1
|
He Q, Li X, Chai W, Chen L, Mao X. A novel functionalized graphdiyne oxide membrane for efficient removal and rapid detection of mercury in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133711. [PMID: 38340563 DOI: 10.1016/j.jhazmat.2024.133711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
In practice, efficient, rapid and simple removal of Hg(II) from water using nano adsorbents remains an extreme challenge at present. In this work, a novel Hg(II) adsorbent based on functionalized graphdiyne oxide (GDYO-3M) membrane was designed for the purpose of effective and prompt removal of Hg(II) from environmental water for the first time. Through filtration, the proposed GDYO-3M membrane (4 cm diameter size) fulfilled an exceeding 97% removal efficiency in > 10 L water containing 0.1 mg/L Hg(II) within 1 h. Due to the presence of -SH groups, the GDYO-3M membrane demonstrates an excellent selectivity for Hg(II) vs. 14 co-existing metal ions. In the meantime, the GDYO-3M membrane represents a favorable reproducibility (above 95% Hg(II) removal) after 9 successive adsorption-desorption cycles. For the mechanism, it is believed that the active sites in the adsorption process mainly include -SH groups, oxygen-containing functional groups, and alkyne bonds. Further, the GDYO-3M membrane can be utilized as an enrichment approach for sensitive analysis of Hg(II) in water based on energy dispersion X-ray fluorescence spectrometry (ED-XRF), whose detection limit (LOD) reaches 0.2 μg/L within 15 min. This work not only provides a green and efficient method for removing Hg(II), but also renders an approach for rapid, sensitive and portable Hg(II) detection in water.
Collapse
Affiliation(s)
- Qianli He
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xue Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Weiwei Chai
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lin Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
2
|
Zhao D, Li Z, Zhu K, Lu A, Wang Y, Jiang J, Tang C, Shen XC, Ruan C. Highly dispersed amorphous nano-selenium functionalized carbon nanofiber aerogels for high-efficient uptake and immobilization of Hg(II) ions. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133162. [PMID: 38086302 DOI: 10.1016/j.jhazmat.2023.133162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024]
Abstract
Owing to the strong Hg-Se interaction, Se-containing materials are promising for the uptake and immobilization of Hg(II) ions; compared with metal selenides or selenized compounds, elemental Se contains the highest ratio of Se. However, it remains a challenge to fully expose all the potential Se binding sites and achieve high utilization efficiency of elemental Se. Through rational design on the structure, dispersity, and size of materials, Se/CNF aerogels composed of abundant well-dispersed and amorphous nano-Se have been prepared and applied for the high-efficient uptake and immobilization of Hg(II) ions. The well-dispersion of nano-Se increases the exposure of Se sites, the amorphous structure benefits the easy cleavage of Se-Se bonds, the 3D porous networks of aerogels permit fast ions transport and easy operation. Benefiting from the combination effect of strong Hg-Se interaction and sufficient exposure of Se-enriched sites, the Se/CNF aerogels demonstrate strong binding ability (Kd = 3.8 ×105 mL·g-1), high capacity (943.4 mg·g-1), and preeminent selectivity (αMHg > 100) towards highly toxic Hg(II) ions. Notably, the utilization efficiency of Se in Se/CNF aerogels is as high as 99.5%. Moreover, the strong Hg-Se interaction and extraordinary stability of HgSe could minimize the environmental impact of the spent Se/CNF adsorbents after its disposal.
Collapse
Affiliation(s)
- Dongmin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Zhuoyan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Kaini Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Ai Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Ying Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jingjing Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cong Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Changping Ruan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| |
Collapse
|
3
|
Shao Z, Jiang X, Lin Q, Wu S, Zhao S, Sun X, Cheng Y, Fang Y, Li P. Nano‑selenium functionalized chitosan gel beads for Hg(II) removal from apple juice. Int J Biol Macromol 2024; 261:129900. [PMID: 38316329 DOI: 10.1016/j.ijbiomac.2024.129900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
The presence of potentially toxic elements and compounds poses threats to the quality and safety of fruit juices. Among these, Hg(II) is considered as one of the most poisonous heavy metals to human health. Traditional chitosan-based and selenide-based adsorbents face challenges such as poor adsorption capacity and inconvenient separation in juice applications. In this study, we prepared nano‑selenium functionalized chitosan gel beads (nanoSe@CBs) and illustrated the synergistic promotions between chitosan and nanoSe in removing Hg(II) from apple juice. The preparation conditions, adsorption behaviors, and adsorption mechanism of nanoSe@CBs were systematically investigated. The results revealed that the adsorption process was primarily controlled by chemical adsorption. At the 0.1 % dosage, the adsorbent exhibited high uptake, and the maximum adsorption capacity from the Langmuir isotherm model could reach 376.5 mg/g at room temperature. The adsorbent maintained high adsorption efficiency (> 90 %) across a wide range of Hg(II) concentrations (0.01 to 10 mg/L) and was unaffected by organic acids present in apple juice. Additionally, nanoSe@CBs showed negligible effects on the quality of apple juice. Overall, nanoSe@CBs open up possibilities to be used as a safe, low-cost and highly-efficient adsorbent for the removal of Hg(II) from juices and other liquid foods.
Collapse
Affiliation(s)
- Zhiying Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China; Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaoyi Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Simiao Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Yunhui Cheng
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China.
| |
Collapse
|
4
|
Ghumman ASM, Shamsuddin R, Abbasi A, Ahmad M, Yoshida Y, Sami A, Almohamadi H. The predictive machine learning model of a hydrated inverse vulcanized copolymer for effective mercury sequestration from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168034. [PMID: 37924888 DOI: 10.1016/j.scitotenv.2023.168034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023]
Abstract
Inverse vulcanized polysulfides (IVP) are promising sulfur-enriched copolymers with unconventional properties irresistible for diverse applications like Hg2+ remediation. Nevertheless, due to their inherent hydrophobic nature, these copolymers still offer low Hg2+ uptake capacity. Herein, we reported the synthesis of IVP by reacting molten sulfur with 4-vinyl benzyl chloride, followed by their functionalization using N-methyl D-glucamine (NMDG) to increase the hydration of the developed IVP. The chemical composition and structure of the functionalized IVP were proposed based on FTIR and XPS analysis. The functionalized IVP demonstrated a high mercury adsorption capacity of 608 mg/g (compared to <26 mg/g for common IVP) because of rich sulfur and hydrophilic regions. NMDG functionalized IVP removed 100 % Hg2+ from a low feed concentration (10-50 mg/l). A predictive machine learning model was also developed to predict the amount of mercury removed (%) using GPR, ANN, Decision Tree, and SVM algorithms. Hyperparameter and loss function optimization was also carried out to reduce the prediction error. The optimized GPR algorithm demonstrated high R2 (0.99 (training) and 0.98 (unseen)) and low RMSE (2.74 (training) and 2.53 (unseen)) values indicating its goodness in predicting the amount of mercury removed. The produced functionalized IVP can be regenerated and reused with constant Hg2+ uptake capacity. Sulfur is the waste of the petrochemical industry and is abundantly available, making the functionalized IVP a sustainable and cheap adsorbent that can be produced for high-volume Hg2+ remediation. ENVIRONMENTAL IMPLICATION: This research effectively addresses the removal of the global top-priority neurotoxic pollutant mercury, which is toxic even at low concentrations. We attempted to remove the Hg2+ utilizing an inexpensive adsorbent developed by NMDG functionalized copolymer of molten sulfur and VBC. A predictive machine learning model was also formulated to predict the amount of mercury removal from wastewater with only a 0.05 % error which shows the goodness of the developed model. This work is critical in utilizing this low-cost adsorbent and demonstrates its potential for large-scale industrial application.
Collapse
Affiliation(s)
- Ali Shaan Manzoor Ghumman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia; HICoE, Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Rashid Shamsuddin
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia; HICoE, Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Amin Abbasi
- Technology University of the Shannon (TUS), Athlone, County Westmeath, Ireland
| | - Mohaira Ahmad
- School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Yoshiaki Yoshida
- Faculty of Engineering, Department of Material Science, Kyushu Institute of Technology, 1-1, Sensui-Cho, Tobata-ku, Kitakyushu-shi 804-8550, Japan
| | - Abdul Sami
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Hamad Almohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia
| |
Collapse
|
5
|
Chauhan AK, Kataria N, Gupta R, Garg VK. Biogenic fabrication of ZnO@EC and MgO@EC using Eucalyptus leaf extract for the removal of hexavalent chromium Cr(VI) ions from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124884-124901. [PMID: 36596976 DOI: 10.1007/s11356-022-24967-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Zinc and magnesium oxide nanoparticles were fabricated using green synthesis method for the sequestration of hexavalent chromium Cr(VI) from the aqueous medium. The biogenically prepared ZnO@EC and MgO@EC nanoparticles were successfully loaded on the Eucalyptus. The prepared nanomaterials were characterized using various techniques such as FESEM, TGA, XRD, EDX, FTIR, BET, and elemental mapping. FE-SEM analysis has revealed the surface morphology of ZnO nanoparticles, which were rod-like and spherical in shape, whereas MgO nanoparticles were of irregular shape. Batch mode was selected to remove the hexavalent chromium from aqueous solution using the prepared nanomaterials. The Cr(VI) adsorption was carried out under optimized conditions, viz., pH (3.0), adsorbent dose (0.05 g), contact time (150 min), temperature (25 ± 2 °C), and initial concentration (50 mg/L). The experimental results were compared using the different isotherm models; The observations have indicated that experimental data fit better with Freundlich (R2 = 0.99) and Langmuir (R2 = 0.99) isotherms, respectively. The maximum adsorption capacity of ZnO@EC and MgO@EC for Cr(VI) was found to be 49.3 and 17.4 mg/g, respectively. The regeneration study of the adsorbents was conducted using different desorbing agents viz., ethanol, NaOH, and NaCl. The desorbing agent NaOH performed better and showed removal percentage of 34.24% and 20.18% for ZnO@EC and MgO@EC, respectively, after the three reusability cycles. The kinetics of reaction was assessed using the pseudo-first-order and pseudo-second-order kinetic models. The experimental data of both the nanomaterials ZnO@EC and MgO@EC obeyed pseudo-second-order model with correlation coefficient values 0.999 and 0.983, respectively. The thermodynamic study confirmed that adsorption was feasible, spontaneous, and endothermic. The adsorbents were tested for spiked real water which confirms their applicability and potential in real water systems also. The results indicated fair removal of chromium suggesting applicability of both adsorbents.
Collapse
Affiliation(s)
- Amit Kumar Chauhan
- Department of Environmental Sciences and Technology, Central University of Punjab, Bathinda, 151001, Punjab, India
| | - Navish Kataria
- Department of Environmental Science and Engineering, J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Renuka Gupta
- Department of Environmental Science and Engineering, J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Vinod Kumar Garg
- Department of Environmental Sciences and Technology, Central University of Punjab, Bathinda, 151001, Punjab, India.
| |
Collapse
|
6
|
Mohanapriya V, Sakthivel R, Pham NDK, Cheng CK, Le HS, Dong TMH. Nanotechnology- A ray of hope for heavy metals removal. CHEMOSPHERE 2023; 311:136989. [PMID: 36309058 DOI: 10.1016/j.chemosphere.2022.136989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Environmental effects of heavy metal pollution are considered as a widespread problem throughout the world, as it jeopardizes human health and also reduces the sustainability of a cleaner environment. Removal of such noxious pollutants from wastewater is pivotal because it provides a propitious solution for a cleaner environment and water scarcity. Adsorption treatment plays a significant role in water remediation due to its potent treatment and low cost of adsorbents. In the last two decades, researchers have been highly focused on the modification of adsorption treatment by functionalized and surface-modified nanomaterials which has spurred intense research. The characteristics of nano adsorbents attract global scientists as it is also economically viable. This review shines its light on the functionalized nanomaterials application for heavy metals removal from wastewater and also highlights the importance of regeneration of nanomaterials in the view of visualizing the economic aspects along with a cleaner environment. The review also focused on the proper disposal of nanomaterials with crucial issues that persist in the adsorption process and also emphasize future research modification at a large-scale application in industries.
Collapse
Affiliation(s)
- V Mohanapriya
- Research scholar, Department of Civil Engineering, Government College of Technology, Coimbatore, 641013, India.
| | - R Sakthivel
- Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Nguyen Dang Khoa Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Huu Son Le
- Faculty of Automotive Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Thi Minh Hao Dong
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
7
|
Ghosh N, Das S, Biswas G, Haldar PK. Review on some metal oxide nanoparticles as effective adsorbent in wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:3370-3395. [PMID: 35771052 DOI: 10.2166/wst.2022.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water contamination has turned into one of the most serious issues in the world. Nanomaterials are proficient to carry away heavy metals, organic and inorganic dyes, pesticides, and small molecules from polluted water. In this regard, nanoparticles have gained much attention due to their extraordinary properties compared to bulk materials. Metal oxide nanoparticles and nanocomposites have several advantages such as elevated surface area, low concentration, easily separable after treatment and so on. Among many feasible techniques, the adsorption process is one of the most useful techniques for removing heavy ions and dyes from wastewater and has gained much attention from researchers. Several studies on metal oxide nanoparticles and their use in wastewater treatment have been published in the literature. This chapter gives an outline about five metal oxide based nanomaterials and nanocomposites as well as their applications in water pollution removal where the efficiency, limits and favourable circumstances are compared and explored. This article surely helps to gather information about some metal oxide nanoparticles and nanocomposites in wastewater treatment by the adsorption technique. In this review article, we primarily focused on five metal oxide nanoparticles and some of their recent applications published in the last two years.
Collapse
Affiliation(s)
- Nikita Ghosh
- Department of Physics, Cooch Behar Panchanan Barma University, Vivekananda Street, CoochBehar, WestBengal 736101, India E-mail:
| | - Susmita Das
- Department of Physics, Cooch Behar Panchanan Barma University, Vivekananda Street, CoochBehar, WestBengal 736101, India E-mail:
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Vivekananda Street, Cooch Behar, West Bengal 736101, India
| | - Prabir Kumar Haldar
- Department of Physics, Cooch Behar Panchanan Barma University, Vivekananda Street, CoochBehar, WestBengal 736101, India E-mail:
| |
Collapse
|
8
|
Huang H, Yang Q, Zhang L, Huang C, Liang Y. Polyacrylamide modified kaolin enhances adsorption of sodium alginate/carboxymethyl chitosan hydrogel beads for copper ions. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Venkateswarlu S, Yoon M, Kim MJ. An environmentally benign synthesis of Fe 3O 4 nanoparticles to Fe 3O 4 nanoclusters: Rapid separation and removal of Hg(II) from an aqueous medium. CHEMOSPHERE 2022; 286:131673. [PMID: 34358889 DOI: 10.1016/j.chemosphere.2021.131673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
In the field of nanotechnology, nanoadsorbents have emerged as a powerful tool for the purification of contaminated aqueous environments. Among the variety of nanoadsorbents developed so far, magnetite (Fe3O4) nanoparticles have drawn particular interest because of their quick separation, low cost, flexibility, reproducibility, and environmentally benign nature. Herein, we describe a new strategy for the synthesis of Fe3O4 nanoclusters, which is based on the use of naturally available edible mushrooms (Pleurotus eryngii) and environmentally benign propylene glycol as a solvent medium. By tuning the temperature, we successfully convert Fe3O4 nanoparticles into Fe3O4 nanoclusters via hydrothermal treatment, as evidenced by transmission electron microscopy. The Fe3O4 nanoclusters are functionalized with an organic molecule linker (dihydrolipoic acid, DHLA) to remove hazardous Hg(II) ions selectively. Batch adsorption experiments demonstrate that Hg(II) ions are strongly adsorbed on the material surface, and X-ray photoelectron and Fourier transform infrared spectroscopy techniques reveal the Hg(II) removal mechanism. The DHLA@Fe3O4 nanoclusters show a high removal efficiency of 99.2 % with a maximum Hg(II) removal capacity of 140.84 mg g-1. A kinetic study shows that the adsorption equilibrium is rapidly reached within 60 min and follows a pseudo second-order kinetic model. The adsorption and separation system can be readily recycled using an external magnet when the separation occurs within 10 s. We have studied the effect of various factors on the adsorption process, including pH, concentration, dosage, and temperature. The newly synthesized superparamagnetic DHLA@Fe3O4 nanoclusters open a new path for further development of the medical, catalysis, and environmental fields.
Collapse
Affiliation(s)
- Sada Venkateswarlu
- Department of Chemistry, Gachon University, Seongnam, 1320, Republic of Korea
| | - Minyoung Yoon
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Myung Jong Kim
- Department of Chemistry, Gachon University, Seongnam, 1320, Republic of Korea.
| |
Collapse
|
10
|
Fan P, He S, Cheng J, Hu C, Liu C, Yang S, Liu J. l-Cysteine modified silver nanoparticles-based colorimetric sensing for the sensitive determination of Hg 2+ in aqueous solutions. LUMINESCENCE 2020; 36:698-704. [PMID: 33270343 DOI: 10.1002/bio.3990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/28/2022]
Abstract
A simple and sensitive colorimetric sensing method was constructed for detection of Hg2+ in aqueous solutions and based on silver nanoparticles functionalized with l-cysteine (l-Cys-Ag NPs). In this method, adenosine triphosphate (ATP) induced aggregation of l-Cys-Ag NPs. Simultaneously, the solution colour changed from bright yellow to brown. In the presence of Hg2+ , Hg2+ chelated ATP to form a complex and reduce the degree of aggregation of l-Cys-Ag NPs and was accompanied by a colour change from brown to bright yellow. The changing values of absorbance at 390 nm were linearly correlated with concentration of Hg2+ over the 4.00 × 10-8 to 1.04 × 10-6 mol·L-1 range, with a detection limit of 8 nM. This method was used successfully for detection of Hg2+ in real water samples and performed good selectivity and sensitivity. The recovery range was 91.5-109.1%, indicating that the method has vast application potential for determination of Hg2+ in the environment.
Collapse
Affiliation(s)
- Pengfei Fan
- College of Public Health, University of South China, Hengyang, People's Republic of China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, People's Republic of China
| | - Shunzhen He
- College of Public Health, University of South China, Hengyang, People's Republic of China.,Jinnan Center for Disease Control And Prevention, Tianjin, China
| | - Jianlin Cheng
- College of Public Health, University of South China, Hengyang, People's Republic of China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, People's Republic of China
| | - Congcong Hu
- College of Public Health, University of South China, Hengyang, People's Republic of China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, People's Republic of China
| | - Can Liu
- College of Public Health, University of South China, Hengyang, People's Republic of China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, People's Republic of China
| | - Shengyuan Yang
- College of Public Health, University of South China, Hengyang, People's Republic of China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, People's Republic of China
| | - Jinquan Liu
- College of Public Health, University of South China, Hengyang, People's Republic of China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, People's Republic of China
| |
Collapse
|