1
|
Lennartz S, Weber CJ, Siemens J, Mulder I. Legacy pollution of floodplain soils with quaternary ammonium compounds - Insights into vertical distribution, historical trends and suspected microplastic carriers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126343. [PMID: 40311733 DOI: 10.1016/j.envpol.2025.126343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/14/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Quaternary ammonium compounds (QACs) are antimicrobials and cationic surfactants used since the early 20th century but increasingly under scrutiny because of their biocidal properties and potential to induce antimicrobial resistance. Although recognized as aquatic contaminants, little is known about the entry, persistence and effects of QACs in floodplain soils. Due to their sorption to suspended particulate matter (SPM), we hypothesized that floodplains may have acted as sinks for QAC contamination in the aquatic-terrestrial interface for decades. Thus, we expected vertical QAC distributions in dated floodplain soil profiles to reflect historical emissions and flood deposits. Moreover, we hypothesized particle-associated entry with SPM and microplastics (MPs) to be a key input pathway. We therefore assessed the depth distribution of 31 QACs in two dated floodplain soils of the German river Lahn by high performance liquid chromatography-mass spectrometry after ultrasonic extraction. Correlation analysis between QAC and MP (>500 μm) concentrations and cluster analysis of QAC homologue patterns in SPM and different German soils were used to identify probable entry routes. QACs were detected down to 90 cm depth, corresponding to the 1920s-1930s, with peak concentrations in soil layers related to a recent hundred-year flood. Highest concentrations up to mg kg-1 for the semi-quantified dimethyldioctadecylammonium tentatively exceeded ecotoxicological effect thresholds by twofold. Concentrations of several QACs correlated positively with MP contents while QAC homologue distributions showed similarity between SPM and floodplain topsoil segments, highlighting the importance of particle-associated entry. These findings confirm QACs as potentially persistent contaminants of ecotoxicological concern in floodplain soils.
Collapse
Affiliation(s)
- S Lennartz
- Institute of Soil Science and Soil Conservation, Justus-Liebig University Gießen, Heinrich-Buff Ring 26, 35392, Gießen, Germany; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - C J Weber
- Department of Soil Mineralogy and Soil Chemistry, Institute of Applied Geosciences, Technical University Darmstadt, Germany.
| | - J Siemens
- Institute of Soil Science and Soil Conservation, Justus-Liebig University Gießen, Heinrich-Buff Ring 26, 35392, Gießen, Germany
| | - I Mulder
- Institute of Geography, Soil Science and Soil Resources, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
2
|
Lee H, Kim Y, Cho Y, Jeon EJ, Jeong SH, Lee JH, Kim S. Nociceptive effects and gene alterations of CMIT/MIT mixture in zebrafish embryos and larvae. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138392. [PMID: 40280059 DOI: 10.1016/j.jhazmat.2025.138392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Nociception is a critical biological process that facilitates detecting and avoiding harmful stimuli. Methylisothiazolinone (MIT) and methylchloroisothiazolinone (CMIT) are biocidal agents widely used in disinfectants and cosmetics, however, their effects on nociceptive pathways and neurotoxicity remain insufficiently understood. This study investigated the neurotoxic and nociceptive effects of CMIT/MIT mixtures in zebrafish models. Zebrafish embryos were exposed to CMIT/MIT, and their behavioral and molecular responses to nociceptive stimuli were assessed. Acute exposure (4 -72 h post-fertilization) to CMIT/MIT (15 and 30 μg/L) led to heightened behavioral responses to noxious stimuli, significantly increasing velocity and neuronal activity. Molecular analysis revealed the upregulated expression of nociception-related and inflammatory markers. Subchronic exposure (4 hpf to 28 days post-fertilization) to lower CMIT/MIT concentrations resulted in prolonged freezing responses and reduced the movement in zebrafish larvae. Protein-protein interaction analysis further identified key pathways, including calcium signaling, MAPK, and neuroinflammation, affected by CMIT/MIT exposure. This study provides evidence that even low levels of CMIT/MIT exposure can enhance nociceptive responses by activating sensory neurons and modulating inflammatory pathways, raising concerns about the neurotoxic potential of these widely used biocidal compounds.
Collapse
Affiliation(s)
- Hong Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi-do 15355, Republic of Korea
| | - Yeonhwa Kim
- Zebrafish Translational Medical Research Center, Korea University, Ansan, Gyeonggi-do 15355, Republic of Korea
| | - Yuji Cho
- Department of Convergence Medicine, College of Medicine, Korea University, Seoul 04763, Republic of Korea
| | - Eun Jung Jeon
- Department of Convergence Medicine, College of Medicine, Korea University, Seoul 04763, Republic of Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi-do 15355, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi-do 15355, Republic of Korea
| | - Suhyun Kim
- Zebrafish Translational Medical Research Center, Korea University, Ansan, Gyeonggi-do 15355, Republic of Korea; Department of Convergence Medicine, College of Medicine, Korea University, Seoul 04763, Republic of Korea.
| |
Collapse
|
3
|
Impellitteri F, Riolo K, Zicarelli G, Porretti M, Multisanti CR, Piccione G, Giannetto A, Faggio C. Evaluation of cellular and physiological alterations of cells from Mytilus galloprovincialis exposed to benzisothiazolinone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117631. [PMID: 39742643 DOI: 10.1016/j.ecoenv.2024.117631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025]
Abstract
Benzisothiazolinone (BIT) is a preservative and antimicrobial agent widely used in various household and industrial products. It is readily detectable in pesticides, polishes, printing inks and detergents. This extensive use is reflected in a vast amount of this compound in the environment, which may cause toxic effects in organisms that come in contact with it. In light of the aforementioned context, this work aims to investigate the potential cellular and physiological impact on aquatic organisms through in vitro tests, utilising haemocytes and digestive gland (DG) cells derived from the Mediterranean mussel (Mytilus galloprovincialis). Two different concentrations (B1: 0.03 µg/L; B2: 0.3 µg/L) were tested at two different times of exposure (T1: 1 h; T2: 3 h) to evaluate the viability of cells, the phagocytic activity (haemocytes), the regulation volume decrease (RVD on DG cells) capability. Moreover, the cytoprotective mechanisms related to oxidative stress and detoxification were evaluated through the expression analysis by qPCR of key genes involved in these pathways. The most significant results obtained from these tests were the reduction of viability of haemocytes at T2 of exposure to B2, a decrease of vitality in DG cells exposed to B1 during the T1, the significant alteration in the phagocytosis activity, the upregulation of Cu/ZnSOD gene, the inhibition of the CYPY1 gene expression and upregulation of the Heat shock protein 70 (Hsp70) gene following the BIT exposure. These findings provide a valuable foundation for further investigation, offering insights into the potential impact of BIT on aquatic communities.
Collapse
Affiliation(s)
- Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, Messina 98168, Italy.
| | - Kristian Riolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, Messina 98166, Italy.
| | - Giorgia Zicarelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, Messina 98166, Italy.
| | - Miriam Porretti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, Messina 98166, Italy.
| | - Cristiana Roberta Multisanti
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, Messina 98168, Italy.
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, Messina 98168, Italy.
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, Messina 98166, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, Messina 98166, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
4
|
Hanamoto S, Yao D, Osaka T, Minami Y, Honda M. Factors affecting mass inflow of quaternary ammonium compounds into Japanese sewage treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123809. [PMID: 39721392 DOI: 10.1016/j.jenvman.2024.123809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Quaternary ammonium compounds (QACs), ecotoxic organic chemicals linked to multidrug resistance, are being used increasingly, for example to prevent the transmission of infections such as covid-19, in households, hospitals, and industry. To understand the locations, fluctuations, and fractions of QACs entering sewers, we monitored 14 QACs (benzalkonium chloride [BAC]-C8, C10, C12, C14, C16, and C18; dialkyldimethylammonium chloride [DDAC]-C8, C10, and C12; alkyltrimethylammonium chloride [ATAC]-C12, C16, and C18; benzethonium chloride; and cetylpyridinium chloride), and a disinfectant (chlorhexidine) in influent at four Japanese sewage treatment plants (STPs) five times throughout a year. Mass inflows were relatively stable throughout the year, indicating that the recent seasonal covid-19 epidemic did not greatly influence them. The differences in mass inflows among the STPs were normalized successfully by sewered residential population (most relative SDs were <30%), implying households to be the main source. Per-capita mass inflows accounted for 58%-73% of the per-capita consumption of BAC-C12 + C14 + C16, 28%-59% of that of DDAC-C10, 52%-70% of that of ATAC-C12, 86%-99% of that of ATAC-C16, and 64%-82% of that of ATAC-C18, indicating that a large proportion of their consumption entered sewers. The high contribution of ATAC-C16 agreed with its limited use in primary and secondary industries, little of whose wastewaters enter sewers, whereas the low contribution of DDAC-C10 is attributable to its substantial use in animal husbandry. Our first observation of fractions of QACs entering sewers will advance the management of environmental risks.
Collapse
Affiliation(s)
- Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Dingwen Yao
- Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Tatsuya Osaka
- Geosciences and Civil Engineering, College of Science and Engineering, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yuki Minami
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masato Honda
- Botanical Garden, Institute of Nature and Environmental Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
5
|
Sereni L, Junginger T, Payraudeau S, Imfeld G. Emissions and transport of urban biocides from facades to topsoil at the district-scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176269. [PMID: 39304152 DOI: 10.1016/j.scitotenv.2024.176269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Urban biocides used in facade paints and renders to prevent algae and fungal growth are released into the environment during rainfall, subsequently contaminating groundwater. However, quantitative data on the emission, transport and infiltration of urban biocides at the district scale are generally lacking. In this study, we quantified the fluxes of the urban biocide terbutryn and its major transformation product, terbutryn-sulfoxide, from building facades into stormwater, sediment, soil, and vegetation within a seven-year-old district employing sustainable stormwater management such as infiltration trenches and ponds. Combining four months of field observations with district scale modeling, we estimated initial concentrations of terbutryn in facade paint, quantified the emissions of terbutryn and terbutryn-sulfoxide from facades to soil, and evaluated terbutryn storage in soil under various painting scenarios. Terbutryn concentrations in sustainable stormwater management systems ranging from 2 to 67 ng L-1, frequently exceeding predicted no-effect concentrations. The constant release of terbutryn and its transformation products in runoff highlighted the chronic exposure of non-target organisms to urban biocides. Terbutryn concentrations in topsoil and pond sediment indicated accumulation, while concentrations exceeding 1 μg g-1 in the vegetation suggested plant uptake. Model results revealed that a substantial portion (27 to 73 %) of biocides infiltrated near facades through permeable surfaces like gravel, while a smaller portion (7 to 39 %) reached the stormwater management systems. Additionally, significant biocide leaching in the topsoil (30 cm below the surface) underscored the potential for biocide contamination in groundwater. Overall, this district-scale study and modeling approach provide a comprehensive framework for evaluating scenarios and measures for sustainable stormwater management to mitigate the infiltration of urban biocides into groundwater.
Collapse
Affiliation(s)
- Laura Sereni
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France; Université Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France
| | - Tobias Junginger
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France; University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems (IWS), Research Facility for Subsurface Remediation (VEGAS), Pfaffenwaldring 61, 70597 Stuttgart, Germany
| | - Sylvain Payraudeau
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France
| | - Gwenael Imfeld
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France.
| |
Collapse
|
6
|
Li R, Qu J, Hu X, Song T, Hu J, Fan X, Zhang Y, Xia W, Yu T. Anxiety caused by chronic exposure to methylisothiazolinone in zebrafish: Behavioral analysis, brain histology and gene responses. CHEMOSPHERE 2024; 368:143767. [PMID: 39557093 DOI: 10.1016/j.chemosphere.2024.143767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Methylisothiazolinones (MIT) are a class of preservatives and biocides extensively utilized in everyday products, industrial processes, and medical and healthcare applications. However, reports have indicated that MIT may cause skin irritation and neurotoxicity. Given its pervasive use, the neurotoxic potential of MIT has garnered increasing attention. Recent in vitro cellular experiments have demonstrated that MIT inhibits synaptic growth, although the neurotoxic effects and underlying mechanisms at the organismal level remain largely unexplored. In this study, it was found for the first time that long-term exposure to MIT resulted in anxiety, brain tissue inflammation, and a reduction in the number of Nissl bodies in the brain. Additionally, transcriptomic analysis indicated that exposure to 300 μg/L MIT induced a greater number of differentially expressed genes compared to 30 μg/L MIT, relative to the control group. Enrichment analysis, trend analysis, and GSEA analysis collectively identified the involvement of Steroid hormone metabolism, oxidative metabolism, and the Hedgehog pathway in MIT-induced neurotoxicity. Furthermore, a subsequent reduction in green fluorescence was observed in the MLS-EGFP zebrafish strain larvae of the HD group, suggesting that high dosage of MIT exerts an inhibitory effect on mitochondrial activity. This study confirmed the neurotoxic effects of MIT and investigated the potential genetic networks behind anxiety behavior. These findings contributed to the identification of key brain genes involved in the detection and monitoring of MIT, offering new insights into the neuroendocrine toxicity of other imidazolidinone compounds.
Collapse
Affiliation(s)
- Rui Li
- Shandong Provincial Key Medical and Health Laboratory of Shandong Mental Health Center, Shandong University, Jinan, Shandong, China.
| | - Jiangbo Qu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Xinyuan Hu
- Shandong Provincial Key Medical and Health Laboratory of Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Tianjia Song
- Shandong Provincial Key Medical and Health Laboratory of Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Junxia Hu
- Shandong Provincial Key Medical and Health Laboratory of Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Xuesong Fan
- Shandong Provincial Key Medical and Health Laboratory of Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Yuanqing Zhang
- Shandong Provincial Key Medical and Health Laboratory of Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Weili Xia
- Shandong Provincial Key Medical and Health Laboratory of Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Tiangui Yu
- Shandong Provincial Key Medical and Health Laboratory of Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Yu P, Guo Z, Wang J, Guo Y, Wang T, Zhang L. Insight into the photodegradation of methylisothiazolinone and benzoisothiazolinone in aquatic environments. WATER RESEARCH 2024; 265:122301. [PMID: 39173356 DOI: 10.1016/j.watres.2024.122301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Methylisothiazolinone (MIT) and Benzisothiazolinone (BIT) are two widely used non-oxidizing biocides of isothiazolinones. Their production and usage volume have sharply increased since the pandemic of COVID-19, inevitably leading to more release into water environment. However, their photochemical behaviors in water environment are still unclear. Therefore, this study investigated photodegradation properties of MIT and BIT in natural water under simulated sunlight. The results demonstrated that direct photolysis was mainly responsible for their photodegradation which occurred through their excited singlet states rather than triplet states. The quantum yields of MIT and BIT photodegradation were 11 - 13.6 × 10-4 and 2.43 - 5.79 × 10-4, respectively. pH had almost no effect on the photodegradation of MIT, while the photodegradation of BIT was significantly promoted under alkaline condition due to abundance of BIT in its deprotonated form (BIT-N-). Cl-, NO3- and dissolved organic matter (DOM) in natural water inhibited the photodegradation of both MIT and BIT, with the light screening effect of DOM being the most significantly inhibitory factor. The addition of other isothiazolinones, which possibly coexisted with MIT and BIT in actual condition, slightly inhibited the photodegradation of MIT and BIT. The estimated half-life under natural sunlight at a 30°N latitude was estimated to be approximately 1.1 days. The photodegradation pathways of MIT and BIT are similar, primarily initiated from the ring-opening at the N-S bond, with Frontier electron densities (FED) calculations suggesting the likelihood of oxidation and ·OH addition reactions at the O, N, and S sites. While the photodegradation products exhibited significantly reduced acute toxicity compared to their parent compounds, they nonetheless posed substantial chronic toxicity. These insights are vital for assessing the ecological impacts of MIT and BIT in aquatic environments.
Collapse
Affiliation(s)
- Pengfei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan
| | - Jieqiong Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yuchen Guo
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Tingting Wang
- RIKEN-Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
8
|
Baetz N, Cunha JR, Itzel F, Schmidt TC, Tuerk J. Effect-directed analysis of endocrine and neurotoxic effects in stormwater depending discharges. WATER RESEARCH 2024; 265:122169. [PMID: 39128332 DOI: 10.1016/j.watres.2024.122169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/06/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024]
Abstract
The investigation of pollutant inputs via stormwater runoff and subsequent effects in receiving waters is becoming increasingly urgent in view of climate change with accompanying extreme weather situations such as heavy rainfall events. In this study, two sampling areas, one urban and one rural but dominated by a highway, were investigated using effect-directed analysis to identify endocrine and neurotoxic effects and potentially responsible substances in stormwater structures and receiving waters. For this purpose, a transgenic yeast cell assay for the simultaneous detection of estrogenic, androgenic, and progestogenic effects (YMEES) was performed directly on high-performance thin-layer chromatography (HPTLC) plates. Concomitantly, estrogens were analyzed by GC-MS/MS and other micropollutants typical for wastewater and stormwater by LC-MS/MS. Discharges from the combined sewer overflow (CSO) contribute a large portion of the endocrine load to the studied water body, even surpassing the load from a nearby wastewater treatment plant (WWTP). An effect pattern similar to the CSO sample was shown in the receiving water after the CSO with lower intensities, consisting of an estrogenic, androgenic, and progestogenic effect. In contrast, after the WWTP, only one estrogenic effect with a lower intensity was detected. Concentrations of E1, 17α-E2, 17β-E2, EE2, and E3 in the CSO sample were 2000, 410, 1100, 560, and 2700 pg/L, respectively. HPTLC-YMEES and GC-MS/MS complement each other very well and help to elucidate endocrine stresses. An Acetylcholinesterase (AChE) inhibitory effect could not be assigned to a causative compound by suspect and non-target analysis using LC-HRMS. However, the workflow showed how information from HPTLC separation, effect-based methods, and other meta-information on the sampling area and substance properties can contribute to an identification of effect-responsible substances. Overall, the study demonstrated that effect-based methods in combination with HPTLC and instrumental analysis can be implemented to investigate pollution by stormwater run-off particularly regarding heavy rain events due to climate change.
Collapse
Affiliation(s)
- Nicolai Baetz
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany; Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Jorge Ricardo Cunha
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany
| | - Fabian Itzel
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Linksniederrheinische Entwässerungs-Genossenschaft (LINEG), Körperschaft des öffentlichen Rechts, Friedrich-Heinrich-Allee 64, 47475 Kamp-Lintfort, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Jochen Tuerk
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany.
| |
Collapse
|
9
|
Hanamoto S, Zaman S, Yao D, Minami Y. Occurrence and source identification of the disinfectant didecyldimethylammonium chloride in a Japanese watershed receiving effluent from swine farms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124714. [PMID: 39134168 DOI: 10.1016/j.envpol.2024.124714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/18/2024]
Abstract
Didecyldimethylammonium chloride (DDAC), a toxic quaternary ammonium compound (QAC) linked to multidrug resistance, is used widely in households and hospitals and on swine farms to prevent disease transmission. However, little is known about its occurrence in watersheds receiving livestock wastewaters or manure. We monitored DDAC and tracers (veterinary and human drugs) once a season over a year at 14 sites in a Japanese watershed where swine outnumbered humans 1.2 to 1 and where both swine and human wastewaters were largely treated on site. DDAC concentrations in sewage-treatment-plant effluent (33-52 ng/L) were close to, whereas those in river waters (3.6-16,672 ng/L) far exceeded, those reported worldwide. DDAC mass flows at the catchment outlet (1692-3816 μg/s) were higher than those of any of the drugs. DDAC concentrations were significantly correlated with total concentrations of veterinary drugs (Spearman's correlation coefficient, 0.95, P < 0.01), indicating that the major pathway of DDAC entry to surface waters was via effluent discharge from swine farms. Comparison of observed and predicted mass flows implied that a substantial percentage of DDAC was washed from the barn floor into swine excrement. To our knowledge, this is the first study to demonstrate QAC hotspots attributable to animal husbandry.
Collapse
Affiliation(s)
- Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Samina Zaman
- Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Dingwen Yao
- Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yuki Minami
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
10
|
Yu P, Guo Z, Wang T, Wang J, Guo Y, Zhang L. Elucidating the photodegradation mechanism of octylisothiazolinone and dichlorooctylisothiazolinone in surface water: An in-depth comprehensive analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174185. [PMID: 38909814 DOI: 10.1016/j.scitotenv.2024.174185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Octylisothiazolinone (OIT) and Dichlorooctylisothiazolinone (DCOIT), widely used antibacterial agents in coatings, have seen a sharp increase in use in response to the Coronavirus disease 2019 (Covid-19) pandemic, ultimately leading to their increase in the aquatic environment. However, their photodegradation process in surface water is still unclear. The purpose of this study is to investigate the photodegradation kinetics and mechanisms of OIT and DCOIT in natural water environments. Under simulated solar irradiation, they undergo direct photolysis in both natural freshwater and seawater mainly via their excited singlet states, while no self-sensitization photolysis was observed. The direct photolysis rate constants of OIT and DCOIT were 1.19 ± 0.07 and 0.57 ± 0.03 h-1, respectively. In addition, dissolved organic matter (DOM), NO3- and Cl- in natural waters did not contribute significantly to the photodegradation, and the light screening effect of DOM was identified as the main inhibiting factor. The photodegradation half-life of OIT was estimated to be 0.66 to 1.69 days, while the half-life of DCOIT was as high as 20.9 days during winter in surface water at 30°N latitude. Ring opening of the N-S bond and covalent bond breaking between CN are the main pathways for the photodegradation of OIT and DCOIT, which is verified by density-functional theory calculations. Ecological Structure Activity Relationships (ECOSAR) results indicate that OIT and DCOIT have "Very Toxic" biological toxicity, and the acute toxicity of their products is significantly reduced. It is noteworthy that the toxicity of the products of DCOIT is generally higher than that of OIT, and the chronic toxicity of most of the products is still above the "Toxic" level. Therefore, an in-depth understanding of the photodegradation mechanisms of OIT and DCOIT in aqueous environments is crucial for accurately assessing their ecological risks in natural water environments.
Collapse
Affiliation(s)
- Pengfei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8552, Japan
| | - Tingting Wang
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Jieqiong Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuchen Guo
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
11
|
Witter AE. Acute toxicity of petroleum asphalt seal coat leachates to Ceriodaphnia dubia is linked to polymer preservatives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173123. [PMID: 38740202 DOI: 10.1016/j.scitotenv.2024.173123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Low-VOC waterborne asphalt-emulsion (AE) seal coat is considered more sustainable than solvent-based coal-tar emulsion seal coat because asphalt emulsions contain negligible amounts of carcinogenic PAHs and release fewer harmful volatile organic compounds. Yet, many low-VOC coatings leach water-soluble substances under outdoor conditions. To investigate the chemical composition of seal coat leachates, three AE formulations were cured under natural weathering conditions and exposed to simulated runoff over a 10-day field trial. Runoff was collected and concentrated using ion-exchange solid-phase extraction (SPE) and analyzed using gas chromatography/mass spectrometry (GC-MS). Leached compounds included hydrocarbons, esters, amines, siloxanes, plasticizers, biocides, polyethylene glycol (PEG) ethers, urethanes, and toluene diisocyanate (TDI). Glycol ethers comprised 29-97 % of the measured leachate mass. Two seal coat formulations contained isothiazolinone biocides, methylchloro- and methylisothiazolinone (CMIT/MIT; 0.5 mg/L in runoff), while a third seal coat formulation continuously leached TDI, a reactive polyurethane (PU) precursor (0.7 mg/L in runoff). Biocide-containing leachates showed acute toxicity to the freshwater water flea, Ceriodaphnia dubia after 48 h, while TDI-containing leachate showed no acute toxicity, suggesting that leachate toxicity was due to in-can polymer preservatives. As biocides are implicated in impaired reproductive signaling, these results support the use of alkaline pH to avoid biofouling and reinforce the goal of reducing and/or avoiding the use of biocides altogether, especially for environmentally friendly products.
Collapse
Affiliation(s)
- Amy E Witter
- Dickinson College, Department of Chemistry, Carlisle, PA 17013, United States of America.
| |
Collapse
|
12
|
Montoya-Coronado VA, Tedoldi D, Lenormand E, Castebrunet H, Molle P, Lipeme Kouyi G. Combined sewer overflow mitigation through SUDS - A review on modelling practices, scenario elaboration, and related performances. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121073. [PMID: 38833926 DOI: 10.1016/j.jenvman.2024.121073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024]
Abstract
Hydrologic-hydraulic modelling of urban catchment is an asset for land managers to simulate Sustainable Urban Drainage Systems (SUDS) implementation to fulfil combined sewer overflow (CSO) regulations. This review aims to assess the current practices in modelling SUDS scenarios at large scale for CSO mitigation encompassing every stage of the modelling process from the choice of the equation to the validation of the initial state of the urban system, right through to the elaboration, modelling, and selection of SUDS scenarios to evaluate their performance on CSO. Through a quantitative and qualitative analysis of 50 published studies, we found a diversity of choices when modelling the status quo of the urban system. Authors generally do not explain the modelling processes of slow components (deep infiltration, groundwater infiltration) and interconnexion between SUDS and the sewer system. In addition, only a few authors explain how CSO structures are modelled. Furthermore, the modelling of SUDS implementation at catchment scale is highlighted in the 50 studies retrieved with three different approaches going from simplified to detailed. SUDS modelling choices seem to be consistent with the objectives: studies focusing on dealing with several objectives at the time typically opt for a complex system configuration that includes the surface processes, network, CSO, SUDS, and often the soil and/or groundwater components. Conversely, authors who have selected a basic configuration generally aim to address a single, straightforward question (e.g., which type of SUDS). However, elaboration and selection of scenarios for CSO mitigation is mainly based on local constraints, which does not allow hydrological performance to be directly optimised. In conclusion, to improve current practices in modelling SUDS scenarios at large scale for CSO mitigation, authors suggest to: (i) improve clear practices of CSO modelling, calibration and validation at the urban catchment scale, (ii) develop methods to optimize the performance of scenarios for CSO mitigation using hydrological drivers, and (iii) improve parsimonious and user-friendly models to simulate SUDS scenarios in a context of data scarcity.
Collapse
Affiliation(s)
| | - D Tedoldi
- INSA Lyon, DEEP, UR7429, 69621, Villeurbanne, France
| | - E Lenormand
- INSA Lyon, DEEP, UR7429, 69621, Villeurbanne, France
| | - H Castebrunet
- Université Grenoble Alpes, IGE, F-38000, Grenoble, France
| | - P Molle
- INRAE, Research Unit REVERSAAL, Lyon, France
| | | |
Collapse
|
13
|
Nolan TM, Reynolds LJ, Sala-Comorera L, Martin NA, Stephens JH, O'Hare GMP, O'Sullivan JJ, Meijer WG. Land use as a critical determinant of faecal and antimicrobial resistance gene pollution in riverine systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162052. [PMID: 36758688 DOI: 10.1016/j.scitotenv.2023.162052] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The WHO recognises antimicrobial resistance (AMR) as a global health threat. The environment can act as a reservoir, facilitating the exchange and the physical movement of resistance. Aquatic environments are at particular risk of pollution, with large rivers subject to pollution from nearby human, industrial or agricultural activities. The land uses associated with these activities can influence the type of pollution. One type of pollution and a likely contributor to AMR pollution that lowers water quality is faecal pollution. Both pose an acute health risk and could have implications for resistance circulating in communities. The effects of land use are typically studied using physiochemical parameters or in isolation of one another. However, this study aimed to investigate the impact of different land uses on riverine systems. We explored whether differences in sources of faecal contamination are reflected in AMR gene concentrations across agricultural and urban areas. Water quality from three rivers impacted by different land uses was assessed over one year by quantifying faecal indicator bacteria (FIB), microbial source tracking markers (MST) and AMR genes. In addition, a multiparametric analysis of AMR gene pollution was carried out to understand whether agricultural and urban areas are similarly impacted. Faecal indicators varied greatly, with the highest levels of FIB and the human MST marker observed in urban regions. In addition, these faecal markers correlated with AMR genes. Similarly, significant correlations between the ruminant MST marker and AMR gene levels in agriculture areas were observed. Overall, applying multiparametric analyses to include AMR gene levels, separation and clustering of sites were seen based on land use characterisation. This study suggests that differences in prescription of antimicrobials used in animal and human healthcare may influence environmental resistomes across agricultural and urban areas. In addition, public health risks due to exposure to faecal contamination and AMR genes are highlighted.
Collapse
Affiliation(s)
- Tristan M Nolan
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Liam J Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Laura Sala-Comorera
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Niamh A Martin
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Jayne H Stephens
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Gregory M P O'Hare
- School of Computer Science and Statistics, Trinity College Dublin, Dublin 2, Ireland
| | - John J O'Sullivan
- UCD School of Civil Engineering, UCD Dooge Centre for Water Resources Research and UCD Earth Institute, University College Dublin, Dublin 4, Ireland
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
14
|
Kim J, Choi J. Trans- and Multigenerational Effects of Isothiazolinone Biocide CMIT/MIT on Genotoxicity and Epigenotoxicity in Daphnia magna. TOXICS 2023; 11:388. [PMID: 37112615 PMCID: PMC10140887 DOI: 10.3390/toxics11040388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
The mixture of 5-chloro-2-methylisothiazol-3(2H)-one and 2-methylisothiazol-3(2H)-one, CMIT/MIT, is an isothiazolinone biocide that is consistently detected in aquatic environments because of its broad-spectrum usage in industrial fields. Despite concerns about ecotoxicological risks and possible multigenerational exposure, toxicological information on CMIT/MIT is very limited to human health and within-generational toxicity. Furthermore, epigenetic markers altered by chemical exposure can be transmitted over generations, but the role of these changes in phenotypic responses and toxicity with respect to trans- and multigenerational effects is poorly understood. In this study, the toxicity of CMIT/MIT on Daphnia magna was evaluated by measuring various endpoints (mortality, reproduction, body size, swimming behavior, and proteomic expression), and its trans- and multigenerational effects were investigated over four consecutive generations. The genotoxicity and epigenotoxicity of CMIT/MIT were examined using a comet assay and global DNA methylation measurements. The results show deleterious effects on various endpoints and differences in response patterns according to different exposure histories. Parental effects were transgenerational or recovered after exposure termination, while multigenerational exposure led to acclimatory/defensive responses. Changes in DNA damage were closely associated with altered reproduction in daphnids, but their possible relationship with global DNA methylation was not found. Overall, this study provides ecotoxicological information on CMIT/MIT relative to multifaceted endpoints and aids in understanding multigenerational phenomena under CMIT/MIT exposure. It also emphasizes the consideration of exposure duration and multigenerational observations in evaluating ecotoxicity and the risk management of isothiazolinone biocides.
Collapse
|
15
|
Wagner-Deyriès M, Varignier L, Revel M, Delhaye T, Rondeau D, Coutellec MA, McCairns RJS. Variation of Tolerance to Isothiazolinones Among Daphnia pulex Clones. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:805-814. [PMID: 36661281 DOI: 10.1002/etc.5564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/12/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Isothiazolinones are a family of broad-spectrum biocides widely used in industry and consumer products. Chloro- and methyl-isothiazolinones (CMIT and MIT) are documented as strong irritants, yet they are still used in a wide variety of applications, including cosmetics, cleansers, hygienic products, and various industrial applications. The subsequent substantial release of these molecules from urban sources into freshwater environments, and their potential impacts on aquatic species, have nevertheless received little attention so far, with few studies reporting on the toxicity of either CMIT or MIT to nontarget organisms. The present study addresses this current knowledge gap by evaluating the acute toxicity to Daphnia pulex (Cladocera) of CMIT/MIT (3:1) and MIT, the two formulations most commonly used by manufacturers. In addition, genetic diversity is known to be a major component of variability in phenotypic responses, although it is largely overlooked in typical toxicity tests. Thus the potential range of responses inherent to genetic diversity is rarely considered. Therefore, to account for intraspecific variations in sensitivity, our design involved eight clonal lines of D. pulex stemming from distinct natural populations or commercial strains. Clones exhibited strong variation in their responses, with median lethal concentration (LC50) values ranging from 0.10 to 1.84 mg/L for the mixture CMIT/MIT, and from 0.68 to 2.84 mg/L for MIT alone. These intraspecific ranges of LC50 values challenge the use of single clones of daphnids in standard ecotoxicological tests and the predictions based on their results. The present study brings new evidence that assessing ecological risk of chemicals while ignoring genotype diversity is neither ecologically relevant, nor a representative evaluation of the diversity of potential adverse outcomes. Environ Toxicol Chem 2023;42:805-814. © 2023 SETAC.
Collapse
Affiliation(s)
- Margot Wagner-Deyriès
- DECOD, Institut National de la Recherche Agronomique, Institut Agro, Institut Francais de Recherche pour l'Exploitation de la Mer, Rennes, France
| | - Léa Varignier
- DECOD, Institut National de la Recherche Agronomique, Institut Agro, Institut Francais de Recherche pour l'Exploitation de la Mer, Rennes, France
| | - Marion Revel
- DECOD, Institut National de la Recherche Agronomique, Institut Agro, Institut Francais de Recherche pour l'Exploitation de la Mer, Rennes, France
| | - Thomas Delhaye
- Institut d'Électronique et des Technologies du numéRique, UMR Centre National de la Recherche Scientifique 6164, University of Rennes 1, Rennes, France
| | - David Rondeau
- Institut d'Électronique et des Technologies du numéRique, UMR Centre National de la Recherche Scientifique 6164, University of Rennes 1, Rennes, France
| | - Marie-Agnès Coutellec
- DECOD, Institut National de la Recherche Agronomique, Institut Agro, Institut Francais de Recherche pour l'Exploitation de la Mer, Rennes, France
| | - R J Scott McCairns
- DECOD, Institut National de la Recherche Agronomique, Institut Agro, Institut Francais de Recherche pour l'Exploitation de la Mer, Rennes, France
| |
Collapse
|
16
|
Occurrence, effects, and ecological risks of chemicals in sanitizers and disinfectants: A review. ENVIRONMENTAL CHEMISTRY AND ECOTOXICOLOGY 2023; 5:62-78. [PMCID: PMC9911856 DOI: 10.1016/j.enceco.2023.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 10/15/2023]
Abstract
In response to the novel coronavirus referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) – a virus that causes COVID-19 disease has led to wide use of sanitizers and disinfectants. This, in turn, triggered concerns on their potential deleterious effects to human health and the environment due to numerous chemicals incorporated in both product categories. Here, the current state of science regarding the occurrence and ecological effects of different classes of chemicals in these products (e.g., ultraviolent filters, fragrances, etc.) are summarized in different natural (e.g., rivers) and engineered (e.g., wastewater treatment plants) systems. Data collected in the literature suggests chemicals incorporated in sanitizers and disinfectants are present in the environment, and a large portion are toxic to fish, algae, and daphnia. Using the risk quotient approach based on occurrence data, we found eight chemicals that posed the highest risk to aquatic organisms in freshwater systems were benzalkonium chloride, 4-chloro-m-cresol, sodium ortho phenyl phenate, hydrogen peroxide, 1, 2-propanediol, 4-Methyl-benzilidine-camphor, ethylhexyl methoxy cinnamate, and octocrylene. Considering limited occurrence and effects information for most chemicals, further studies on environmental monitoring and potential consequences of long-term exposure in aquatic ecosystems are recommended.
Collapse
|
17
|
Lee S, Kwon B, Jeong J, Kho Y, Ji K. Thyroid hormone disrupting potentials of benzisothiazolinone in embryo-larval zebrafish and rat pituitary GH3 cell line. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114406. [PMID: 36516622 DOI: 10.1016/j.ecoenv.2022.114406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Benzisothiazolinone (BIT), one of the most widely used antimicrobial agents in consumer products, has frequently been detected in the water environment. The present study was conducted to determine the adverse effects of BIT on the thyroid neuroendocrine system of zebrafish embryos/larvae. Rat pituitary (GH3) cell line was employed to support the underlying mechanism of thyroid hormone disrupting effects. Significant coagulation and hatching delay were observed in embryos exposed to 30 μg/L of BIT, which in turn remarkably decreased hatchability and larval survival. In BIT-exposed larvae, tshβ, tshr, and trh genes were significantly upregulated along with a decrease in thyroxine and triiodothyronine content, indicating that BIT decreased thyroid hormones and increased thyrotropin-releasing hormone and thyroid stimulating hormone secretion through a feedback circuit. The downregulation of trα and deio2 genes in the zebrafish larvae suggests the inhibition of thyroid hormone receptors and deiodination. Similar to the results in zebrafish, upregulation of tshβ and downregulation of trα, trβ, deio1, and deio2 genes were observed in GH3 cells. Our observations suggest that BIT can decrease the level of thyroid hormones by influencing central regulation, receptor binding, and deiodination.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea
| | - Bareum Kwon
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Junhyeok Jeong
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi 13135, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi 13135, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea.
| |
Collapse
|
18
|
Nowak-Lange M, Niedziałkowska K, Lisowska K. Cosmetic Preservatives: Hazardous Micropollutants in Need of Greater Attention? Int J Mol Sci 2022; 23:14495. [PMID: 36430973 PMCID: PMC9692320 DOI: 10.3390/ijms232214495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, personal care products (PCPs) have surfaced as a novel class of pollutants due to their release into wastewater treatment plants (WWTPs) and receiving environments by sewage effluent and biosolid-augmentation soil, which poses potential risks to non-target organisms. Among PCPs, there are preservatives that are added to cosmetics for protection against microbial spoilage. This paper presents a review of the occurrence in different environmental matrices, toxicological effects, and mechanisms of microbial degradation of four selected preservatives (triclocarban, chloroxylenol, methylisothiazolinone, and benzalkonium chloride). Due to the insufficient removal from WWTPs, cosmetic preservatives have been widely detected in aquatic environments and sewage sludge at concentrations mainly below tens of µg L-1. These compounds are toxic to aquatic organisms, such as fish, algae, daphnids, and rotifers, as well as terrestrial organisms. A summary of the mechanisms of preservative biodegradation by micro-organisms and analysis of emerging intermediates is also provided. Formed metabolites are often characterized by lower toxicity compared to the parent compounds. Further studies are needed for an evaluation of environmental concentrations of preservatives in diverse matrices and toxicity to more species of aquatic and terrestrial organisms, and for an understanding of the mechanisms of microbial degradation. The research should focus on chloroxylenol and methylisothiazolinone because these compounds are the least understood.
Collapse
Affiliation(s)
- Marta Nowak-Lange
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Łódź, Poland
| | | | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Łódź, Poland
| |
Collapse
|
19
|
In vitro study of the ecotoxicological risk of methylisothiazolinone and chloroxylenol towards soil bacteria. Sci Rep 2022; 12:19068. [PMID: 36352006 PMCID: PMC9645328 DOI: 10.1038/s41598-022-22981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Methylisothiazolinone (MIT) and chloroxylenol (PCMX) are popular disinfectants often used in personal care products (PCPs). The unregulated discharge of these micropollutants into the environment, as well as the use of sewage sludge as fertilizer and reclaimed water in agriculture, poses a serious threat to ecosystems. However, research into their ecotoxicity towards nontarget organisms is very limited. In the present study, for the first time, the ecotoxicity of biocides to Pseudomonas putida, Pseudomonas moorei, Sphingomonas mali, and Bacillus subtilis was examined. The toxicity of MIT and PCMX was evaluated using the microdilution method, and their influence on the viability of bacterial cells was investigated by the AlamarBlue® test. The ability of the tested bacteria to form biofilms was examined by a microtiter plate assay. Intracellular reactive oxygen species (ROS) production was measured with CM-H2DCFDA. The effect of MIT and PCMX on phytohormone indole-3-acetic acid (IAA) production was determined by spectrophotometry and LC‒MS/MS techniques. The permeability of bacterial cell membranes was studied using the SYTOX Green assay. Changes in the phospholipid profile were analysed using LC‒MS/MS. The minimal inhibitory concentrations (MICs) values ranged from 3.907 to 15.625 mg L-1 for MIT and 62.5 to 250 mg L-1 for PCMX, indicating that MIT was more toxic. With increasing concentrations of MIT and PCMX, the cell viability, biofilm formation ability and phytohormone synthesis were maximally inhibited. Moreover, the growth of bacterial cell membrane permeability and a significantly increased content of ROS were observed, indicating that the exposure caused serious oxidative stress and homeostasis disorders. Additionally, modifications in the phospholipid profile were observed in response to the presence of sublethal concentrations of the chemicals. These results prove that the environmental threat posed by MIT and PCMX must be carefully monitored, especially as their use in PCPs is still growing.
Collapse
|
20
|
Junginger T, Payraudeau S, Imfeld G. Transformation and stable isotope fractionation of the urban biocide terbutryn during biodegradation, photodegradation and abiotic hydrolysis. CHEMOSPHERE 2022; 305:135329. [PMID: 35709839 DOI: 10.1016/j.chemosphere.2022.135329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Terbutryn is a widely used biocide in construction materials like paint and render to prevent the growth of microorganisms, algae and fungi. Terbutryn is released from the facades into the environment during rainfall, contaminating surface waters, soil and groundwater. Knowledge of terbutryn dissipation from the facades to aquatic ecosystems is scarce. Here, we examined in laboratory microcosms degradation half-lives, formation of transformation products and carbon and nitrogen isotope fractionation during terbutryn direct (UV light with λ = 254 nm and simulated sunlight) and indirect (simulated sunlight with nitrate) photodegradation, abiotic hydrolysis (pH = 1, 7 and 13), and aerobic biodegradation (stormwater pond sediment, soil and activated sludge). Biodegradation half-lives of terbutryn were high (>80 d). Photodegradation under simulated sunlight and hydrolysis at extreme pH values indicated slow degradability and accumulation in the environment. Photodegradation resulted in a variety of transformation products, whereas abiotic hydrolysis lead solely to terbutryn-2-hydroxy in acidic and basic conditions. Biodegradation indicates degradation to terbutryn-2-hydroxy through terbutryn-sulfoxide. Compound-specific isotope analysis (CSIA) of terbutryn holds potential to differentiate degradation pathways. Carbon isotope fractionation values (εC) ranged from -3.4 ± 0.3‰ (hydrolysis pH 1) to +0.8 ± 0.1‰ (photodegradation under UV light), while nitrogen isotope fractionation values ranged from -1.0 ± 0.4‰ (simulated sunlight photodegradation with nitrate) to +3.4 ± 0.2‰ (hydrolysis at pH 1). In contrast, isotope fractionation during biodegradation was insignificant. ΛN/C values ranged from -1.0 ± 0.1 (hydrolysis at pH 1) to 2.8 ± 0.3 (photodegradation under UV light), allowing to differentiate degradation pathways. Combining the formation of transformation products and stable isotope fractionation enabled identifying distinct degradation pathways. Altogether, this study highlights the potential of CSIA to follow terbutryn degradation in situ and differentiate prevailing degradation pathways, which may help to monitor urban biocide remediation and mitigation strategies.
Collapse
Affiliation(s)
- Tobias Junginger
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/ EOST/ ENGEES, CNRS, UMR 7063, F-67084, Strasbourg, France
| | - Sylvain Payraudeau
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/ EOST/ ENGEES, CNRS, UMR 7063, F-67084, Strasbourg, France
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/ EOST/ ENGEES, CNRS, UMR 7063, F-67084, Strasbourg, France.
| |
Collapse
|
21
|
Characterisation of the triclosan efflux pump TriABC and its regulator TriR in Agrobacterium tumefaciens C58. Microbiol Res 2022; 263:127112. [DOI: 10.1016/j.micres.2022.127112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
|
22
|
Fuchte HE, Beck N, Bieg E, Bayer VJ, Achten C, Krauss M, Schäffer A, Smith KEC. A look down the drain: Identification of dissolved and particle bound organic pollutants in urban runoff waters and sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119047. [PMID: 35227846 DOI: 10.1016/j.envpol.2022.119047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/29/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Urban runoff contains a range of organic micropollutants which, if not removed during wastewater treatment, pose a risk to aquatic environments. These mixtures are complex and often site-specific. Street drains provide an ideal sampling point given they collect the runoff from local and defined catchments. In this study, runoff was collected and sampled in five street drains located in a medium sized town in Germany. A specially constructed trap was used to collect the particulate and total water fractions of the runoff. In addition, passive samplers were deployed to determine the freely dissolved concentrations of selected compounds in the runoff. In sum, 187 polar organic micropollutants could be quantified using LC-HRMS. Thirty of these could only be detected by the use of passive samplers. Traffic derived pollutants such as corrosion inhibitors, rubber- and plastic additives, but also pollutants of industrial origin were strongly represented with sum median concentrations of 100 μg/kg dry weight (DW) in the sediment and 400 ng/L in the water fraction. Several of these substances are of concern due to their environmental persistence and mobility. Perfluorinated compounds and pesticides occurred at lower levels of several μg/kg DW sediment or ng/L water. A number of substances including pharmaceuticals, sweeteners and stimulants indicated domestic wastewater influences. Furthermore, a total of 62 parent and alkylated PAHs were quantified by GC-MS and contributed 30-70% to the sum concentrations of the micropollutants. Non-EPA PAHs dominated the carcinogenic PAH toxicity. The increased PAH alkylation indices (0.7-0.9) showed these primarily came from combustion sources. The runoff particles were additionally microscopically characterized, and correlations were found between the rubber particle counts and the PAH alkylation-index as well as the levels of 2-(methylthio)benzothiazole, a marker compound for tire leaching.
Collapse
Affiliation(s)
- Hanna E Fuchte
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Natascha Beck
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Evelyn Bieg
- Umwelt-Mikroskopie Evelyn Bieg, Greppstraße 64, 52159, Roetgen, Germany
| | - Viviane J Bayer
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstraße 24, 48149, Münster, Germany
| | - Christine Achten
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstraße 24, 48149, Münster, Germany
| | - Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing, 210093, PR China
| | - Kilian E C Smith
- Department of Water, Environment, Construction and Safety, University of Applied Sciences Magdeburg-Stendal, 39114, Magdeburg, Germany
| |
Collapse
|
23
|
Le Gaudu M, Thiebault T, Quénéa K, Alliot F, Guigon E, Le Callonnec L. Trace organic contaminants within solid matrices along an anthropized watercourse: Organo-mineral controls on their spatial distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153601. [PMID: 35114246 DOI: 10.1016/j.scitotenv.2022.153601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Although numerous studies have determined significant contamination in terms of trace organic contaminant (TrOC) diversity and concentration, the occurrence of TrOCs within solid matrices as suspended solids and sediments flies under the radar. In this study, the occurrence of 35 TrOCs of various classes (i.e. pharmaceutical products and pesticides) was investigated in three compartments, namely dissolved phase, suspended particulate matter (SPM) and sediments, within an anthropized river in France. The sampling was performed to assess the spatial contamination dynamics and the impact of a major wastewater treatment plant (WWTP), under two contrasted hydrological conditions, i.e. base level and flood conditions. Solid samples were finely characterized (XRD, grainsize, TOC) in order to assess the impact of organic and mineral composition on the sorption extent of TrOCs. The study reveals that the clear spatial pattern of contamination in water samples, mostly generated by the effluent discharge of WWTPs, is less clear in solid matrices as the variability of the organo-mineral composition of such samples strongly impacts their favourability for sorption. Moreover, the flood event strongly impacted the sedimentary compartment, remobilizing fine and TrOC contaminated particles that were further found in suspended particulate matter. Lastly, the representativeness of contaminant diversity and concentration within the solid matrices displayed more favourable insights for SPM.
Collapse
Affiliation(s)
- Maëlla Le Gaudu
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France
| | - Thomas Thiebault
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France.
| | - Katell Quénéa
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France
| | - Fabrice Alliot
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France
| | - Elodie Guigon
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France
| | | |
Collapse
|
24
|
Lee S, Lee JS, Kho Y, Ji K. Effects of methylisothiazolinone and octylisothiazolinone on development and thyroid endocrine system in zebrafish larvae. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127994. [PMID: 34915294 DOI: 10.1016/j.jhazmat.2021.127994] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Methylisothiazolinone (MIT) and octylisothiazolinone (OIT) are used as preservatives and biocides to prevent product decay or deterioration. In the present study, developmental toxicity and the effect on the thyroid endocrine system were investigated in zebrafish embryos exposed to MIT and OIT for 96 h. Coagulation was significantly increased when zebrafish embryos were exposed to a concentration of 300 μg/L MIT and ≥ 0.3 μg/L OIT, resulting in a significant decrease in hatchability and larvae survival. The body length in zebrafish larvae exposed to 30 μg/L OIT was significantly shorter than that of the control group. The whole-body levels of triiodothyronine and thyroxine were significantly decreased in larvae exposed to MIT and OIT. Significant upregulation of crh, trh, tshβ, and tshr genes and downregulation of trαa, tg, ttr, and deio2 genes were observed in fish exposed to two isothiazolinones. The expression of dre-miR-193b and dre-miR-499 was significantly increased in zebrafish larvae exposed to MIT and OIT, indicating that epigenetic deregulation of miRNAs modulated genes involved in thyroid hormone regulation. OIT has a higher magnitude of toxicity than MIT, corresponding to the observed changes in thyroid hormones and developmental toxicity.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea
| | - Ji-Su Lee
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi 13135, Republic of Korea; National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi 13135, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea.
| |
Collapse
|
25
|
Yang ZW, Wang WL, Lee MY, Wu QY, Guan YT. Synergistic effects of ozone/peroxymonosulfate for isothiazolinone biocides degradation: Kinetics, synergistic performance and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118626. [PMID: 34864102 DOI: 10.1016/j.envpol.2021.118626] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/14/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Synergistic effects of ozone (O3) and peroxymonosulfate (PMS, HSO5-) for isothiazolinone biocides degradation was studied. The synergistic ozonation process (O3/PMS) increased the efficiency of methyl-isothiazolinone (MIT) and chloro-methyl-isothiazolinone (CMIT) degradation to 91.0% and 81.8%, respectively, within 90 s at pH 7.0. This is 30.6% and 62.5% higher than the corresponding ozonation efficiency, respectively. Total radical formation value (Rct,R) for the O3/PMS process was 24.6 times that of ozonation alone. Calculated second-order rate constants for the reactions between isothiazolinone biocides and (kSO4-,MIT and kSO4-,CMIT) were 8.15 × 109 and 4.49 × 109 M-1 s-1, respectively. Relative contributions of O3, hydroxyl radical (OH) and oxidation to MIT and CMIT removal were estimated, which were 15%, 45%, and 40% for O3, OH and oxidation to MIT, and 1%, 67%, and 32% for O3, OH and oxidation to CMIT at pH 7.0, respectively. Factors influencing the O3/PMS process, namely the solution pH, chloride ions (Cl-), and bicarbonate (HCO3-), were evaluated. Increasing the solution pH markedly accelerated O3 decay and OH and formation, thus weakening the relative contribution of O3 oxidation while enhancing that of OH and . Cl- had a negligible effect on MIT and CMIT degradation. Under the dual effect of bicarbonate (HCO3-) as inhibitor and promoter, low concentrations (1-2 mM) of bicarbonate weakly promoted MIT and CMIT degradation, while high concentrations (10-20 mM) induced strong inhibition. Lastly, oxidation performance of O3 and O3/PMS processes for MIT and CMIT degradation in different water matrices was compared.
Collapse
Affiliation(s)
- Zheng-Wei Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Min-Yong Lee
- Department of Environmental Resources Research, National Institute of Environmental Research, Seogu, Incheon, 22689, Republic of Korea
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Yun-Tao Guan
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
26
|
Large-Volume Samplers for Efficient Composite Sampling and Particle Characterization in Sewer Systems. WATER 2021. [DOI: 10.3390/w13202831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The assessment of pollution from sewer discharges requires flexible and reliable sampling methods. The characteristics of the sampling system must be known to allow comparison with other studies. Large volume samplers (LVS) are increasingly used for monitoring in sewer systems and surface waters. This article provides a comprehensive description of this widely applicable sampling system, gives insight into its comparability to standard methods, and provides recommendations for researchers and practitioners involved in water quality monitoring and urban water management. Two methods for subsampling from LVS are presented, i.e., collection of homogenized or sedimented samples. Results from a sampling campaign at combined sewer overflows (CSOs) were used to investigate the comparability of both subsampling methods and conventional autosamplers (AS). Event mean concentrations (EMC) of total suspended solids (TSS) derived from homogenized LVS samples and AS pollutographs were comparable. TSS-EMC of homogenized and sedimented LVS samples were also comparable. However, differences were found for particle size distribution and organic matter content. Consequently, sedimented LVS samples, which contained solids masses in the range of 3–70 g, are recommended to be used for particle characterization. The differences between homogenized and sedimented LVS samples, e.g., the quality of homogenization and the stability of samples during sedimentation in LVS, should be further investigated. Based on LVS results, average TSS concentrations of 50–60 mg/L were found for CSOs from centralized treatment facilities in Bavaria. With a median share of 84%, particles <63 µm were the dominant fraction.
Collapse
|
27
|
Assessment of Environmental Pollution and Human Exposure to Pesticides by Wastewater Analysis in a Seven-Year Study in Athens, Greece. TOXICS 2021; 9:toxics9100260. [PMID: 34678955 PMCID: PMC8537104 DOI: 10.3390/toxics9100260] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Pesticides have been used in large amounts around the world for decades and are responsible for environmental pollution and various adverse effects on human health. Analysis of untreated wastewater can deliver useful information on pesticides’ use in a particular area and allow the assessment of human exposure to certain substances. A wide-scope screening method, based on liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry, was applied, using both target and suspect screening methodologies. Daily composite influent wastewater samples were collected for seven or eight consecutive days in Athens between 2014 and 2020 and analyzed for 756 pesticides, their environmental transformation products and their human metabolites. Forty pesticides were quantified at mean concentrations up to 4.9 µg/L (tralkoxydim). The most abundant class was fungicides followed by herbicides, insect repellents, insecticides and plant growth regulators. In addition, pesticide transformation products and/or metabolites were detected with high frequency, indicating that research should be focused on them. Human exposure was evaluated using the wastewater-based epidemiology (WBE) approach and 3-ethyl-carbamoyl benzoic acid and cis-1,2,3,6-tetrahydrophthalimide were proposed as potential WBE biomarkers. Wastewater analysis revealed the presence of unapproved pesticides and indicated that there is an urgent need to include more transformation products in target databases.
Collapse
|
28
|
Nickel JP, Sacher F, Fuchs S. Up-to-date monitoring data of wastewater and stormwater quality in Germany. WATER RESEARCH 2021; 202:117452. [PMID: 34358910 DOI: 10.1016/j.watres.2021.117452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
A comprehensive dataset of pollutant concentrations in German urban wastewater systems is available from recently completed monitoring projects. It contains up to 1000 concentration values for each of 79 substances in wastewater treatment plant (WWTP) effluents from 49 sites, and up to 157 values for each of 95 substances in combined sewer overflows (CSOs) from 12 sites. WWTP influents and stormwater outfalls were sampled to a lesser extent. All sampling methods were harmonised and aimed at collecting event or multi-day composite samples over periods of ≥1 year. Among the substances analysed were biocides and pesticides, polycyclic aromatic hydrocarbons, perfluorinated alkyl substances, metals, pharmaceuticals, benzotriazoles, phenols, acesulfame, di-(2-ethylhexyl)phthalate, and hexabromocyclododecanes. Occurrence, concentration ranges, and removal rates of selected WWTPs are presented. CSOs can be confirmed as an important pathway of metals and PAH to receiving waters when compared to WWTPs on the basis of annual per capita loads. The derived volume-weighted site mean concentrations are qualified to be used as representative input data for estimation of average substance emissions in large areas, e.g. on river basin scale, if no site-specific data are available. As such, they will contribute to the development of strategies to reduce substance emissions, taking into account not only WWTPs but also stormwater-related discharges.
Collapse
Affiliation(s)
- Jan Philip Nickel
- Karlsruhe Institute of Technology (KIT), Institute for Water and River Basin Management, Department of Aquatic Environmental Engineering, Gotthard-Franz-Str. 3, Karlsruhe 76131, Germany.
| | - Frank Sacher
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, Karlsruhe 76139, Germany
| | - Stephan Fuchs
- Karlsruhe Institute of Technology (KIT), Institute for Water and River Basin Management, Department of Aquatic Environmental Engineering, Gotthard-Franz-Str. 3, Karlsruhe 76131, Germany.
| |
Collapse
|
29
|
Thiebault T, Alliot F, Berthe T, Blanchoud H, Petit F, Guigon E. Record of trace organic contaminants in a river sediment core: From historical wastewater management to historical use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145694. [PMID: 33940762 DOI: 10.1016/j.scitotenv.2021.145694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Some trace organic contaminants (TrOCs) can be considered as ubiquitous contaminants since the 1950s, and the study of their historical distribution within river sediments allows us to better understand the temporal variation of the chemical quality of sediments, and make assumptions about the most insightful forcings impacting these distributions. In this study, the occurrence of 41 TrOCs of various classes (i.e. pharmaceutical products and pesticides) was studied in a sedimentary core sampled in a disused dock along the Seine River, France. This core covers a 60 year-long period between 1944 and 2003, and 23 TrOCs were detected at least once. Their concentrations mainly ranged between 1 and 10 ng g-1 within the core, except for tetracycline that exhibited higher concentrations (~hundreds of ng·g-1). The dating of the core, based on previous studies, enabled the characterization of the changes since 1945, potentially impacted by (i) the sewer connectivity, (ii) the upgrading of wastewater treatment technologies, (iii) historical modifications in the use of each TrOC, and (iv) the sedimentary composition. In every case the deepest occurrence of each TrOC in the core matched its market authorization date, indicating the potential of TrOC to be used as chronomarkers. This study also reveals that the recent upgrading of wastewater treatment technologies within the watershed decreased the concentrations of each TrOC, despite an increase in TrOC diversity in the most recent years.
Collapse
Affiliation(s)
- Thomas Thiebault
- METIS, Sorbonne Université, EPHE, Université PSL, CNRS, IPSL, 75005 Paris, France.
| | - Fabrice Alliot
- METIS, Sorbonne Université, EPHE, Université PSL, CNRS, IPSL, 75005 Paris, France
| | - Thierry Berthe
- Normandie Université, UR, UMR CNRS 6143 M2C, FED 4116, 76821 Mont-Saint-Aignan, France
| | - Hélène Blanchoud
- METIS, Sorbonne Université, EPHE, Université PSL, CNRS, IPSL, 75005 Paris, France
| | - Fabienne Petit
- Normandie Université, UR, UMR CNRS 6143 M2C, FED 4116, 76821 Mont-Saint-Aignan, France
| | - Elodie Guigon
- METIS, Sorbonne Université, EPHE, Université PSL, CNRS, IPSL, 75005 Paris, France
| |
Collapse
|