1
|
Guo C, Wang X, Liu Z, Zhao H, Yin G, Lu Y, Qi P, Wang Z, Di S. Effects and Potential Risks of Chiral Penflufen on Pickled Cowpea: Combined Microbiome and Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7658-7668. [PMID: 40125728 DOI: 10.1021/acs.jafc.4c13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Pesticide residues on vegetables may affect microbes and metabolites during the fermentation process, leading to effects and potential risks. Here, the enantioselective effects and potential risks of chiral penflufen on pickled cowpea were investigated by using microbiome and metabolomics analyses. Correlation analysis was conducted to construct bacterial-metabolite interaction networks. Penflufen enantiomers were degraded little during the fermentation process. Rac-penflufen treatment significantly decreased the relative abundance of Lactiplantibacillus while increasing Weissella, but the opposite effects were found in R- and S-penflufen treatments. These shifts were linked to content and functional changes of metabolites. R-/S-/Rac-penflufen upregulated rose aroma metabolites (e.g., β-damascenone), while R- and S-penflufen downregulated floral aroma metabolites (e.g., β-ionone, 2-nonenal) and green leaf aroma metabolites (e.g., (E)-2-hexenal). S-Penflufen reduced alcohols and increased esters more significantly, and altered a higher number of volatile organic compounds (VOCs) and chiral amino acids than R-penflufen, showing a greater risk to food flavor and nutritional quality.
Collapse
Affiliation(s)
- Chao Guo
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- China Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Xinquan Wang
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Zhenzhen Liu
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Huiyu Zhao
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Ge Yin
- Shimadzu (China) Co., LTD, Shanghai 200233, P. R. China
| | - Yuele Lu
- China Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Peipei Qi
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Zhiwei Wang
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Shanshan Di
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| |
Collapse
|
2
|
Tan Y, Wen N, Lu Z, Wei W, Shi H, Wang M. Enantioselective Degradation and Processing Factors of Seven Chiral Pesticides During the Processing of Wine and Rice Wine. Chirality 2025; 37:e70018. [PMID: 39800674 DOI: 10.1002/chir.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/16/2024] [Accepted: 12/27/2024] [Indexed: 05/02/2025]
Abstract
Chiral pesticides often undergo enantioselective degradation during food fermentation. In this study, the enantioselective fates of seven chiral pesticides during processing of wine and rice wine were investigated. The results revealed that R-metalaxyl, R-mefentrifluconazole and S-hexaconazole were preferentially degraded during wine processing with EF values of 0.57, 0.78, and 0.43, respectively, whereas S-metalaxyl and R-hexaconazole were preferentially degraded during rice wine processing with EF values of 0.44 and 0.54, respectively. Stereoselectivity was attributed to fermentative bacterial activity. The processing factor (PF) values for the five pesticides ranged from 0.04 to 0.34 during wine processing and from 0.02 to 0.29 during rice wine processing, suggesting that fermentation can mitigate pesticide exposure risks and ensure food safety. This study enhances our understanding of enantioselective fate of chiral pesticides during fermented food processing, provides guidance for the application of chiral pesticides, and enables the dietary risk of chiral pesticides in processed products to be assessed more accurately.
Collapse
Affiliation(s)
- Yuting Tan
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Nuanhui Wen
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Zhiqiang Lu
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Wenjie Wei
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Liu S, Li X, Zhu J, Liang L, Zhang H, Liao Y, Li J, Lian L, Tan H, Zhao F. Novel herbicide flusulfinam: absolute configuration, enantioseparation, enantioselective bioactivity, toxicity and degradation in paddy soils. PEST MANAGEMENT SCIENCE 2024; 80:5244-5255. [PMID: 39031670 DOI: 10.1002/ps.8251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Flusulfinam, a novel chiral herbicide, effectively controls Echinochloa crusgalli and Digitaria sanguinalis in paddy fields, indicating significant potential for practical agricultural applications. However, limited information is available on flusulfinam from a chiral perspective. A comprehensive evaluation of the enantiomeric levels of flusulfinam was performed. RESULTS Two enantiomers, R-(+)- and S-(-)-flusulfinam, were separately eluted using a Chiralcel OX-RH column. The bioactivity of R-flusulfinam against the two was 1.4-3.1 fold that of Rac-flusulfinam against two weed species. R-flusulfinam toxicity to Danio rerio larvae and Selenastrum capricornutumwere was 0.8- and 3.0-fold higher than Rac-flusulfinam, respectively. Degradation experiments were conducted using soil samples from four Chinese provinces. The findings indicated that S-flusulfinam (half-life T1/2 = 40.8 days) exhibits preferential degradation than R-flusulfinam (T1/2 = 46.2-57.8 days) in the soils of three provinces. Under anaerobic conditions, soil from Anhui exhibited preferential degradation of R-flusulfinam (T1/2 = 46.2 days) over S-flusulfinam (T1/2 = 63 days). Furthermore, two hydrolysis products of flusulfinam (M299 and M100) are proposed for the first time. CONCLUSION The enantioselective bioactivity, toxicity and degradation of flusulfinam were investigated. Our findings indicate that R-flusulfinam is an extremely effective and low-toxicity enantiomer for the tested species. The soil degradation test indicated that the degradation of flusulfinam was accelerated by higher organic matter content and lower soil pH. Furthermore, microbial communities may play a crucial role in driving the enantioselective degradation processes. This study lays the groundwork for the systematic evaluation of flusulfinam from an enantiomeric perspective. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiling Liu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Xiaoli Li
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Junqi Zhu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Liying Liang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Heng Zhang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Ying Liao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Jiaheng Li
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Lei Lian
- Qingdao Kingagroot Compounds Co., Ltd., Qingdao, People's Republic of China
| | - Huihua Tan
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Feng Zhao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| |
Collapse
|
4
|
Wang X, Wu H, Yang K, Fang N, Wen H, Zhang C, Wang X, Pan D. Dissipation Behavior and Dietary Risk Assessment of Thiamethoxam, Pyraclostrobin, and Their Metabolites in Home-Style Pickled Cowpea. Foods 2023; 12:3337. [PMID: 37761046 PMCID: PMC10527991 DOI: 10.3390/foods12183337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, the fate of two pesticides commonly used on cowpeas, thiamethoxam and pyraclostrobin, during the preparation of home-made pickled cowpeas was investigated using an improved QuEChERS method combined with UHPLC-MS/MS. Although pesticide residues were primarily distributed on cowpea samples, some were transferred to brine. The dissipation half-life of thiamethoxam on cowpea samples was significantly shorter than that of pyraclostrobin due to thiamethoxam's higher water solubility. Thiamethoxam demonstrated a half-life of 5.12 ± 0.66 days, whereas pyraclostrobin exhibited a longer half-life of 71.46 ± 7.87 days. In addition, the degradation half-lives of these two pesticides in the whole system (cowpea and brine) were 45.01 ± 4.99 and 70.51 ± 5.91 days, respectively. This result indicates that the pickling did not effectively promote the degradation of thiamethoxam and pyraclostrobin. The metabolite clothianidin of thiamethoxam was not produced throughout the pickling process, but the metabolite BF 500-3 of pyraclostrobin was detected in cowpea samples. The detection rates for thiamethoxam, pyraclostrobin, and BF 500-3 in the 20 market samples were 10%, 70%, and 45%, respectively. However, the risk quotient analysis indicated that the risk of dietary intake of thiamethoxam and pyraclostrobin in pickled cowpeas by Chinese consumers was negligible.
Collapse
Affiliation(s)
- Xumi Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (X.W.); (H.W.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (N.F.); (H.W.); (C.Z.)
| | - Huanqi Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (X.W.); (H.W.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (N.F.); (H.W.); (C.Z.)
| | - Kongtan Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (N.F.); (H.W.); (C.Z.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Nan Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (N.F.); (H.W.); (C.Z.)
| | - Hong Wen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (N.F.); (H.W.); (C.Z.)
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (N.F.); (H.W.); (C.Z.)
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (N.F.); (H.W.); (C.Z.)
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (X.W.); (H.W.)
| |
Collapse
|
5
|
Wang F, Li X, Jiang S, Han J, Wu J, Yan M, Yao Z. Enantioselective Behaviors of Chiral Pesticides and Enantiomeric Signatures in Foods and the Environment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12372-12389. [PMID: 37565661 DOI: 10.1021/acs.jafc.3c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Unreasonable application of pesticides may result in residues in the environment and foods. Chiral pesticides consist of two or more enantiomers, which may exhibit different behaviors. This Review intends to provide progress on the enantioselective residues of chiral pesticides in foods. Among the main chiral analytical methods, high performance liquid chromatography (HPLC) is the most frequently utilized. Most chiral pesticides are utilized as racemates; however, due to enantioselective dissipation, bioaccumulation, biodegradation, and chiral conversion, enantiospecific residues have been found in the environment and foods. Some chiral pesticides exhibit strong enantioselectivity, highlighting the importance of evaluation on an enantiomeric level. However, the occurrence characteristics of chiral pesticides in foods and specific enzymes or transport proteins involved in enantioselectivity needs to be further investigated. This Review could help the production of some chiral pesticides to single-enantiomer formulations, thereby reducing pesticide consumption as well as increasing food production and finally reducing human health risks.
Collapse
Affiliation(s)
- Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jiajun Han
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Junxue Wu
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
6
|
Zhao S, Li M, Chen J, Tian J, Dai X, Kong Z. Potential Risks of Tebuconazole during Wine Fermentation at the Enantiomer Level Based on Multiomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12129-12139. [PMID: 37493492 DOI: 10.1021/acs.jafc.3c01449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The enantioselectivity and potential risks of tebuconazole enantiomers (R-tebuconazole and S-tebuconazole) in wine fermentation were investigated in this study using Cabernet Sauvignon grapes. Tebuconazole was mainly degraded during the alcoholic fermentation stage, and no obvious transformation between R-tebuconazole and S-tebuconazole was observed. Selective degradation between these two enantiomers occurred, with R-tebuconazole degrading faster than S-tebuconazole. The residual tebuconazole inhibits glucose metabolism and the unsaturated fatty acid formation in the wine fermentation system and inhibits gene expression in the late phase of Saccharomycetales, affecting its cell wall formation. Overall, the findings highlight that R-tebuconazole exhibited a higher risk than S-tebuconazole in these processes. These insights are potentially exploitable to understand chiral pesticides at the enantiomer level using multiomics technology in food-processing systems.
Collapse
Affiliation(s)
- Shanshan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Minmin Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
7
|
Chen Z, Kang S, Ren X, Cheng Y, Li W, Zhao L. Large-scale fate profiling of butralin between cultivated and processed garlics for multi-risk estimations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162369. [PMID: 36828059 DOI: 10.1016/j.scitotenv.2023.162369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Elaborating on the fate profiling and risk magnitude of butralin during large-scale applications was conducive to agroecosystems sustainability and dietary rationality. Occurrence, dissipation and concentration variation of butralin were elucidated from garlic cultivation to household processing by tracing UHPLC-MS/MS within 2 min, with regard to original depositions, half-lives, and terminal magnitude in typical origins of garlic. The processing factors (Pfs) of butralin were further clarified among washing, stir-frying and pickling of garlic crops, and pickling was the most effective way for butralin removal with a Pf of 0.092. A probabilistic model with Pfs was further introduced for the comprehensive risk estimations, by reduction factors of 3.1-10.9 from raw garlic crops to processed products. The short-term risks of butralin from green garlic were greater than those between garlic shoot and garlic, with the %ARfDs of 0.030 %-6.323 % from 50th to 99.9th percentiles. The long-term risks were inversely correlated to the age of the population, whose location in rural (%ADIs, 0.256 %-0.768 %) suffered more serious exposures than in urban (%ADIs, 0.231 %-0.699 %). High potential risk amplification should be continuously emphasized given the increasing applications and persistent fate of butralin, especially for vulnerable rural children.
Collapse
Affiliation(s)
- Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Shanshan Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Youpu Cheng
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300380, PR China
| | - Wei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
8
|
Cui K, Guan S, Liang J, Fang L, Ding R, Wang J, Li T, Dong Z, Wu X, Zheng Y. Dissipation, metabolism, accumulation, processing and risk assessment of fluxapyroxad in cucumber and cowpea vegetables from field to table. Food Chem 2023; 423:136384. [PMID: 37201257 DOI: 10.1016/j.foodchem.2023.136384] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Understanding the residue fate of fluxapyroxad is critical for food safety and human health. The present study profiled the dissipation, metabolism, accumulation, removal and risk assessment of fluxapyroxad in cucumbers and cowpeas from field to table. Greenhouse-field trials suggested that fluxapyroxad dissipated faster in cucumbers than in cowpeas, and M700F008 was the only detected metabolite at <LOQ-37.92 μg/kg. Fluxapyroxad accumulated in cucumbers (average residue accumulation value, 1: 2.21: 1.16) and cowpeas (1: 1.33: 1.05) after repeated spraying. Peeling, washing and parboiling could remove fluxapyroxad from cucumbers and cowpeas (PF range, 0.16-0.85); however, fluxapyroxad was partly concentrated by stir-frying (PF range, 0.36-1.41). Moreover, fluxapyroxad residues increased with increasing pickling time. Chronic and acute risk assessments revealed that dietary exposure to fluxapyroxad was within the acceptable levels from cucumber and cowpea consumption. Given high residue levels and their potential accumulation, fluxapyroxad should be continuously monitored and assessed in the future.
Collapse
Affiliation(s)
- Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Shuai Guan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Jingyun Liang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Liping Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Ruiyan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Jian Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Teng Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Zhan Dong
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China.
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
9
|
Yao J, Gao J, Wang N, Liu X, Zhou Z, Wang P. Degradation and chiral properties of metamifop during rice processing. Food Chem 2023; 420:135614. [PMID: 37084473 DOI: 10.1016/j.foodchem.2023.135614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Metamifop has been used to control gramineous weeds in paddy fields and may form residues in rice. In this study, the residue analysis method for metamifop and the metabolites was set up based on high-performance liquid chromatography-mass spectrometry and the chiral analysis method was also developed. The enantioselective degradation and residue of metamifop in rice processing were studied, and the major metabolites were monitored. The removal rate of metamifop by washing could reach 60.03%, while the loss in rice and porridge cooking was less than 16%. No decrease was found in fermentation into fermented grains, but metamifop was degraded in the process of rice wine fermentation with half-lives of around 9.5 days. N-(2-fluorophenyl)-2-(4-hydroxyphenoxy)-N-methylpropionamide and 6-chlorobenzo [d] oxazole-2 (3H)-one were found to be the major metabolites. This study reveals the enantioselective residue of metamifop in rice processing, which helps understand the potential risk in food consumption.
Collapse
|
10
|
Liang F, Xu W, Wu H, Zheng B, Liang Q, Li Y, Wang S. Widely targeted metabolite profiling of mango stem apex during floral induction by compond of mepiquat chloride, prohexadione-calcium and uniconazole. PeerJ 2022; 10:e14458. [PMID: 36530389 PMCID: PMC9753738 DOI: 10.7717/peerj.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022] Open
Abstract
Background Insufficient low temperatures in winter and soil residues caused by paclobutrazol (PBZ) application pose a considerable challenge for mango floral induction (FI). Gibberellin inhibitors SPD (compound of mepiquat chloride, prohexadione-calcium and uniconazole) had a significant influence on enhancing the flowering rate and yield of mango for two consecutive years (2020-2021). Researchers have indicated that FI is regulated at the metabolic level; however, little is known about the metabolic changes during FI in response to SPD treatment. Methods Here, ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based widely targeted metabolomic analysis was carried out to assess the metabolic differences in the mango stem apex during different stage of mango FI (30, 80, 100 days after SPD/water treatment). Results A total of 582 compounds were annotated and 372 metabolites showed two-fold differences in abundance (variable importance in projection, VIP ≥ 1 and fold change, FC≥ 2 or≤ 0.5) between buds at 30, 80, 100 days after SPD/water treatment or between buds under different treatment. Lipids, phenolic acids, amino acids, carbohydrates, and vitamins were among metabolites showing significant differences over time after SPD treatment. Here, 18 out of 20 lipids, including the lysophosphatidylethanolamine (12, LPE), lysophosphatidylcholine (7, LPC), and free fatty acids (1, FA), were significantly upregulated from 80 to 100 days after SPD treatment comared to water treatment. Meanwhile, the dormancy release of mango buds from 80 to 100 days after SPD treatment was accompanied by the accumulation of proline, ascorbic acid, carbohydrates, and tannins. In addition, metabolites, such as L-homocysteine, L-histidine, and L-homomethionine, showed more than a ten-fold difference in relative abundance from 30 to 100 days after SPD treatment, however, there were no significant changes after water treatment. The present study reveals novel metabolites involved in mango FI in response to SPD, which would provide a theoretical basis for utilizing SPD to induce mango flowering.
Collapse
Affiliation(s)
- Fei Liang
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China,Binhai Agricultural College of Guangdong Ocean University, Zhanjiang, China
| | - Wentian Xu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Hongxia Wu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Bin Zheng
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Qingzhi Liang
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Yingzhi Li
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang, China
| | - Songbiao Wang
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
11
|
Mu S, Dou L, Ye Y, Chi D, Zhang K. Effects of Household Processing on Residues of the Chiral Fungicide Mandipropamid in Four Common Vegetables. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15543. [PMID: 36497615 PMCID: PMC9735481 DOI: 10.3390/ijerph192315543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The study aimed to detect the content of mandipropamid enantiomers in unprocessed and processed tomato, cucumber, Chinese cabbage, and cowpea samples and assess the health risks to Chinese consumers. Data showed that washing and soaking with an acidic solution reduced the mandipropamid residue from vegetable samples by 54.1-82.2%. The pickling process resulted in a 6.2-65.2% loss of mandipropamid from cucumber, Chinese cabbage, and cowpea samples. Peeling and juicing were the best removing techniques for mandipropamid residues in tomato and cucumber (removal rate (RR) value > 91%), and cooking for 5 min could effectively reduce the levels of mandipropamid in Chinese cabbage and cowpea (RR values of 81.4-99.7%). The values of processing factor for the processed vegetable samples are all less than one. No significant enantioselectivity of mandipropamid was found in the vegetables during processing. Health risk data showed that samples of four types of mandipropamid-contaminated vegetables were safe for consumption after processing.
Collapse
|
12
|
Yue K, Liu Z, Pi Z, Li H, Wang Y, Song F, Liu Z. Network Pharmacology Combined with Metabolomics Approach to Investigate the Toxicity Mechanism of Paclobutrazol. Chem Res Toxicol 2022; 35:626-635. [PMID: 35298131 DOI: 10.1021/acs.chemrestox.1c00404] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paclobutrazol (PBZ) is a commonly used plant growth regulator (PGR) with good antibacterial activity. It has widespread applications in agricultural production. However, there is limited research reported on the potential risks of human health resulting from PBZ residues. In this study, using Sprague-Dawley rats, we carried out a systematic study on the hepatotoxicity and nephrotoxicity of PBZ in different doses (0.2, 0.5, and 1.0 g/kg). The metabolic profiles and network pharmacology were combined to construct a PBZ-endogenous substances-gene-hepatorenal diseases network to elucidate the underlying mechanism of PBZ's hepatorenal toxicity. At first, metabolomics analysis was done to investigate the metabolites and the related metabolic pathways associated with PBZ. Secondly, the network pharmacology approach was used in further exploration of the toxic targets. Additionally, molecular docking was carried out to investigate the interactions between PBZ and potential targets. The results indicated that PBZ showed obvious toxicity towards the liver and kidney of rats. The metabolomics analysis showed that PBZ mainly affected 4 metabolic pathways, including tryptophan metabolism, arachidonic acid metabolism, linoleic acid metabolism, and purine metabolism. Network pharmacology and molecular docking revealed that CYP1A2, CYP2A6, CYP2E1, MAOA, PLA2G2A, PTGS1, and XDH were critical targets for PBZ hepatorenal toxicity. This preliminary study revealed PBZ's hepatorenal toxicity and provided a theoretical basis for the rational and safe use of PBZ. Furthermore, it provided possible intervention targets for further research on how to avoid or reduce the damage caused by pesticides to the human body.
Collapse
Affiliation(s)
- Kexin Yue
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun, Key Laboratory of Traditional Chinese Medicine Chemistry and Mass Spectrometry Jilin Province, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun, Key Laboratory of Traditional Chinese Medicine Chemistry and Mass Spectrometry Jilin Province, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Hanlin Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yingping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun, Key Laboratory of Traditional Chinese Medicine Chemistry and Mass Spectrometry Jilin Province, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
13
|
An X, Pan X, Li R, Jiang D, Dong F, Zhu W, Xu J, Liu X, Wu X, Zheng Y. Enantioselective monitoring chiral fungicide mefentrifluconazole in tomato, cucumber, pepper and its pickled products by supercritical fluid chromatography tandem mass spectrometry. Food Chem 2021; 376:131883. [PMID: 34971887 DOI: 10.1016/j.foodchem.2021.131883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
A fast, effective, and environmental-friendly method was developed for enantioseparation and analysis of mefentrifluconazole in vegetables based on supercritical fluid chromatography tandem mass spectrometry. The enantioselective behaviors of mefentrifluconazole enantiomers in tomato, cucumber, and pepper in the greenhouse, and pickled cucumber and pepper during processing were investigated. Mefentrifluconazole enantiomers could obtain baseline separation within 2 min. The average recoveries of all matrices ranged from 78.4% to 119.0%, with relative standard deviations less than 16.8% for two enantiomers. S-(+)-mefentrifluconazole was preferentially degraded in pepper, while there was no enantioselectivity in tomato and cucumber under field conditions. During processing, S-(+)-mefentrifluconazole was reduced preferentially than R-(-)-mefentrifluconazole in pickled cucumber and cucumber brine. Inversely, R-(-)-mefentrifluconazole degraded faster than S-(+)-mefentrifluconazole in pepper brine. But, no obvious enantioselectivity was observed in pickled pepper. The result of this study could contribute to a more accurate dietary risk assessment of mefentrifluconazole in vegetables and processed products.
Collapse
Affiliation(s)
- Xiaokang An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Duoduo Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Kang L, Liu H, Zhao D, Pan C, Wang C. Pesticide Residue Behavior and Risk Assessment in Celery after Se Nanoparticles Application. Foods 2021; 10:foods10091987. [PMID: 34574104 PMCID: PMC8470415 DOI: 10.3390/foods10091987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/03/2022] Open
Abstract
This study investigates pesticide levels in celery, and compares their degradation, dissipation, distribution, and dietary risk after spraying with selenium (Se) nanoparticles. Abamectin, imidacloprid, acetamiprid, thiamethoxam, and lambda-cyhalothrin were sprayed at 1.6, 6.8, 2.0, 1.0, and 0.7 g a.i. ha−1 followed by a 2 g·ha−1 Se nanoparticle application during the growing period. Thiamethoxam, abamectin, imidacloprid, lambda-cyhalothrin, and acetamiprid in celery degraded following a first order kinetic model after 2 g·ha−1 Se nanoparticles application. With the exception of acetamiprid, the half-lives of thiamethoxam, abamectin, imidacloprid, and lambda-cyhalothrin were reduced from 2.4, 0.5, 1.2, 4.2 days without Se nanoparticles application to 1.4, 0.2, 0.9, 3.7 days with the addition of Se nanoparticles (2 g·ha−1), respectively. The chronic dietary exposure risk probability (RQc) and the acute dietary exposure risk probability (RQa) of celery after Se nanoparticles application were within acceptable limits for consumption except for abamectin.
Collapse
Affiliation(s)
- Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China;
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.L.); (D.Z.)
| | - Hejiang Liu
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.L.); (D.Z.)
| | - Duoyong Zhao
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.L.); (D.Z.)
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China;
- Correspondence: (C.P.); (C.W.); Tel.: +86-10-6273-1978 (C.P.); +86-991-4502-047 (C.W.); Fax: +86-10-6273-3620 (C.P.)
| | - Cheng Wang
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.L.); (D.Z.)
- Correspondence: (C.P.); (C.W.); Tel.: +86-10-6273-1978 (C.P.); +86-991-4502-047 (C.W.); Fax: +86-10-6273-3620 (C.P.)
| |
Collapse
|
15
|
Luo Y, Lu S, Sun X, Gao Y, Sun G, Yang M, Sun X. Paclobutrazol exposure induces apoptosis and impairs autophagy in hepatocytes via the AMPK/mTOR signaling pathway. J Biochem Mol Toxicol 2021; 35:e22874. [PMID: 34351037 DOI: 10.1002/jbt.22874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/18/2021] [Accepted: 07/24/2021] [Indexed: 01/18/2023]
Abstract
Paclobutrazol (PBZ), one of the most widely used plant growth retardants in vegetables, fruits, and traditional Chinese medicine ingredients, exposes people to adverse events. In this study, HepaRG hepatocytes were cultured and exposed to PBZ (360 μM) in vitro to determine its mechanism. Results showed that PBZ exposure inhibited cell viability in a time- and dose-dependent manner and increased the oxidative stress and apoptosis ratio in HepaRG cells. These data revealed that the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) has an important role in PBZ-induced cell apoptosis, which is mediated by impaired autophagy and blocked by the AMPK activator. In conclusion, PBZ exposure induces apoptosis and impairs autophagy in hepatocytes via the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Ye Gao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Meihua Yang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| |
Collapse
|
16
|
Kong Z, Quan R, Fan B, Liao Y, Chen J, Li M, Dai X. Stereoselective behaviors of the fungicide triadimefon and its metabolite triadimenol during malt storage and beer brewing. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123238. [PMID: 32947687 DOI: 10.1016/j.jhazmat.2020.123238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The stereoselective behaviors of triadimefon (TF) and its metabolite triadimenol (TN) during barley storage and beer brewing were studied by supercritical fluid chromatography-tandem mass spectrometry to shed light on potential security risks. Matrix-matched calibration curves were constructed for barley and beer, with determination coefficients (r2) ≥ 0.9991. Average recoveries of 77.2-107.5 % and relative standard deviations within 15.0 % were observed. The degradation of the TF enantiomers during storage followed pseudo-first-order kinetics, and S-TF was degraded in preference to R-TF with the half-life ranges 18.5-36.5 d and 20.4-69.3 d, respectively. During beer brewing, the TF enantiomers (enantiomer fraction, 0.44-0.56) were selectively metabolized into TN stereoisomers (diastereomer fraction, 0.43-0.58). The total pesticide content of beer was 93.3 % lower than that of raw grain, whereby the TF content declined by up to 100 % and the TN stereoisomers were reduced by 35.1 %. The processing factors of all the brewing steps were less than one, illustrating that beer consumption is safer after its commercial processing. Furthermore, the TF enantiomers showed different behaviors upon fermentation by two yeast strains. Thus, this work is a useful reference for assessing the food safety risk posed by individual pesticide enantiomers and their contribution to environmental pollution.
Collapse
Affiliation(s)
- Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Rui Quan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Bei Fan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Yonghong Liao
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Minmin Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|