1
|
Ali M, Kumar Das S, Shetake NG, Pandey BN, Kumar A. Enhanced thorium decorporation and mitigation of toxicity through combined use of Liv52® and diethylenetriamine pentaacetate. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135234. [PMID: 39042990 DOI: 10.1016/j.jhazmat.2024.135234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Thorium-232 (Th-232) is a promising fuel for advanced nuclear reactors. However, in case of internal human exposure to Th, there is currently no effective modality for its removal from liver and skeleton or for mitigating its effect. The FDA-approved agent, diethylenetriaminepentaacetate (DTPA), can remove Th and other actinides from blood circulation only. For the first time, a rationally-selected polyherbal hepatoprotective i.e. Liv52® (L52S), was evaluated in-combination with DTPA for its Th decorporation ability in Swiss mice. Inductively-coupled plasma mass spectroscopic analysis showed that oral administration of L52S in conjunction with DTPA significantly decreased Th burden from liver (20 %) and skeleton (33 %) as well as enhanced Th excretion (∼2.5 folds) through urine in comparison to DTPA or L52S alone. The combinatorial therapy was found to be complementary in-action, ameliorating Th-induced tissue damage in liver, spleen, and bone more effectively than monotherapy. Furthermore, markers of liver function (alanine transaminase) and liver inflammation and fibrosis (NF-κB & keratin) further validated the beneficial effect of L52S. The human consumption of L52S for various liver disorders further supports its clinical application for Th decorporation and mitigation of its health effects.
Collapse
Affiliation(s)
- Manjoor Ali
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sourav Kumar Das
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Neena G Shetake
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - B N Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Amit Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
2
|
Yadav R, Das SK, Ali M, Shetake NG, Pandey BN, Kumar A. Mechanistic insights into Thorium-232 induced liver carcinogenesis: The driving role of Wnt/β-catenin signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168065. [PMID: 37884152 DOI: 10.1016/j.scitotenv.2023.168065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Thorium-232 (Th-232), a naturally-occurring radioactive element with high potential of nuclear fuel is now being utilized in advanced nuclear reactors for CO2-free energy generation. To achieve all-round capability in Th-fuel cycle for health and environment, understanding the biological effects of Th-232 at cellular and molecular level are extremely important. The present study investigated long-term effects (6 and 12 months) of Th-232 (4, 10 and 20 mg/kg) on gene expression in mice liver (major target organ). Analysis of differentially expressed genes (DEGs, ≥2.0 folds, p < 0.05) showed that with the increase of Th dose (4 to 20 mg/kg), the number of upregulated DEGs increased and the number of downregulated DEGs decreased significantly. A significant number of upregulated DEGs (10 genes in 6 months and 14 genes in 12 months) were found common between 4 and 20 mg/kg. Gene Ontology analysis revealed significant (Padj ~ 10-6-10-28) enrichment of upregulated DEGs for metabolic process, signal transduction, cell death, cell cycle and cell proliferation. KEGG pathway analysis showed DEGs significantly enriched in several cancer-related pathways including hepatocellular carcinoma (HCC). Protein-protein interaction analysis further revealed statistically significant functional interaction (p-value ~10-6-10-10) among the proteins of HCC, which identified β-catenin as one of the most significant signaling nodes in association with myc, an oncogene and p53, a tumor suppressor. Importantly, these results were corroborated by quantitative real time-polymerase chain reaction and western blotting in liver tissues of animals exposed to Th-232. This study insights Wnt/β-catenin signaling network attributable to drive Th-induced liver carcinogenesis, which may have significant implications for management of long-term effects of Th-232.
Collapse
Affiliation(s)
- Rakhee Yadav
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sourav Kumar Das
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Manjoor Ali
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Neena G Shetake
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Badri N Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Amit Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
3
|
Sharma S, Ali M, Kumar A, Rawat N. Combined Thermodynamic, Theoretical, and Biological Study for Investigating N-(2-Acetamido)iminodiacetic Acid as a Potential Thorium Decorporation Agent. Inorg Chem 2023; 62:18887-18900. [PMID: 37922372 DOI: 10.1021/acs.inorgchem.3c02296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The most effective approach to mitigate the toxic effects of internal exposure of radiometals to humans is metal-ligand (ML) chelation therapy. Thorium (Th)-induced carcinogenesis as well as other health hazards to humans as a result of chronic internal exposure necessitates the development of efficient Th-decorporating agents. In this regard, chemical and biological studies were carried out to evaluate N-(2-Acetamido)iminodiacetic acid (ADA), a comparatively cost-effective, readily available, and biologically safe complexing agent for Th decorporation. In the present work, detailed thermodynamic studies for complexation of ADA with Th(IV) have been carried out to understand Th-ADA interaction, using potentiometry, calorimetry, electrospray ionization mass spectrometry, and theoretical studies, followed by its biological assessment for Th decorporation. Thermodynamic studies revealed the formation of strong Th-ADA complexes, which are enthalpically as well as entropically favored. Interestingly, density functional theory calculations, to obtain a thermodynamically favored mode of coordination, showed the uncommon trend of lower denticity of ADA in ML than in ML2, which has been explained on the basis of stabilization of ML by hydrogen bonding. The same was also reflected in the unusual trend of enthalpy for Th-ADA complexes. Biological experiments using human erythrocytes, whole human blood, and lung cells showed good cytocompatibility and ability of ADA to significantly prevent Th-induced hemolysis. Th removal of ADA from erythrocytes, human blood, and normal lung cells was found to be comparable with that of diethylenetriamine pentaacetate (DTPA), an FDA approved decorporating agent. The present study contributed significant data about Th complexation chemistry of ADA and its Th decorporation efficacy from human erythrocytes, blood, and lung cells.
Collapse
Affiliation(s)
- Shikha Sharma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Manjoor Ali
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Amit Kumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Neetika Rawat
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
4
|
Experimental and theoretical insight into biphasic extractive mass transfer of thorium into ionic liquid phase using chloroamide ligands. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Madan Bhatt A, Deshmukh S, Boda A, Singh Chauhan R, Musharaf Ali S, Sengupta A. Synthesis and application of chloroacetamides in pyridinium based ionic liquid for high temperature extraction of uranyl ion: A novel and 'green' approach for extractive mass transfer at elevated temperature. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Lai EPC, Li C. Actinide Decorporation: A Review on Chelation Chemistry and Nanocarriers for Pulmonary Administration. Radiat Res 2022; 198:430-443. [PMID: 35943882 DOI: 10.1667/rade-21-00004.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
Chelation is considered the best method for detoxification by promoting excretion of actinides (Am, Np, Pu, Th, U) from the human body after internal contamination. Chemical agents that possess carboxylic acid or hydroxypyridinonate groups play a vital role in actinide decorporation. In this review article, we provide considerable background details on the chelation chemistry of actinides with an aim to formulate better decorporation agents. Nanocarriers for pulmonary delivery represent an exciting prospect in the development of novel therapies for actinide decorporation that both reduce toxic side effects of the agent and improve its retention in the body. Recent studies have demonstrated the benefits of using a nebulizer or an inhaler to administer chelating agents for the decorporation of actinides. Effective chelation therapy with large groups of internally contaminated people can be a challenge unless both the agent and the nanocarrier are readily available from strategic national stockpiles for radiological or nuclear emergencies. Sunflower lecithin is particularly adept at alleviating the burden of administration when used to form liposomes as a nanocarrier for pulmonary delivery of diethylenetriamine-pentaacetic acid (DTPA) or hydroxypyridinone (HOPO). Better physiologically-based pharmacokinetic models must be developed for each agent in order to minimize the frequency of multiple doses that can overload the emergency response operations.
Collapse
Affiliation(s)
- Edward P C Lai
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Chunsheng Li
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| |
Collapse
|
7
|
Uehara A, Matsumura D, Tsuji T, Yakumaru H, Tanaka I, Shiro A, Saitoh H, Ishihara H, Homma-Takeda S. Uranium chelating ability of decorporation agents in serum evaluated by X-ray absorption spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2439-2445. [PMID: 35694955 DOI: 10.1039/d2ay00565d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Internal exposure to actinides such as uranium and plutonium has been reduced using chelating agents for decorporation because of their potential to induce both radiological and chemical toxicities. This study measures uranium chemical forms in serum in the presence and absence of chelating agents based on X-ray absorption spectroscopy (XAS). The chelating agents used were 1-hydroxyethane 1,1-bisphosphonate (EHBP), inositol hexaphosphate (IP6), deferoxamine B (DFO), and diethylenetriaminepentaacetate (DTPA). Percentages of uranium-chelating agents and uranium-bioligands (bioligands: inorganic and organic ligands coordinating with uranium) dissolving in the serum were successfully evaluated based on principal component analysis of XAS spectra. The main ligands forming complexes with uranium in the serum were estimated as follows: IP6 > EHBP > bioligands > DFO ≫ DTPA when the concentration ratio of the chelating agent to uranium was 10. Measurements of uranium chemical forms and their concentrations in the serum would be useful for the appropriate treatment using chelating agents for the decorporation of uranium.
Collapse
Affiliation(s)
- Akihiro Uehara
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan.
| | - Daiju Matsumura
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Takuya Tsuji
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Haruko Yakumaru
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan.
| | - Izumi Tanaka
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan.
| | - Ayumi Shiro
- Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Hiroyuki Saitoh
- Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Hiroshi Ishihara
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan.
| | - Shino Homma-Takeda
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan.
| |
Collapse
|
8
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
9
|
Yu L, Lin Z, Cheng X, Chu J, Li X, Chen C, Zhu T, Li W, Lin W, Tang W. Thorium inhibits human respiratory chain complex IV (cytochrome c oxidase). JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127546. [PMID: 34879532 DOI: 10.1016/j.jhazmat.2021.127546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Thorium is a radioactive heavy metal and an emerging environmental pollutant. Ecological and human health risks from thorium exposure are growing with the excavation of rare earth metals and implementation of thorium-based nuclear reactors. Thorium poisoning is associated with carcinogenesis, liver impairments, and congenital anomalies. To date, the biomolecular targets that underlie thorium-induced toxicity remain unknown. Here, we used in vitro enzymatic activity assays to comprehensively evaluate the effects of thorium on the mitochondrial respiration process. Thorium was found to inhibit respiratory chain complex IV (cytochrome c oxidase) at sub-micromolar concentrations (IC50 ~ 0.4 μM, 90 μg/L). This is lower than the thorium level limit (246 μg/L) in drinking water specified by the World Health Organization. The inhibitory effects were further verified in mitochondria from human bone and liver cells (thorium mainly deposits in these organs). The inhibition of cytochrome c oxidase can readily rationalize well-documented cellular toxicities of thorium, such as alteration of mitochondrial membrane potential and production of reactive oxygen species. Therefore, cytochrome c oxidase is potentially a key molecular target underlying thorium-induced toxicological effect.
Collapse
Affiliation(s)
- Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China.
| | - Zhaozhu Lin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuedan Cheng
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jian Chu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Xijian Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Chun Chen
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Tinghua Zhu
- Guizhou Shengyada Biotech Co., Ltd., Guiyang 550000, China
| | - Wenjing Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wei Tang
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China.
| |
Collapse
|
10
|
Yadav R, Das SK, Ali M, Pandey BN, Kumar A. Role of calcium ion channels and cytoskeletal proteins in Thorium-232 induced toxicity in normal human liver cells (WRL 68) and its validation in swiss mice. CHEMOSPHERE 2022; 288:132557. [PMID: 34653484 DOI: 10.1016/j.chemosphere.2021.132557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Hepatic disorders reported in humans exposed to Thorium-232 (Th-232) rationalizes the present study investigating the toxicological response of normal human liver cells (WRL 68) and its validation in Swiss mice. Cell count analysis of WRL 68 cells-treated with Th-nitrate (1-200 μM) estimated IC50 of ∼24 μM (at 24 h) and 35 μM (at 48 h). Analysis of cell viability (trypan blue assay) showed the IC50 of ∼172 μM. Phase contrast bright-field microscopy revealed Th-induced morphological changes and cell-released microvesicle-like structures in extracellular space. Th-estimation by ICP-MS (Inductively-coupled plasma mass-spectrometry) showed uptake of Th by cells as a function of concentration and incubation time. Employing DTPA as a chelating agent in cell harvesting solution, cell-internalized/strongly-bound Th was estimated to be ∼42% of total incubated Th. Th-uptake studies in the presence of ion-channel specific inhibitors (e.g. nifedipine, thapsigargin) revealed the role of plasma membrane calcium channels and cytoplasmic calcium in modulating the Th-uptake. Transmission electron microscopy of Th-treated cells showed cell-derived extracellular vesicles, alterations in the shape and size of nucleus and mitochondria as well as cytoplasmic inclusions. The order of Th accumulation in various sub-cellular protein fractions was found to be as cytoskeleton (43%) > cytoplasmic (15%) > chromatin (7%) > nuclear (5%) & membrane (5%). Immunofluorescence analysis of WRL 68 cells showed that Th significantly altered the expression of cytoskeleton proteins (F-actin and keratin), which was further validated in liver tissues of Swiss mice administered with Th-232. Findings herein highlight the role of calcium channels and cytoskeleton in Th-induced toxicity. Keywords: Thorium toxicity; Liver cells; Calcium channels; Sub-cellular targets, Cytoskeleton; Swiss Mice.
Collapse
Affiliation(s)
- Rakhee Yadav
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Sourav Kumar Das
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Manjoor Ali
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Badri N Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Amit Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| |
Collapse
|
11
|
Harismah K, Hajali N, Zandi H. 6-Thioguanine bimolecular formation for dual chelation of iron: DFT study. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Das SK, Ali M, Shetake NG, Dumpala RMR, Pandey BN, Kumar A. Mechanism of thorium-nitrate and thorium-dioxide induced cytotoxicity in normal human lung epithelial cells (WI26): Role of oxidative stress, HSPs and DNA damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:116969. [PMID: 33845224 DOI: 10.1016/j.envpol.2021.116969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Inhalation represents the most prevalent route of exposure with Thorium-232 compounds (Th-nitrate/Th-dioxide)/Th-containing dust in real occupational scenario. The present study investigated the mechanism of Th response in normal human alveolar epithelial cells (WI26), exposed to Th-nitrate or colloidal Th-dioxide (1-100 μg/ml, 24-72 h). Assessment in terms of changes in cell morphology, cell proliferation (cell count), plasma membrane integrity (lactate dehydrogenase leakage) and mitochondrial metabolic activity (MTT reduction) showed that Th-dioxide was quantitatively more deleterious than Th-nitrate to WI26 cells. TEM and immunofluorescence analysis suggested that Th-dioxide followed a clathrin/caveolin-mediated endocytosis, however, membrane perforation/non-endocytosis seemed to be the mode of Th internalization in cells exposed to Th-nitrate. Th-estimation by ICP-MS showed significantly higher uptake of Th in cells treated with Th-dioxide than with Th-nitrate at a given concentration. Both Th-dioxide and nitrate were found to increase the level of reactive oxygen species, which seemed to be responsible for lipid peroxidation, alteration in mitochondrial membrane potential and DNA-damage. Amongst HSPs, the protein levels of HSP70 and HSP90 were affected differentially by Th-nitrate/dioxide. Specific inhibitors of ATM (KU55933) or HSP90 (17AAG) were found to increase the Th- cytotoxicity suggesting prosurvival role of these signaling molecules in rescuing the cells from Th-toxicity.
Collapse
Affiliation(s)
- Sourav Kumar Das
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Manjoor Ali
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Neena G Shetake
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Rama Mohan R Dumpala
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Badri N Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India
| | - Amit Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
13
|
Almalki M, Lai EP, Ko R, Li C. Facile preparation of liposome-encapsulated Zn–DTPA from soy lecithin for decorporation of radioactive actinides. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diethylenetriaminepentaacetic acid (DTPA) is an attractive decorporation agent that can enhance the excretion of radioactive actinides such as plutonium, americium, and curium after a radiological incident. However, DTPA is excreted in a short period of time after administration. Several formulations have been developed to improve DTPA pharmacokinetics properties. In this project, liposomes were prepared facilely from soy lecithin as a nanocarrier for pulmonary delivery of Zn–DTPA. Lipid hydration, reverse phase evaporation, and mechanical sonication were three methods evaluated for the preparation of liposome-encapsulated Zn-DTPA (lipo-Zn-DTPA). Mechanical sonication was the method of choice due to simple apparatus and facile preparation. Lipo-Zn–DTPA exhibited a hydrodynamic diameter of 178 ± 2 nm and a spherical shape. The loading capacity and encapsulation efficiency of Zn–DTPA were 41 ± 5 mg/g and 10% ± 1%, respectively. Lyophilization of lipo-Zn–DTPA for extended storage did not affect the amount of encapsulated drug or damage the structure of liposomes. An in vivo cytotoxicity test confirmed no serious adverse effect of Zn–DTPA encapsulated lecithin liposomes in rats.
Collapse
Affiliation(s)
- Manal Almalki
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Edward P.C. Lai
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Raymond Ko
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| | - Chunsheng Li
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| |
Collapse
|
14
|
Miao Y, Sheng J, Wang X, Shi C, Sun Q, Liu T, Diwu J. Melanin nanoparticles as an actinide in vivo sequestration agent with radiation protection effect. NEW J CHEM 2021. [DOI: 10.1039/d1nj00999k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PEG grafted melanin nanoparticles exhibit codecorporation effect of U and Th as well as good ROS scavenging ability.
Collapse
Affiliation(s)
- Yu Miao
- Radiochemistry Laboratory
- School of Nuclear Science and Technology
- Lanzhou University
- Lanzhou 730000
- China
| | - Jie Sheng
- State Key Laboratory of Radiation Medicine and Protection
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- China
| | - Xiaomei Wang
- State Key Laboratory of Radiation Medicine and Protection
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- China
| | - Cen Shi
- State Key Laboratory of Radiation Medicine and Protection
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- China
| | - Qiwen Sun
- State Key Laboratory of Radiation Medicine and Protection
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- China
| | - Tonghuan Liu
- Radiochemistry Laboratory
- School of Nuclear Science and Technology
- Lanzhou University
- Lanzhou 730000
- China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
15
|
Sadhu B, Dolg M, Kulkarni MS. Periodic trends and complexation chemistry of tetravalent actinide ions with a potential actinide decorporation agent 5-LIO(Me-3,2-HOPO): A relativistic density functional theory exploration. J Comput Chem 2020; 41:1427-1435. [PMID: 32125003 DOI: 10.1002/jcc.26186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/22/2020] [Accepted: 02/17/2020] [Indexed: 12/28/2022]
Abstract
A relativistic density functional theory (DFT) study is reported which aims to understand the complexation chemistry of An4+ ions (An = Th, U, Np, and Pu) with a potential decorporation agent, 5-LIO(Me-3,2-HOPO). The calculations show that the periodic change of the metal binding free energy has an excellent correlation with the ionic radii and such change of ionic radii also leads to the structural modulation of actinide-ligand complexes. The calculated structural and binding parameters agree well with the available experimental data. Atomic charges derived from quantum theory of atoms in molecules (QTAIM) and natural bond order (NBO) analysis shows the major role of ligand-to-metal charge transfer in the stability of the complexes. Energy decomposition analysis, QTAIM, and electron localization function (ELF) predict that the actinide-ligand bond is dominantly ionic, but the contribution of orbital interaction is considerable and increases from Th4+ to Pu4+ . A decomposition of orbital contributions applying the extended transition state-natural orbital chemical valence method points out the significant π-donation from the oxygen donor centers to the electron-poor actinide ion. Molecular orbital analysis suggests an increasing trend of orbital mixing in the context of 5f orbital participation across the tetravalent An series (Th-Pu). However, the corresponding overlap integral is found to be smaller than in the case of 6d orbital participation. An analysis of the results from the aforementioned electronic structure methods indicates that such orbital participation possibly arises due to the energy matching of ligand and metal orbitals and carries the signature of near-degeneracy driven covalency.
Collapse
Affiliation(s)
- Biswajit Sadhu
- Health Physics Division, Health Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Michael Dolg
- Institute for Theoretical Chemistry, Greinstr. 4, University of Cologne, Cologne, Germany
| | - Mukund S Kulkarni
- Health Physics Division, Health Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|