies for the effective decontamination of toxic heavy metal ions in wastewater. This study demonstrates the electrochemically assisted uptake and release of cadmium ions (Cd2+) using a redox-active Cu-based metal-organic framework (MOF) electrode. Copper gallate (CuGA), which was synthesized in an aqueous solution, is a water-stable and cost-effective MOF adsorbent in which naturally abundant gallic acid is used as a linker. This work utilized copper within the CuGA structure as a redox center to attract Cd2+ by means of Cu2+/Cu+ reduction, exhibiting rapid uptake kinetics and a much higher capacity (>60 mg g-1) compared to the case without electrochemical assistance (~15 mg g-1). In addition, by applying an opposite overpotential to induce the re-oxidation of copper, the facile recovery of Cd2+ and the regeneration of the electrode were possible without regenerants. Physicochemical characterizations including XPS were conducted to investigate the chemical oxidation states and stability of the electrode after the effective electrosorption-regeneration process. This work presents the feasibility of a Cu-based MOF electrode as a reusable platform for the efficient removal of Cd2+, supporting the continued discovery and development of new Faradaic electrodes for electrochemical wastewater treatments.
Collapse
Affiliation(s)
- Yonghwan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyunjung Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwiyong Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Ho Hyeon Eom
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Jae W Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
10
|
Rong Y, Li S, Niu J, Wang Z, Hao X, Song C, Wang T, Guan G. Carbon-based electroactive ion exchange materials: Ultrahigh removal efficiency and ion selectivity for rapid removal of Cs+ ions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
SHEN H, ZHU L, LIN Q, GUO S, ZHANG H. Urushiol-resourced dopamine analogue as a trigger to construct clay-hexacyanoferrate hydrogel for cesium removal. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106140. [DOI: 10.1016/j.jece.2021.106140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Saberi R, Sadjadi S, Ammari Allahyari S, Charkhi A. Poly(ε-caprolactone) electrospun nanofibers decorated with copper hexacyanoferrate as an ion exchanger for effective cesium ion removal. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1955268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Reza Saberi
- Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Sodeh Sadjadi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Sareh Ammari Allahyari
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Amir Charkhi
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
13
|
Hasan MN, Shenashen MA, Hasan MM, Znad H, Awual MR. Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent. CHEMOSPHERE 2021; 270:128668. [PMID: 33268087 DOI: 10.1016/j.chemosphere.2020.128668] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/02/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Sustainable materials are urgently desired for treatment of radioactive cesium (Cs) contaminated water to safe-guard the public health. Apart from the synthetic ligand-based materials, the Mangrove charcoal modified adsorbent was fabricated for assessing of Cs removal from waste sample. The raw charcoal was oxidized using nitrification approach and diverse oxygen containing carboxyl, carbonyl and hydroxyl functional groups were introduced. After modification, the adsorbent characteristics were drastically changed as compared to the charcoal during the measurement of FTIR, N2 adsorption-desorption isotherms and SEM micrographs. The data clarified that charcoal modified adsorbent was exhibited high Cs transport through the inner surface of the adsorbent based on bonding ability. The adsorbent was shown comparatively slow kinetics to Cs ion; however, the adsorption capacity was high as 133.54 mg/g, which was higher than the crown ether based conjugate materials. The adsorption data were followed to the Langmuir adsorption isotherms and the monolayer coverage was possible due to the data presentation. The presence of high amount of Na and K were slightly interfered to the Cs adsorption by the charcoal modified adsorbent, however; the Na and K concentration was 350-600 folds higher than the Cs concentration. Then the proposed adsorbent was selective to Cs for the potential real radioactive Cs contaminated water. The volume reduction was established rather than desorption and reuses advantages. More than 99% volume reduction was measured by burning of Cs adsorbed adsorbent at 500 °C for ensuring the safe storage and disposal of used adsorbent. Therefore, the charcoal modified adsorbent may open the new door to treat the Cs containing wastewater.
Collapse
Affiliation(s)
- Md Nazmul Hasan
- Department of Applied Chemistry & Chemical Engineering, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - M A Shenashen
- Polymer and Petrochemical Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt.
| | - Md Munjur Hasan
- Department of Applied Chemistry & Chemical Engineering, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Hussein Znad
- Department of Chemical Engineering, Curtin University, GPO BoxU 1987, Perth, WA 6845, Australia
| | - Md Rabiul Awual
- Department of Chemical Engineering, Curtin University, GPO BoxU 1987, Perth, WA 6845, Australia; Materials Science and Research Center, Japan Atomic Energy Agency (JAEA), Hyogo 679-5148, Japan.
| |
Collapse
|
14
|
Veloso SR, Andrade RG, Castanheira EM. Review on the advancements of magnetic gels: towards multifunctional magnetic liposome-hydrogel composites for biomedical applications. Adv Colloid Interface Sci 2021; 288:102351. [PMID: 33387893 DOI: 10.1016/j.cis.2020.102351] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
Abstract
Magnetic gels have been gaining great attention in nanomedicine, as they combine features of hydrogels and magnetic nanoparticles into a single system. The incorporation of liposomes in magnetic gels further leads to a more robust multifunctional system enabling more functions and spatiotemporal control required for biomedical applications, which includes on-demand drug release. In this review, magnetic gels components are initially introduced, as well as an overview of advancements on the development, tuneability, manipulation and application of these materials. After a discussion of the advantages of combining hydrogels with liposomes, the properties, fabrication strategies and applications of magnetic liposome-hydrogel composites (magnetic lipogels or magnetolipogels) are reviewed. Overall, the progress of magnetic gels towards smart multifunctional materials are emphasized, considering the contributions for future developments.
Collapse
|
15
|
Kim Y, Eom HH, Kim D, Harbottle D, Lee JW. Adsorptive removal of cesium by electrospun nanofibers embedded with potassium copper hexacyanoferrate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Khandaker S, Chowdhury MF, Awual MR, Islam A, Kuba T. Efficient cesium encapsulation from contaminated water by cellulosic biomass based activated wood charcoal. CHEMOSPHERE 2021; 262:127801. [PMID: 32791366 DOI: 10.1016/j.chemosphere.2020.127801] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
In this study, cost-effective cellulosic biomass based activated wood charcoal was developed from Japanese Sugi tree (Cryptomeria japonica) by concentrated nitric acid modification for adsorption of Cs from contaminated water. The physicochemical properties of specimens were investigated using N2 adsorption-desorption isotherms (BET method), FESEM, FTIR, and XPS spectra analysis. The experimental results revealed that the surface area of the raw wood charcoal was significantly decreased after boiling nitric acid modification. However, several oxygen-containing acidic function groups (-COOH, -CO) were introduced on the surface. The adsorption study confirmed that the equilibrium contact time was 1 h, the optimum adsorption pH was neutral to alkaline and the suitable adsorbent dose was 1:100 (solid: liquid). The maximum Cs was removed when the concentration of Na and K were lower (5.0 mM) with Cs in solution. The Cs adsorption processes well approved by the Langmuir isotherm and pseudo-second-order kinetic models and the maximum adsorption capacity was 35.46 mgg-1. The Cs adsorption mechanism was clearly described and it was assumed that the adsorption was strongly followed by chemisorptions mechanism based on the adsorbent surface properties, kinetic model and Langmuir isotherm model. Most importantly, about 98% of volume reduction was obtained by burning (500 °C) the Cs adsorbed charcoal, which ensured safe storage and disposal of radioactive waste. Therefore, this study can offer a guideline to produce a functional adsorbent for effective Cs removal and safe radioactive waste disposal.
Collapse
Affiliation(s)
- Shahjalal Khandaker
- Department of Textile Engineering, Dhaka University of Engineering & Technology, Gzipur, 1707, Bangladesh.
| | - Mir Ferdous Chowdhury
- Department of Textile Engineering, Dhaka University of Engineering & Technology, Gzipur, 1707, Bangladesh
| | - Md Rabiul Awual
- Materials Science and Research Center, Japan Atomic Energy Agency (JAEA), Hyogo, 679-5148, Japan.
| | - Aminul Islam
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Bangladesh
| | - Takahiro Kuba
- Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
17
|
Elaboration of a core@shell bimagnetic nanoadsorbent (CoFe2O4@γ-Fe2O3) for the removal of As(V) from water. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Zhang H, Hodges CS, Mishra PK, Yoon JY, Hunter TN, Lee JW, Harbottle D. Bio-Inspired Preparation of Clay-Hexacyanoferrate Composite Hydrogels as Super Adsorbents for Cs . ACS APPLIED MATERIALS & INTERFACES 2020; 12:33173-33185. [PMID: 32531151 DOI: 10.1021/acsami.0c06598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A facile and low-cost fabrication route, inspired by the adhesive proteins secreted by mussels, has been developed to prepare a clay-based composite hydrogel (DHG(Cu)) containing hexacyanoferrate (HCF) nanoparticles for the selective removal of Cs+ from contaminated water. Initially, montmorillonite was exfoliated prior to coating with a thin layer of polydopamine (PDOPA) via the self-polymerization of dopamine. Mixing the composite (D-clay) with the HCF precursor, followed by the addition of copper ions, led to the self-assembly of the polymer-coated exfoliated clay nanosheets into a three-dimensional network and in situ growth of KCuHCF nanoparticles embedded within the gel structure. Analytical characterization verified the fabrication route and KCuHCF immobilization by a copper-ligand complexation. Rheology testing revealed the composite hydrogel to be elastic under low strain and exhibited reversible, self-healing behavior following high strain deformation, providing a good retention of KCuHCF nanoparticles in the membrane. The adsorbent DHG(Cu) showed a superior Cs+ adsorption capacity (∼173 mg/g), with the performance maintained over a wide pH range, and an excellent selectivity for Cs+ when dispersed in seawater at low concentrations of 0.2 ppm. On the basis of its excellent mechanico-chemical properties, the fabricated hydrogel was tested as a membrane in column filtration, showing excellent removal of Cs+ from Milli-Q water and seawater, with the performance only limited by the fluid residence time. For comparison, the study also considered other composite hydrogels, which were fabricated as intermediates of DHG(Cu) or fabricated with Fe3+ as the cross-linker and reactant for HCF nanoparticle synthesis.
Collapse
Affiliation(s)
- Huagui Zhang
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science, Fujian Normal University, Fuzhou 350007, China
| | - Chris S Hodges
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Prashant Kumar Mishra
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Ji Young Yoon
- Chemical and Biomolecular Engineering, Korean Advanced Institute of Science and Technology, Daejeon 305-732, The Republic of Korea
| | - Timothy N Hunter
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jae W Lee
- Chemical and Biomolecular Engineering, Korean Advanced Institute of Science and Technology, Daejeon 305-732, The Republic of Korea
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
19
|
Yang S, Liao S, Ren X, Li Y, Ma Y, Zhang Z. Highly selective enrichment of radioactive cesium from solution by using zinc hexacyanoferrate(III)-functionalized magnetic bentonite. J Colloid Interface Sci 2020; 580:171-179. [PMID: 32683115 DOI: 10.1016/j.jcis.2020.06.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 10/23/2022]
Abstract
Realizing highly effective and selective enrichment of radioactive Cs(I) in complex environmental systems and exploring the microscale adsorption mechanism of Cs(I) on adsorbing material is the key point for developing highly efficient materials for Cs(I) adsorption. In addition, the low cytotoxicity of materials is essential for practical applications and environmental protection. In this study, the controlled assembly of bentonite carrier with a highly selective substance of Cs(I) is prepared by in-situ synthesis method in order to construct a low-toxic functional clay material with high adsorption capacity and selectivity of Cs(I) in complex environmental systems. The efficiency of the zinc hexacyanoferrate(III)-grafted magnetic bentonite (denoted as ZHF/MB) composite was evaluated in adsorption isotherm studies, kinetics analyses, and selectivity tests by using the batch technique. The toxicity of the ZHF/MB composite was evaluated through in vitro cytotoxicity assays using human hepatic cells (HepG2 cells). The results revealed that the ZHF/MB composite had not only a higher adsorption capacity (1.638 mmol/g, 60 °C) for Cs+ ions than a number of other natural and manmade materials but also no cytotoxicity in human cells. In addition, the ZHF/MB composite showed excellent selectivity for Cs+ with a removal efficiency of over 90% from solution (m/V = 0.4 g/L, [Mn+]initial = 10 mg/L, Mn+= Cs+, Ni2+,Sr2+, Co2+). The promising safe toxicology profile, remarkable Cs+ adsorption efficiency, and excellent selectivity of the ZHF/MB composite demonstrate its great potential for using as a decorporation agent for radioactive cesium remediation. The implementation of this research will provide new adsorption materials and method for radioactive Cs(I) waste management.
Collapse
Affiliation(s)
- Shubin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China.
| | - Shengkai Liao
- Key Lab of Chemical Engineering and Processing in Shandong Province, Yantai University, Yantai 264005, PR China
| | - Xuemei Ren
- Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Yun Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Yuanyuan Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
20
|
Kim Y, Eom HH, Kim YK, Harbottle D, Lee JW. Effective removal of cesium from wastewater via adsorptive filtration with potassium copper hexacyanoferrate-immobilized and polyethyleneimine-grafted graphene oxide. CHEMOSPHERE 2020; 250:126262. [PMID: 32114342 DOI: 10.1016/j.chemosphere.2020.126262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
As an attractive alternative to radioactive cesium removal, we introduced an adsorptive filtration method using a composite membrane consisting of potassium copper hexacyanoferrate (KCuHCF) and graphene-based support. Polyethyleneimine-grafted reduced graphene oxide (PEI-rGO), used as an immobilizing matrix, was effective not only in distributing KCuHCF inside the composite with the aid of abundant amino-functionality, but also in achieving high water flux by increasing the interlayer spacing of the laminar membrane structure. Due to the rapid and selective cesium adsorption properties of KCuHCF, the fabricated membrane was found to be effective in achieving complete removal of cesium ions under a high flux (over 500 L m-2 h-1), which is difficult in a conventional membrane utilizing the molecular sieving effect. This approach offers strong potential in the field of elimination of radionuclides that require rapid and complete decontamination.
Collapse
Affiliation(s)
- Yonghwan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ho Hyeon Eom
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yun Kon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Jae W Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
21
|
Wang Q, Sang H, Chen L, Wu Y, Wei Y. Selective separation of Pd(II) through ion exchange and oxidation-reduction with hexacyanoferrates from high-level liquid waste. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115932] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Alginate-enfolded copper hexacyanoferrate graphene oxide granules for adsorption of low-concentration cesium ions from aquatic environment. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06511-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Lee I, Park CW, Yoon SS, Yang HM. Facile synthesis of copper ferrocyanide-embedded magnetic hydrogel beads for the enhanced removal of cesium from water. CHEMOSPHERE 2019; 224:776-785. [PMID: 30851529 DOI: 10.1016/j.chemosphere.2019.02.199] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
A simple one-step approach for fabricating copper ferrocyanide-embedded magnetic hydrogel beads (CuFC-MHBs) was designed, and the beads were applied to the effective removal of cesium (Cs) and then magnetically separated from water. The polyvinyl alcohol (PVA)-coated CuFC (PVA-CuFC) was first synthesized using PVA as a stabilizer and subsequently embedded in magnetic hydrogel beads made of a cross-linked network between the PVA and magnetic iron oxide nanoparticles that was prepared through the simple dropwise addition of a mixed solution of PVA-CuFC, PVA and iron salt into an ammonium hydroxide solution. The synthesis and chemical immobilization of the PVA-CuFC in the magnetic beads were simple, facile and achieved in one pot, and the process is scalable and convenient for the large-scale treatment of Cs-contaminated water. The resulting CuFC-MHBs showed effective Cs removal performance with a high Kd value of 66,780 mL/g and excellent structural stability without the release of CuFC for at least 1 month and could be effectively separated from water by an external magnet. Moreover, the CuFC-MHBs selectively adsorbed Cs with high Kd values in the presence of various competing ions, such as in simulated groundwater (24,500 mL/g) and seawater (8290 mL/g), and maintained their Cs absorption ability in a wide pH range from 3 to 11. The convenient fabrication method and effective removal of Cs from various aqueous media demonstrated that the CuFC-MHBs have great potential for practical application in the decontamination of Cs-contaminated water sources caused by nuclear accidents and radioactive liquid waste in various nuclear industry fields.
Collapse
Affiliation(s)
- Inae Lee
- Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, 989-111 Daedukdaero, Yuseong, Daejeon, 34057, South Korea; Dept. of Chemistry, Sungkyunkwan University, Suwon, Kyeonggi-do, South Korea
| | - Chan Woo Park
- Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, 989-111 Daedukdaero, Yuseong, Daejeon, 34057, South Korea
| | - Seung Soo Yoon
- Dept. of Chemistry, Sungkyunkwan University, Suwon, Kyeonggi-do, South Korea.
| | - Hee-Man Yang
- Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, 989-111 Daedukdaero, Yuseong, Daejeon, 34057, South Korea.
| |
Collapse
|
24
|
Ding S, Zhang L, Li Y, Hou LA. Fabrication of a novel polyvinylidene fluoride membrane via binding SiO 2 nanoparticles and a copper ferrocyanide layer onto a membrane surface for selective removal of cesium. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:292-299. [PMID: 30685717 DOI: 10.1016/j.jhazmat.2019.01.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/09/2018] [Accepted: 01/18/2019] [Indexed: 05/27/2023]
Abstract
A novel polyvinylidene fluoride (PVDF) membrane was fabricated through chemical binding SiO2 nanoparticles (NPs) and copper ferrocyanide (CuFC) layers onto a membrane surface simultaneously to improve the removal efficiency of Cs. The results indicated that the SiO2 NPs were strongly deposited onto the membrane surface, and the CuFC layer was firmly attached on the surface of SiO2 NPs and the membrane. CuFC/SiO2/PVDF membrane remained stable after the acidic solution and sonication stress treatments. CuFC/SiO2/PVDF membrane showed good permeate flux and high selectivity on removal of Cs, and adsorbing capacity reached 1440.4 mg m-2 for Cs. The membrane remained high rejections of Cs in a wide pH, and could be regenerated well by H2O2 and N2H4. Selective adsorption and electrostatic interaction govern the rejection of Cs. The coexisting cations decreased the rejection of Cs mainly in accordance to the order of cations' hydration radii as K+ > Na+ > Ca2+ > Mg2+. In addition, the rejection of Cs could still reach 99.4% in 8 h in the filtration of humic acid solution and natural surface water. The membrane could removal of Cs from water effectively by directly rapid filtration, suggesting it can be applied as promising technology for radioactive wastewater treatment.
Collapse
Affiliation(s)
- Shiyuan Ding
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China; Xi' an High-Tech Institute, Xi'an 710025, People's Republic of China.
| |
Collapse
|
25
|
Zhang N, Kawamoto T, Jiang Y, Takahashi A, Ishizaki M, Asai M, Kurihara M, Zhang Z, Lei Z, Parajuli D. Interpretation of the Role of Composition on the Inclusion Efficiency of Monovalent Cations into Cobalt Hexacyanoferrate. Chemistry 2019; 25:5950-5958. [PMID: 30734404 DOI: 10.1002/chem.201900097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Indexed: 01/12/2023]
Abstract
Cobalt hexacyanoferrate of various compositions was prepared in flow mode and the role of the vacancy on the structure, thermogravimetric (TG) properties, and the adsorption efficiency was studied. The material, Nay Co[Fe(CN)6 ]1-x ⋅z H2 O, with a minimum vacancy of x=0.014 to the highest x=0.47, was obtained. The TG-differential scanning calorimetry (DSC) profile showed a distinct influence of the vacancy on the water release temperature. Materials with x>0.35 showed a smooth release of water at a relatively lower temperature. However, for the materials with x<0.35, water release took place in multiple steps, suggesting the existence of various forms of water. The FTIR profiles supported the existence of free and bonded water molecules. However, the materials with multiple water peaks in the FTIR spectra showed a shift of the major XRD peaks when heated at 285 °C in N2 atmosphere. Regarding the effect of the vacancy on the adsorption behavior, for NH4 , the adsorption was found to be proportional to the number of Na atoms in the material, confirming the ion-exchange process. On the contrary, the materials with low vacancy and high Na content showed nominal Cs adsorption capacity. Interestingly, the K adsorption capacity was found to be in between that of the other two ions. This means the ionic size decides the rate of placement into the interstitial sites. For larger ions like Cs, the ease of percolation via the vacancy decides the overall adsorption efficiency.
Collapse
Affiliation(s)
- Nan Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, 305-8572, Tsukuba, Japan.,Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, 305-8565, Tsukuba, Japan
| | - Tohru Kawamoto
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, 305-8565, Tsukuba, Japan
| | - Yong Jiang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, 305-8572, Tsukuba, Japan.,Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, 305-8565, Tsukuba, Japan
| | - Akira Takahashi
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, 305-8565, Tsukuba, Japan
| | - Manabu Ishizaki
- Department of Materials and Biological Chemistry, Faculty of Sciences, Yamagata University, 1-4-12 Kojirakawa-machi, 990-8560, Yamagata, Japan
| | - Miyuki Asai
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, 305-8565, Tsukuba, Japan.,Department of Materials and Biological Chemistry, Faculty of Sciences, Yamagata University, 1-4-12 Kojirakawa-machi, 990-8560, Yamagata, Japan
| | - Masato Kurihara
- Department of Materials and Biological Chemistry, Faculty of Sciences, Yamagata University, 1-4-12 Kojirakawa-machi, 990-8560, Yamagata, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, 305-8572, Tsukuba, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, 305-8572, Tsukuba, Japan
| | - Durga Parajuli
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, 305-8565, Tsukuba, Japan
| |
Collapse
|
26
|
Yan J, Li Y, Li H, Zhou Y, Xiao H, Li B, Ma X. Effective removal of ruthenium (III) ions from wastewater by amidoxime modified zeolite X. Microchem J 2019. [DOI: 10.1016/j.microc.2018.10.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Yang F, Fan X, Zhang M, Wang C, Zhao W, Zhao C. A template-hatched method towards poly(acrylic acid) hydrogel spheres with ultrahigh ion exchange capacity and robust adsorption of environmental toxins. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Roh H, Kim Y, Kim YK, Harbottle D, Lee JW. Amino-functionalized magnetic chitosan beads to enhance immobilization of potassium copper hexacyanoferrate for selective Cs+ removal and facile recovery. RSC Adv 2019; 9:1106-1114. [PMID: 35517610 PMCID: PMC9059498 DOI: 10.1039/c8ra09386e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/20/2018] [Indexed: 11/22/2022] Open
Abstract
Potassium copper hexacyanoferrate (KCuHCF)-incorporated magnetic chitosan beads (HMC) were synthesized for both selective Cs+ removal in aqueous solutions and facile recovery of the spent adsorbent. To disperse and immobilize large amounts of the KCuHCF, methyl acrylate and diethylenetriamine were sequentially grafted onto the one-step synthesized magnetic chitosan beads. The additional introduction of amino functionality led to the enriched Cu2+ ions on the bead surface to incorporate KCuHCF into the grafting matrix. Consequently, the HMC exhibited a high Cs+ capacity calculated to be 136.47 mg g−1 from the Langmuir model, and the equilibrium was established within 4 h. Moreover, the HMC exhibited excellent stability in a wide pH range from 4 to 11 and an outstanding Cs+ selectivity (>97%) in seawater (1.11 mg L−1 Cs+). From a practical point of view, the HMC was stable during five successive adsorption cycles and easily recovered by magnets, enabling continuous operation to decontaminate a large volume of wastewater. The magnetic chitosan beads were amino-functionalized by grafting and showed an outstanding removal performance for radioactive Cs+.![]()
Collapse
Affiliation(s)
- Hyelin Roh
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Yonghwan Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Yun Kon Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - David Harbottle
- School of Chemical and Process Engineering
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Jae W. Lee
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| |
Collapse
|
29
|
Kim YK, Bae K, Kim Y, Harbottle D, Lee JW. Immobilization of potassium copper hexacyanoferrate in doubly crosslinked magnetic polymer bead for highly effective Cs+ removal and facile recovery. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Chang S, Fu H, Wu X, Liu C, Li Z, Dai Y, Zhang H. Batch and fixed-bed column studies for selective removal of cesium ions by compressible Prussian blue/polyurethane sponge. RSC Adv 2018; 8:36459-36467. [PMID: 35558956 PMCID: PMC9088821 DOI: 10.1039/c8ra07665k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
In this work, compressible Prussian blue/polyurethane sponges (PB@PUS) for selective removal of cesium ions were prepared via an in situ radiation chemical route. The characterization results indicate that uniform PB nanoparticles were successfully synthesized and well dispersed on the porous skeleton of sponge. Batch and fixed-bed column experiments were detailedly conducted to investigate their adsorption performances. Batch adsorption experiments reveal that PB@PUS exhibited good selective removal property for cesium ions in a wide range of pH, whose maximal adsorption capacity and removal efficiency reached 68.6 mg g-1 and 99%, respectively. The adsorption processes could be described by the Langmuir isotherm adsorption model and pseudo-second-order adsorption kinetic model. The fixed-bed column experiments show that the breakthrough and exhaustion time obviously increased with the decrease of flow rate and initial cesium ions concentration. The breakthrough curves could be well fitted by the Thomas model and Yoon-Nelson model. The theoretical saturated adsorption capacity of PB@PUS-3 calculated from the Thomas model was 68.2 mg g-1. The as-prepared samples were light, stable and compressible, which can be applied in radioactive wastewater treatment.
Collapse
Affiliation(s)
- Shuquan Chang
- Jiangsu Engineering Laboratory of Nuclear Energy Equipment Materials, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China +86-25-52112903
| | - Heliang Fu
- Jiangsu Engineering Laboratory of Nuclear Energy Equipment Materials, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China +86-25-52112903
| | - Xian Wu
- Jiangsu Engineering Laboratory of Nuclear Energy Equipment Materials, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China +86-25-52112903
| | - Chengcheng Liu
- Jiangsu Engineering Laboratory of Nuclear Energy Equipment Materials, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China +86-25-52112903
| | - Zheng Li
- Jiangsu Engineering Laboratory of Nuclear Energy Equipment Materials, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China +86-25-52112903
| | - Yaodong Dai
- Jiangsu Engineering Laboratory of Nuclear Energy Equipment Materials, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China +86-25-52112903
| | - Haiqian Zhang
- Jiangsu Engineering Laboratory of Nuclear Energy Equipment Materials, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China +86-25-52112903
| |
Collapse
|
31
|
Veloso SRS, Ferreira PMT, Martins JA, Coutinho PJG, Castanheira EMS. Magnetogels: Prospects and Main Challenges in Biomedical Applications. Pharmaceutics 2018; 10:E145. [PMID: 30181472 PMCID: PMC6161300 DOI: 10.3390/pharmaceutics10030145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 11/17/2022] Open
Abstract
Drug delivery nanosystems have been thriving in recent years as a promising application in therapeutics, seeking to solve the lack of specificity of conventional chemotherapy targeting and add further features such as enhanced magnetic resonance imaging, biosensing and hyperthermia. The combination of magnetic nanoparticles and hydrogels introduces a new generation of nanosystems, the magnetogels, which combine the advantages of both nanomaterials, apart from showing interesting properties unobtainable when both systems are separated. The presence of magnetic nanoparticles allows the control and targeting of the nanosystem to a specific location by an externally applied magnetic field gradient. Moreover, the application of an alternating magnetic field (AMF) not only allows therapy through hyperthermia, but also enhances drug delivery and chemotherapeutic desired effects, which combined with the hydrogel specificity, confer a high therapeutic efficiency. Therefore, the present review summarizes the magnetogels properties and critically discusses their current and recent biomedical applications, apart from an outlook on future goals and perspectives.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paula M T Ferreira
- Centre of Chemistry (CQ-UM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - J A Martins
- Centre of Chemistry (CQ-UM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paulo J G Coutinho
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | |
Collapse
|
32
|
Magnetic K2Zn3[Fe(CN)6]2 @ Ni-P composites for highly selective cesium separation. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Zhang P, Hou D, Li X, Pehkonen S, Varma RS, Wang X. Greener and size-specific synthesis of stable Fe-Cu oxides as earth-abundant adsorbents for malachite green. JOURNAL OF MATERIALS CHEMISTRY. A 2018; 6:9229-9236. [PMID: 30147937 PMCID: PMC6104402 DOI: 10.1021/acssuschemeng.8b01547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A greener and sustainable pathway to the assembly of Fe, Cu -based adsorbent is described using Virginia creeper (Parthenocissus quinquefolia) leaf extracts in presence of oxalic acid which avoids the use of toxic chemicals. Characterization of the synthesized mixed Fe, Cu oxides are carried out by SEM, TEM, XRD, FT-IR, XPS, and BET techniques; SEM and TEM results disclosed particle size ranging from 160 nm to 1 μm in presence of varying oxalic acid amounts of 0 and 0.1 mol/L. The X-ray photoelectron spectroscopy studies revealed that the sample comprised of Fe, Cu-based hybrid oxides and oxalates. The ensuing results from altered operational parameters namely initial pH, initial malachite green (MG) concentration, the sample dosage and the reaction temperature suggest that the MG adsorption capacity of synthesized materials could be well structured by simply varying the amount of oxalic acid. The optimal sample (S3 sample) has a remarkably high maximum adsorptive capacity (~1399 mg/g) for aqueous MG removal at 303 K and natural pH (~ 6.58), which is superior to recently documented sorbents. The results demonstrate that the adsorption is spontaneous (i.e., ∆G < 0) via an endothermic process wherein the synthesized adsorbent displayed excellent characteristics: 1) maintained a high adsorption capacity under a wide range of pH conditions; 2) remained chemically stable under ambient storage environments to allow for extended stowage; and 3) portrayed high reusability with no waning effect after 4 adsorption/desorption cycles.
Collapse
Affiliation(s)
- Ping Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xuanru Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Simo Pehkonen
- Department of Environmental and Biosciences, University of Eastern Finland, Kuopio, Finland
| | - Rajender S. Varma
- Water Resources Recovery Branch, Water Systems Division, National Risk Management Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio 45268, USA
| | - Xun Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Baik S, Zhang H, Kim YK, Harbottle D, Lee J. Enhanced adsorption capacity and selectivity towards strontium ions in aqueous systems by sulfonation of CO2 derived porous carbon. RSC Adv 2017. [DOI: 10.1039/c7ra09541d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sulfonated porous carbon (PC-SO3H) shows enhanced Sr2+ adsorption performance in terms of removal capacity, kinetics, and selectivity.
Collapse
Affiliation(s)
- S. Baik
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - H. Zhang
- School of Chemical and Process Engineering
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Y. K. Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - D. Harbottle
- School of Chemical and Process Engineering
- University of Leeds
- Leeds LS2 9JT
- UK
| | - J. W. Lee
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| |
Collapse
|