1
|
Salvatierra D, Islam MA, González MP, Blasco J, Araújo CVM. The Heterogeneous Multi-Habitat Assay System (HeMHAS): A non-forced ecotoxicology test system to study contamination-driven habitat selection behavior from landscape and stress ecology perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125818. [PMID: 39929425 DOI: 10.1016/j.envpol.2025.125818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
In ecotoxicology, the non-forced exposure approach provides a complementary perspective to traditional ecotoxicity tests by giving the organisms an opportunity to flee to adjacent, less contaminated areas, thus allowing them to escape from any toxic effects. This approach recognizes the chemical heterogeneity among connected habitats with different levels of contamination. The Heterogeneous Multi-Habitat Assay System (HeMHAS) is a non-forced aquatic assay system that allows the free movement of the organisms throughout various compartments with the possibility to select an area according to its attractiveness or aversiveness. This system expands the environmental risk assessment (ERA) by studying the habitat selection response based on the organism's ability to perceive the surrounding environment. This represents a new frontier in ERA, where different factors other than just contamination can be integrated to assess the cost-benefits balance when a habitat is selected. Thus, the HeMHAS has become a valuable habitat-selection based approach to assess the factors driving the spatial distribution of organisms in connected ecosystems with different levels of contamination. The aim of the current work is to describe the different types of HeMHAS, their ecological relevance, technical advantages and disadvantages, and to critically discuss its applicability and results that have been published in line with landscape and stress ecology.
Collapse
Affiliation(s)
- David Salvatierra
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Av. República Saharaui, s/n, Puerto Real, Cádiz, 11519, Spain.
| | - Mohammed Ariful Islam
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Av. República Saharaui, s/n, Puerto Real, Cádiz, 11519, Spain; Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - María Pilar González
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Av. República Saharaui, s/n, Puerto Real, Cádiz, 11519, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Av. República Saharaui, s/n, Puerto Real, Cádiz, 11519, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Av. República Saharaui, s/n, Puerto Real, Cádiz, 11519, Spain
| |
Collapse
|
2
|
Islam MA, Lopes I, Domingues I, Silva DCVR, Blasco J, Pereira JL, Araújo CVM. Behavioural, developmental and biochemical effects in zebrafish caused by ibuprofen, irgarol and terbuthylazine. CHEMOSPHERE 2023; 344:140373. [PMID: 37806324 DOI: 10.1016/j.chemosphere.2023.140373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
The increasing use of chemicals and their release into aquatic ecosystems are harming aquatic biota. Despite extensive ecotoxicological research, many environmental pollutants' ecological effects are still unknown. This study examined the spatial avoidance, behavioural and biochemical impacts of ibuprofen, irgarol, and terbuthylazine on the early life stages of zebrafish (Danio rerio) under a range of ecologically relevant concentrations (0-500 μg/L). Embryos were exposed following the OECD guideline "fish embryo toxicity test" complemented with biochemical assessment of AChE activity and behavioural analyses (swimming activity) using the video tracking system Zebrabox. Moreover, spatial avoidance was assessed by exposing 120 hpf-old larvae of D. rerio to a gradient of each chemical, by using the heterogeneous multi-habitat assay system (HeMHAS). The results obtained revealed that the 3 compounds delayed hatching at concentrations of 50 and 500 μg/L for both ibuprofen and irgarol and 500 μg/L for terbuthylazine. Moreover, all chemicals elicited a dose-dependent depression of movement (swimming distance) with LOEC values of 5, 500 and 50 μg/L for ibuprofen, irgarol and terbuthylazine, respectively. Zebrafish larvae avoided the three chemicals studied, with 4 h-AC50 values for ibuprofen, irgarol, and terbuthylazine of 64.32, 79.86, and 131.04 μg/L, respectively. The results of the HeMHAS assay suggest that larvae may early on avoid (just after 4 h of exposure) concentrations of the three chemicals that may later induce, apical and biochemical effects. Findings from this study make clear some advantages of using HeMHAS in ecotoxicology as it is: ecologically relevant (by simulating a chemically heterogeneous environmental scenario), sensitive (the perception of chemicals and the avoidance can occur at concentrations lower than those producing lethal or sublethal effects) and more humane and refined approach (organisms are not mandatorily exposed to concentrations that can produce individual toxicity).
Collapse
Affiliation(s)
- Mohammed Ariful Islam
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain; Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Management and Conservation of the Sea, University of Cadiz, 11510, Puerto Real, Spain.
| | - Isabel Lopes
- CESAM & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Inês Domingues
- CESAM & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Daniel C V R Silva
- Institute of Exact Sciences, Federal University of Southern and Southeastern Pará, Marabá, 68507-590, Pará, Brazil; Institute of Natural Resources, Federal University of Itajubá (UNIFEI), Laboratory of Limnology and Ecotoxicolo Gy, Itajubá, 37500-903, Minas Gerais, Brazil.
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain.
| | - Joana Luísa Pereira
- CESAM & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Cristiano V M Araújo
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain.
| |
Collapse
|
3
|
Ekner-Grzyb A, Jurga N, Venâncio C, Grzyb T, Grześkowiak BF, Lopes I. Ecotoxicity of non- and PEG-modified lanthanide-doped nanoparticles in aquatic organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106548. [PMID: 37130483 DOI: 10.1016/j.aquatox.2023.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/04/2023]
Abstract
Various types of nanoparticles (NPs) have been widely investigated recently and applied in areas such as industry, the energy sector, and medicine, presenting the risk of their release into the environment. The ecotoxicity of NPs depends on several factors such as their shape and surface chemistry. Polyethylene glycol (PEG) is one of the most often used compounds for functionalisation of NP surfaces, and its presence on the surfaces of NPs may affect their ecotoxicity. Therefore, the present study aimed to assess the influence of PEG modification on the toxicity of NPs. As biological model, we chose freshwater microalgae, a macrophyte and invertebrates, which to a considerable extent enable the assessment of the harmfulness of NPs to freshwater biota. SrF2:Yb3+,Er3+ NPs were used to represent the broad group of up-converting NPs, which have been intensively investigated for medical applications. We quantified the effects of the NPs on five freshwater species representing three trophic levels: the green microalgae Raphidocelis subcapitata and Chlorella vulgaris, the macrophyte Lemna minor, the cladoceran Daphnia magna and the cnidarian Hydra viridissima. Overall, H. viridissima was the most sensitive species to NPs, which affected its survival and feeding rate. In this case, PEG-modified NPs were slightly more toxic than bare ones (non-significant results). No effects were observed on the other species exposed to the two NPs at the tested concentrations. The tested NPs were successfully imaged in the body of D. magna using confocal microscopy; both NPs were detected in the D. magna gut. The results obtained reveal that SrF2:Yb3+,Er3+ NPs can be toxic to some aquatic species; however, the structures have low toxicity effects for most of the tested species.
Collapse
Affiliation(s)
- Anna Ekner-Grzyb
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| | - Natalia Jurga
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Cátia Venâncio
- CESAM & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | | | - Isabel Lopes
- CESAM & Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
4
|
Estrada AC, Daniel-da-Silva AL, Leal C, Monteiro C, Lopes CB, Nogueira HIS, Lopes I, Martins MJ, Martins NCT, Gonçalves NPF, Fateixa S, Trindade T. Colloidal nanomaterials for water quality improvement and monitoring. Front Chem 2022; 10:1011186. [PMID: 36238095 PMCID: PMC9551176 DOI: 10.3389/fchem.2022.1011186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022] Open
Abstract
Water is the most important resource for all kind forms of live. It is a vital resource distributed unequally across different regions of the globe, with populations already living with water scarcity, a situation that is spreading due to the impact of climate change. The reversal of this tendency and the mitigation of its disastrous consequences is a global challenge posed to Humanity, with the scientific community assuming a major obligation for providing solutions based on scientific knowledge. This article reviews literature concerning the development of nanomaterials for water purification technologies, including collaborative scientific research carried out in our laboratory (nanoLAB@UA) framed by the general activities carried out at the CICECO-Aveiro Institute of Materials. Our research carried out in this specific context has been mainly focused on the synthesis and surface chemical modification of nanomaterials, typically of a colloidal nature, as well as on the evaluation of the relevant properties that arise from the envisaged applications of the materials. As such, the research reviewed here has been guided along three thematic lines: 1) magnetic nanosorbents for water treatment technologies, namely by using biocomposites and graphite-like nanoplatelets; 2) nanocomposites for photocatalysis (e.g., TiO2/Fe3O4 and POM supported graphene oxide photocatalysts; photoactive membranes) and 3) nanostructured substrates for contaminant detection using surface enhanced Raman scattering (SERS), namely polymers loaded with Ag/Au colloids and magneto-plasmonic nanostructures. This research is motivated by the firm believe that these nanomaterials have potential for contributing to the solution of environmental problems and, conversely, will not be part of the problem. Therefore, assessment of the impact of nanoengineered materials on eco-systems is important and research in this area has also been developed by collaborative projects involving experts in nanotoxicity. The above topics are reviewed here by presenting a brief conceptual framework together with illustrative case studies, in some cases with original research results, mainly focusing on the chemistry of the nanomaterials investigated for target applications. Finally, near-future developments in this research area are put in perspective, forecasting realistic solutions for the application of colloidal nanoparticles in water cleaning technologies.
Collapse
Affiliation(s)
- Ana C. Estrada
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Ana L. Daniel-da-Silva
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Cátia Leal
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Cátia Monteiro
- Department of Biology and CESAM-Centre of Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Cláudia B. Lopes
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Helena I. S. Nogueira
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Isabel Lopes
- Department of Biology and CESAM-Centre of Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Maria J. Martins
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Natércia C. T. Martins
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Nuno P. F. Gonçalves
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Sara Fateixa
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- *Correspondence: Tito Trindade,
| |
Collapse
|
5
|
Turhan DO, Güngördü A. Developmental, toxicological effects and recovery patterns in Xenopus laevis after exposure to penconazole-based fungicide during the metamorphosis process. CHEMOSPHERE 2022; 303:135302. [PMID: 35697111 DOI: 10.1016/j.chemosphere.2022.135302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Fungicides are a group of chemicals causing pollution of freshwater ecosystems due to their widespread use in agriculture. However, their endocrine disrupting effects are less studied than herbicides and insecticides. The aim of this study was to evaluate the developmental and toxicological effects and recovery patterns of penconazole-based fungicide (PBF) during Xenopus laevis metamorphosis. For this purpose, firstly, the 96 h median lethal (LC50) and effective (EC50) concentrations and minimum concentration to inhibit growth (MCIG) values of PBF were estimated for X. laevis as 4.97, 3.55 and 2.31 mg/L respectively, using Frog Embryo Teratogenesis Assay-Xenopus (FETAX) on Nieuwkoop-Faber (NF) stage 8 embryos. FETAX results showed PBF formulation was slightly teratogenic with a 1.4 teratogenic index; most recorded malformations were gut, abdominal edema, and tail curvature. The Subacute Amphibian Metamorphosis Assay (AMA) was modified based on acute FETAX results, and used to evaluate toxic effects and recovery patterns of relatively low PBF concentrations on metamorphosis using morphological and biochemical markers. NF Stage 51 tadpoles were exposed to two separate groups of each concentration for seven days in the AMA. Secondly, tadpoles of one group of each concentration continued to be exposed to PBF for the next 7 and 14 days while the other group was kept in a pesticide-free environment (depuration/recovery). Various morphological and biochemical markers were measured homogenate samples of tadpoles from exposure and recovery groups. Continuous exposure to relatively low PBF concentrations caused oxidative stress, toxic, and endocrine disrupting effects in the AMA, leading us to conclude that it has negative effects on frog health and development during the recovery period when PBF exposure is terminated. The glutathione S-transferase, glutathione reductase, catalase, carboxylesterase, and acetylcholinesterase activities were higher than the control group transferred to pesticide-free media for 14 days after the 7 days exposure and indicate persistent PBF impact.
Collapse
Affiliation(s)
- Duygu Ozhan Turhan
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44210, Malatya, Turkey
| | - Abbas Güngördü
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44210, Malatya, Turkey.
| |
Collapse
|
6
|
Venâncio C, Melnic I, Tamayo-Belda M, Oliveira M, Martins MA, Lopes I. Polymethylmethacrylate nanoplastics can cause developmental malformations in early life stages of Xenopus laevis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150491. [PMID: 34844312 DOI: 10.1016/j.scitotenv.2021.150491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Polymethylmethacrylate (PMMA) production has increased almost 20% over the last years. With its release into the aquatic environment, its breakdown or degradation to nano dimensions (nanoplastics-NPLs) due to biological and physical/mechanical action is, theoretically, anticipated. The occurrence of PMMA-NPLs in aquatic ecosystems may thus cause adverse effects particularly to early life stages of amphibians, which may be in contact with PMMA-NPLs suspended in the water column or deposited in upper layers of the sediments. Accordingly, this work aimed at assessing the effects of PMMA-NPLs to aquatic early life stages of the model anuran species Xenopus laevis. To attain this objective, two types of toxicity assays were carried out by exposing embryos [Nieuwkoop and Faber (NF) stage 8-11] or tadpoles (NF 45) to three concentrations of PMMA-NPLs (1, 100 and 1000 μg/L): i) 96-h embryo teratogenicity assay, where survival, malformation, and total body length (BL) of embryos were assessed; and ii) 48-h feeding rate assay, where survival, feeding (FR), malformations and growth rates (body weight-BW and BL) of tadpoles were evaluated. PMMA-NPLs exposure had no significant effects on mortality, malformations of X. laevis embryos but BL was lower at 1000 μg PMMA-NPLs/L. In tadpoles, no effects on survival or FR were observed after exposure to PMMA-NPLs, but significant changes occured in BW and BL. Moreover, anatomical changes in the abdominal region (externalization of the gut) were observed in 62.5% of the tadpoles exposed to 1000 μg PMMA-NPLs/L. Despite the lack of knowledge regarding the environmental levels of NPLs, it is expected that sediments constitute a sink for these contaminants, where they can become available for organisms that, like tadpoles, feed on the organic matter at the surface of sediments. Considering the continuous release and subsequent accumulation of PMMA, the malformations obtained in the feeding assays suggest that, in the future, these nano-polymers may constitute a risk for aquatic life stages of amphibians.
Collapse
Affiliation(s)
- C Venâncio
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - I Melnic
- Faculty of Biology Alexandru Ioan Cuza, University of Iași, Romania
| | - M Tamayo-Belda
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M A Martins
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - I Lopes
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
A multi-residue electrochemical biosensor based on graphene/chitosan/parathion for sensitive organophosphorus pesticides detection. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138355] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Araújo CVM, Laissaoui A, Silva DCVR, Ramos-Rodríguez E, González-Ortegón E, Espíndola ELG, Baldó F, Mena F, Parra G, Blasco J, López-Doval J, Sendra M, Banni M, Islam MA, Moreno-Garrido I. Not Only Toxic but Repellent: What Can Organisms' Responses Tell Us about Contamination and What Are the Ecological Consequences When They Flee from an Environment? TOXICS 2020; 8:E118. [PMID: 33322739 PMCID: PMC7768353 DOI: 10.3390/toxics8040118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 01/04/2023]
Abstract
The ability of aquatic organisms to sense the surrounding environment chemically and interpret such signals correctly is crucial for their ecological niche and survival. Although it is an oversimplification of the ecological interactions, we could consider that a significant part of the decisions taken by organisms are, to some extent, chemically driven. Accordingly, chemical contamination might interfere in the way organisms behave and interact with the environment. Just as any environmental factor, contamination can make a habitat less attractive or even unsuitable to accommodate life, conditioning to some degree the decision of organisms to stay in, or move from, an ecosystem. If we consider that contamination is not always spatially homogeneous and that many organisms can avoid it, the ability of contaminants to repel organisms should also be of concern. Thus, in this critical review, we have discussed the dual role of contamination: toxicity (disruption of the physiological and behavioral homeostasis) vs. repellency (contamination-driven changes in spatial distribution/habitat selection). The discussion is centered on methodologies (forced exposure against non-forced multi-compartmented exposure systems) and conceptual improvements (individual stress due to the toxic effects caused by a continuous exposure against contamination-driven spatial distribution). Finally, we propose an approach in which Stress and Landscape Ecology could be integrated with each other to improve our understanding of the threat contaminants represent to aquatic ecosystems.
Collapse
Affiliation(s)
- Cristiano V. M. Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Puerto Real, 11519 Cadiz, Spain; (E.G.-O.); (J.B.); (I.M.-G.)
| | - Abdelmourhit Laissaoui
- National Centre for Nuclear Energy, Science and Technology, BP 1381, Rabat RP 10001, Morocco;
| | - Daniel C. V. R. Silva
- Institute of Xingu Studies, Federal University of Southern and Southeastern Pará, São Félix do Xingu, PA 68507-590, Brazil;
| | - Eloisa Ramos-Rodríguez
- Department of Ecology and Institute of Water Research, University of Granada, 18010 Granada, Spain;
| | - Enrique González-Ortegón
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Puerto Real, 11519 Cadiz, Spain; (E.G.-O.); (J.B.); (I.M.-G.)
| | - Evaldo L. G. Espíndola
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP 13.560-970, Brazil;
| | - Francisco Baldó
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Cádiz, 11006 Cádiz, Spain;
| | - Freylan Mena
- Regional Institute for Studies on Toxic Substances (IRET), Universidad Nacional, 86-3000 Heredia, Costa Rica;
| | - Gema Parra
- Animal Biology, Plant Biology and Ecology Department, University of Jaén, 23071 Jaén, Spain;
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Puerto Real, 11519 Cadiz, Spain; (E.G.-O.); (J.B.); (I.M.-G.)
| | - Julio López-Doval
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, 17003 Girona, Spain;
- Faculty of Sciences, University of Girona, Campus de Montilivi, 17003 Girona, Spain
| | - Marta Sendra
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain;
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, 1349-017 Chott-Mariem, Tunisia;
| | - Mohammed Ariful Islam
- Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh;
| | - Ignacio Moreno-Garrido
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Puerto Real, 11519 Cadiz, Spain; (E.G.-O.); (J.B.); (I.M.-G.)
| |
Collapse
|