1
|
Heidari SA, Amiri M, Harifi A, Wu W. Effect of thermal treatment on stabilization and solidification of heavy metal contaminated clayey soil. Sci Rep 2025; 15:17197. [PMID: 40382395 PMCID: PMC12085708 DOI: 10.1038/s41598-025-01155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 05/05/2025] [Indexed: 05/20/2025] Open
Abstract
Heavy metal pollution, particularly from copper, is a significant environmental challenge. This study investigates the impact of thermal treatment on the geotechnical and geo-environmental properties of copper-contaminated dispersive soil under temperatures ranging from 25 °C to 900 °C. The results demonstrate that temperature significantly alters soil properties, including pH, electrical conductivity (EC), unconfined compressive strength (UCS), thermal gravimetric, plasticity, and permeability. Among the factors influencing copper absorption and retention, cation exchange capacity (CEC), specific surface area (SSA), and carbonate content play critical roles, with carbonate content being the most influential. At 500 °C, despite a 56% reduction in CEC and a 37% decrease in SSA, the ability to absorb and retain copper increases significantly. Structural changes observed via SEM and XRD analyses reveal a transition from dispersed to flocculated, and ultimately to crystalline and porous structures, with the formation of new phases such as copper oxide (CuO) and mullite at higher temperatures. Notably, 300 °C shows the most effective pollutant retention, with a 13% increase in permeability and a fourfold increase in UCS, while 96% of the copper pollutant is absorbed. The soil remains classified in the CL range. This study highlights the potential of thermal treatment for improving the properties of copper-contaminated soil, reducing environmental risks, and enabling the stabilization and recycling of contaminated soils for use in construction materials.
Collapse
Affiliation(s)
| | - Mohammad Amiri
- Faculty of Engineering, University of Hormozgan, Bandar Abbas, Iran.
| | - Abbas Harifi
- Faculty of Engineering, University of Hormozgan, Bandar Abbas, Iran
| | - Wei Wu
- Institute of Geotechnical Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
2
|
Zhang J, Wang S, Wang X, Jiao W, Zhang M, Ma F. A review of functions and mechanisms of clay soil conditioners and catalysts in thermal remediation compared to emerging photo-thermal catalysis. J Environ Sci (China) 2025; 147:22-35. [PMID: 39003042 DOI: 10.1016/j.jes.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 07/15/2024]
Abstract
High temperatures and providing sufficient time for the thermal desorption of persistent organic pollutants (POPs) from contaminated clay soils can lead to intensive energy consumption. Therefore, this article provides a critical review of the potential additives which can improve soil texture and increase the volatility of POPs, and then discusses their enhanced mechanisms for contributing to a green economy. Ca-based additives have been used to reduce plasticity of bentonite clay, absorb water and replenish system heat. In contrast, non-Ca-based additives have been used to decrease the plasticity of kaolin clay. The soil structure and soil plasticity can be changed through cation exchange and flocculation processes. The transition metal oxides and alkali metal oxides can be applied to catalyze and oxidize polycyclic aromatic hydrocarbons, petroleum and emerging contaminants. In this system, reactive oxygen species (•O2- and •OH) are generated from thermal excitation without strong chemical oxidants. Moreover, multiple active ingredients in recycled solid wastes can be controlled to reduce soil plasticity and enhance thermal catalysis. Alternatively, the alkali, nano zero-valent iron and nano-TiN can catalyze hydrodechlorination of POPs under reductive conditions. Especially, photo and photo-thermal catalysis are discussed to accelerate replacement of fossil fuels by renewable energy in thermal remediation.
Collapse
Affiliation(s)
- Juan Zhang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Shuo Wang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Wang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Minghua Zhang
- College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
3
|
Xu W, Cao L, Ge R, Li S, Wei Y, Yang Y, Li G, Zhang F. Long term impact of electrical resistance heating on soil bacterial community based on a field test. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175292. [PMID: 39111425 DOI: 10.1016/j.scitotenv.2024.175292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Thermal remediation is an effective technology for organic contaminant remediation. However, the application of thermal remediation may have negative effects on soil properties and ecological functions, which requires further investigation. Based on a pilot test of electrical resistance heating remediation (ERH), soil samples were collected at different locations after heating for 116 days. Most soil physicochemical properties were less affected by the heating temperature difference. Application of high temperature increased microbial abundance but inhibited alpha diversity of the bacterial community. More significant changes in microbial communities were observed at temperatures above 60 °C. The genera mainly affected by heating temperature included Flavobacteria, Brockia, and S085, while the increase in temperature also inhibited the abundance of nitrochlorobenzene functional genes. At 140 days after the end of the pilot test, the bacterial community affected by thermal remediation could recover effectively, and the recovery of the bacterial community was not affected by temperature difference during the heating period. This study provides valuable field evidence of the long term impact of soil ERH treatment on soil properties and microbial communities, and provides further references for optimization of remediation performance with coupled technologies.
Collapse
Affiliation(s)
- Wenxin Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Lifeng Cao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Runlei Ge
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Shupeng Li
- National Engineering Laboratory for Site Remediation Technologies (NEL-SRT), Beijing 100015, PR China; BCEG Environmental Remediation Co., Ltd., Beijing 100015, PR China
| | - Yunxiao Wei
- National Engineering Laboratory for Site Remediation Technologies (NEL-SRT), Beijing 100015, PR China; BCEG Environmental Remediation Co., Ltd., Beijing 100015, PR China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China; National Engineering Laboratory for Site Remediation Technologies (NEL-SRT), Beijing 100015, PR China
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China; National Engineering Laboratory for Site Remediation Technologies (NEL-SRT), Beijing 100015, PR China
| | - Fang Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China; National Engineering Laboratory for Site Remediation Technologies (NEL-SRT), Beijing 100015, PR China.
| |
Collapse
|
4
|
Cheng H, Sun Q, Bian Y, Han J, Jiang X, Xue J, Song Y. Predicting the bioavailability of polycyclic aromatic hydrocarbons in rhizosphere soil using a new novel in situ solid-phase microextraction technique. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172802. [PMID: 38679093 DOI: 10.1016/j.scitotenv.2024.172802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
In situ measurement of the bioavailability of organic pollutants in soil is crucial for understanding their environmental behavior and assessing health risks. Due to the high heterogeneity of soil, microscale determination is crucial for achieving high accuracy, but few methods are available. In this study, microsized probes coated with polydimethylsiloxane (PDMS) were used to measure the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soil in situ. The concentrations of PAHs enriched by the PDMS-coated probes correlated well with the results of bioassays using earthworms (R2 = 0.92-0.99) and ryegrass roots (R2 = 0.92-0.99). Compared with other chemical extraction methods, such as n-butanol extraction, the proposed method has advantages such as in situ operation, microvolume analysis, and negligible interference to the soil environment. In the soil rhizosphere zone, PAHs bioavailability decreased in the following order: rhizosphere > near-rhizosphere > far-rhizosphere. The bioavailability of PAHs in soil amended with biochar was also successfully characterized by the proposed method. Thus, this study developed an in situ and microscale method to predict the bioavailability of organic pollutants in contaminated soils and provides new insight into migration and transformation processes in rhizosphere soil.
Collapse
Affiliation(s)
- Hu Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qian Sun
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Yongrong Bian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Christchurch 8440, New Zealand
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
5
|
Sun X, Zhao L, Hai J, Liang X, Chen D, Liu J, Kang P. Mechanisms and extended kinetic model of thermal desorption in organic-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121169. [PMID: 38815425 DOI: 10.1016/j.jenvman.2024.121169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Thermal desorption is a preferred technology for site remediation due to its various advantages. To ensure the effective removal of different pollutants in practical applications, it is necessary to understand the kinetic behaviors and removal mechanisms of pollutants in thermal desorption process. This paper explored the thermal desorption processes of five organic pollutants (nitrobenzene, naphthalene, n-dodecane, 1-nitronaphthalene, and phenanthrene) at 50-350 °C in two different subsoils with 6-18% moisture content. The results suggested that the thermal desorption process was well-fitted by the exponential decay model (R2 = 0.972-0.999) and could be divided into two distinct stages. The first stage was relatively fast and highly influenced by soil moisture, while the second stage showed a slower desorption rate due to the constraints imposed by the soil texture and structure. The influence of soil moisture on thermal desorption depended on the octanol/water partition coefficient (KOW) of pollutants. Pollutants with log KOW values lower than the critical value exhibited enhanced thermal desorption, while those with log KOW values higher than the critical value were inhibited. The critical value of log KOW might be between 3.33 and 4.46. Changes in soil texture and structure caused by heating promoted thermal desorption, especially for naphthalene, 1-nitronaphthalene and phenanthrene. The differences in texture and structure between the two soils diminished as the temperature increased. Finally, an extended kinetic model under changing temperature conditions was derived, and the simulation results for the two subsoils were very close to the actual thermogravimetric results, with the differences ranging from -1.28% to 0.94% and from -0.67% to 1.35%, respectively. These findings propose new insights into the influencing mechanisms of soil moisture and structure on the thermal desorption of organic pollutants. The extended kinetic model can provide reference for future kinetic research and guide practical site remediation.
Collapse
Affiliation(s)
- Ximing Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin, 300350, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin, 300350, China.
| | - Ju Hai
- State Environmental Protection Engineering Center (Tianjin) for Hazardous Waste Disposal, Tianjin, 300280, China; Guohuan Hazardous Waste Disposal Engineering Technology (Tianjin) Co., Ltd., Tianjin, 300280, China
| | - Xianwei Liang
- State Environmental Protection Engineering Center (Tianjin) for Hazardous Waste Disposal, Tianjin, 300280, China; Guohuan Hazardous Waste Disposal Engineering Technology (Tianjin) Co., Ltd., Tianjin, 300280, China
| | - Daying Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin, 300350, China
| | - Jiashu Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin, 300350, China
| | - Peisong Kang
- State Environmental Protection Engineering Center (Tianjin) for Hazardous Waste Disposal, Tianjin, 300280, China; Guohuan Hazardous Waste Disposal Engineering Technology (Tianjin) Co., Ltd., Tianjin, 300280, China.
| |
Collapse
|
6
|
Zhao X, Tang L, Zhang S, Wang J, Czech B, Oleszczuk P, Minkina T, Gao Y. Formation and biotoxicity of environmentally persistent free radicals in steelworks soil under thermal treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133697. [PMID: 38325092 DOI: 10.1016/j.jhazmat.2024.133697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Thermal treatment are commonly used to address organic contaminated soils. In particular, the pyrolysis of organic substances can result in the creation of environmentally persistent free radicals (EPFRs). We investigated a steelworks site in Chongqing (China) to observe changes in EPFRs before and after thermal treatment. Our findings revealed that the EPFRs were carbon-centered radicals with a g-factor < 2.0030 and a spin density ranging from n.d.-5.23 × 1015 spins/mg. The formation of EPFRs was driving by polycyclic aromatic hydrocarbons (PAHs), Mn, Cu, and total organic carbon (TOC). Following the thermal treatment, the spin densities of EPFRs increased by a factor of 0.25 to 1.81, with maximum levels reached at 300 °C. High molecular weight PAHs exhibited high heat capacity, enabling the generation of more EPFRs. The thermal decay of EPFRs occurred in two stages, with the shortest 1/e lifetime lasting up to 16.8 h. Raising the temperature or prolonging time can significantly reduce EPFRs levels. Thermal treatment increased the generation of EPFRs, hydroxyl radicals (•OH) and superoxide radical (•O2-), leading to a decrease in bacterial luminescence. Specifically, •OH contributed to approximately 73% of the B. brilliantus inhibition. Our results highlight that the thermal treatment significantly enhance EPFRs concentrations, and the treated soil remained ecologically risky. The knowledge of the formation of EPFRs and their biotoxicity is shedding new light on the thermal treatment risk management.
Collapse
Affiliation(s)
- Xuqiang Zhao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lei Tang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuai Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, Lublin 20-031, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, Lublin 20-031, Poland
| | - Tatiana Minkina
- Department of Soil Science, Southern Federal University, Rostov-on-Don, Russia
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
7
|
Li Y, Zhao H, Wang L, Bai Y, Tang T, Liang H, Gao D. New insights in the biodegradation of high-cyclic polycyclic aromatic hydrocarbons with crude enzymes of Trametes versicolor. ENVIRONMENTAL TECHNOLOGY 2024; 45:2243-2254. [PMID: 36647685 DOI: 10.1080/09593330.2023.2169639] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
High-cyclic polycyclic aromatic hydrocarbons (PAHs), with complex fused aromatic structures, are widespread, refractory and harmful in soil, but the current remediation technologies for high-cyclic PAHs are often inefficient and costly. This study focused on the biodegradation process of high-cyclic benzo[a]pyrene by Trametes versicolor crude enzymes. The crude enzymes exhibited high laccase activity (22112 U/L) and benzo[a]pyrene degradation efficiency (42.21%) within a short reaction time. Through the actual degradation and degradation kinetics, the degradation efficiency of PAHs decreased with the increase of aromatic rings. And the degradation conditions (temperature, pH, Cu2+ concentration, mediator) were systematically optimised. The optimum degradation conditions (1.5 mM Cu2+, 28℃ and pH 6) showed significant degradation efficiency for the low and medium concentrations of benzo[a]pyrene. In addition, complete degradation of benzo[a]pyrene could be achieved using only 0.2 mM of HBT mediator compared with crude enzymes alone. Collectively, these results showed the high-cyclic PAHs degradation potential of Trametes versicolor crude enzymes, and provided references to evaluate applicable prospects of white rot fungus crude enzymes in PAHs-contaminated soils.
Collapse
Affiliation(s)
- Ying Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Huan Zhao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Yuhong Bai
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Teng Tang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| |
Collapse
|
8
|
Sun X, Zhao L, Huang M, Hai J, Liang X, Chen D, Liu J. In-situ thermal conductive heating (TCH) for soil remediation: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119602. [PMID: 38061093 DOI: 10.1016/j.jenvman.2023.119602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 01/14/2024]
Abstract
This paper provides a comprehensive overview of research works on in-situ thermal conductive heating (TCH), including heat transfer in soil, desorption behavior of pollutants, and mass transfer mechanism within the site. Each stage influences the effectiveness of subsequent stages. Comparison of simulation and experimental results demonstrates that heat transfer and temperature rise in soil are related to the hydrogeological conditions, wells layout and pollutants contents. Thermal desorption of pollutants from soil particles can be influenced by four aspects: energy input, pollutant properties, soil characteristics, and the binding state of pollutant in soil. The exponential decay kinetic model exhibits better applicability for fitting thermal desorption processes. After desorption, the pollutants migrate in soil driven by high temperature and extraction pressure, while hydrogeological conditions of the site determine the actual migration path and rate. Applying convection-dispersion model allows for quantitatively describing the complex migration behavior of pollutants in heterogeneous sites. Future research should focus more on the composite effects of multiple factors in TCH and develop multi-field coupling models through the combination of numerical simulation and in-situ experiments. Accurate characterization and prediction of entire TCH process can improve remediation efficiency, reduce energy costs, and achieve sustainable low-carbon remediation.
Collapse
Affiliation(s)
- Ximing Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin, 300350, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin, 300350, China.
| | - Menglu Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin, 300350, China
| | - Ju Hai
- Guohuan Hazardous Waste Disposal Engineering Technology (Tianjin) Co., Ltd., Tianjin, 300280, China; State Environmental Protection Engineering Center (Tianjin) for Hazardous Waste Disposal, Tianjin, 300280, China
| | - Xianwei Liang
- Guohuan Hazardous Waste Disposal Engineering Technology (Tianjin) Co., Ltd., Tianjin, 300280, China; State Environmental Protection Engineering Center (Tianjin) for Hazardous Waste Disposal, Tianjin, 300280, China
| | - Daying Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin, 300350, China
| | - Jiashu Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin, 300350, China
| |
Collapse
|
9
|
Su Y, Zhu M, Zhang H, Chen H, Wang J, Zhao C, Liu Q, Gu Y. Application of bacterial agent YH for remediation of pyrene-heavy metal co-pollution system: Efficiency, mechanism, and microbial response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119841. [PMID: 38109828 DOI: 10.1016/j.jenvman.2023.119841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/22/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023]
Abstract
The combination of organic and heavy metal pollutants can be effectively and sustainably remediated using bioremediation, which is acknowledged as an environmentally friendly and economical approach. In this study, bacterial agent YH was used as the research object to explore its potential and mechanism for bioremediation of pyrene-heavy metal co-contaminated system. Under the optimal conditions (pH 7.0, temperature 35°C), it was observed that pyrene (PYR), Pb(II), and Cu(II) were effectively eliminated in liquid medium, with removal rates of 43.46%, 97.73% and 81.60%, respectively. The microscopic characterization (SEM/TEM-EDS, XPS, XRD and FTIR) results showed that Pb(II) and Cu(II) were eliminated by extracellular adsorption and intracellular accumulation of YH. Furthermore, the presence of resistance gene clusters (cop, pco, cus and pbr) plays an important role in the detoxification of Pb(II) and Cu(II) by strains YH. The degradation rate of PYR reached 72.51% in composite contaminated soil, which was 4.33 times that of the control group, suggesting that YH promoted the dissipation of pyrene. Simultaneously, the content of Cu, Pb and Cr in the form of F4 (residual state) increased by 25.17%, 6.34% and 36.88%, respectively, indicating a decrease in the bioavailability of heavy metals. Furthermore, YH reorganized the microbial community structure and enriched the abundance of hydrocarbon degradation pathways and enzyme-related functions. This study would provide an effective microbial agent and new insights for the remediation of soil and water contaminated with organic pollutants and heavy metals.
Collapse
Affiliation(s)
- Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Mingjun Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hang Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hongxu Chen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiguo Wang
- Toroivd Technology Company Limited, Shanghai, 200439, China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China.
| | - Yingying Gu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| |
Collapse
|
10
|
Sun H, Jia X, Wu Z, Yu P, Zhang L, Wang S, Xia T. Contamination and source-specific health risk assessment of polycyclic aromatic hydrocarbons in soil from a mega iron and steel site in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122851. [PMID: 37918775 DOI: 10.1016/j.envpol.2023.122851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/02/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The iron and steel industry has always been a key and difficult point of environmental pollution control. In the present study, 493, 175, 153, 72, and 42 soil samples were collected from the soil depths of 0-0.5, 0.5-2, 2-3, 3-4, and 4-5 m (herein called the layers) of the Shougang Steel site, respectively. Compared with the evaluation criteria, the Shougang Steel surface soil was severely polluted by polycyclic aromatic hydrocarbons (PAHs). Inverse distance-weighted interpolation and the Kruskal-Wallis H test revealed that the soil PAH pollution in the iron-making area, especially the coking area, was severer than those in other areas. The PAH concentrations first decreased, and then, increased with the increase of depth. With the increase in depth, the contributions of 2- and 3-ring PAHs increased, while those of 4-, 5-, and 6-ring PAHs decreased. The bivariate local indicators of spatial association (LISA) analysis was used to identify the areas prone to soil PAH pollution due to atmospheric deposition of industrial waste gas and traffic emissions. The method could be used to analyze the impact of anthropogenic activities on soil's PAH pollution for other contaminated sites. Three main pollution sources of soil PAHs, the backfill source, the combustion of coal, and the traffic emissions, were identified based upon three diagnostic ratios, positive matrix factorization and the bivariate LISA analysis, and accounted for 53.8%, 23.5%, and 22.7%, respectively. The combination of bivariate LISA analysis and other source analysis methods could improve the accuracy of source analysis. Benzo[a]pyrene contributed the most to the total health risk among sixteen PAHs. The health risks related to the three pollution sources decreased in the order of backfill sources > coal combustion > traffic emissions. The incremental life-time carcinogenic risks were all below 10-4, indicating negligible or acceptable risks.
Collapse
Affiliation(s)
- Haixu Sun
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiaoyang Jia
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhiyuan Wu
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Peiyao Yu
- Beijing Shougang Construction Investment Company Limited, Beijing, 100043, China
| | - Lina Zhang
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Shijie Wang
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Tianxiang Xia
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China.
| |
Collapse
|
11
|
Zeng J, Wu R, Peng T, Li Q, Wang Q, Wu Y, Song X, Lin X. Low-temperature thermally enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil: Effects on fate, toxicity and bacterial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122247. [PMID: 37482336 DOI: 10.1016/j.envpol.2023.122247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil using thermal desorption technology typically requires very high temperatures, necessitating coupled microbial treatment for energy and cost reduction. This study investigated the fate and toxicity of PAHs as well as the responses of microbial communities following thermal treatment within a low temperature range. The optimal temperature for PAH mineralization was 20-28 °C, within the growth range of most mesophilic microorganisms. By contrast, 50 °C treatment almost completely inhibited PAH mineralization but resulted in the greatest detoxification effect particularly for cardiotoxicity and nephrotoxicity. A potential increase in toxicity was observed at 28 °C. Co-metabolism and non-extractable residue formation may play an interdependent role in thermally enhanced bioremediation. Moreover, alterations in bacterial communities were strongly associated with PAH mineralization and zebrafish toxicity, revealing that soil microorganisms play a direct role in PAH mineralization and served as ecological receptors reflecting changes in toxicity. Network analysis revealed that Firmicutes formed specific ecological communities at high temperature, whereas Acidobacteria and Proteobacteria act as primary PAH degraders at moderate temperature. These findings will enable better integration of strategies for thermal and microbial treatments in soil remediation.
Collapse
Affiliation(s)
- Jun Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71 Nanjing, 210008, China
| | - Ruini Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71 Nanjing, 210008, China
| | - Tingting Peng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71 Nanjing, 210008, China
| | - Qigang Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71 Nanjing, 210008, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71 Nanjing, 210008, China
| | - Yucheng Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71 Nanjing, 210008, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71 Nanjing, 210008, China
| | - Xiangui Lin
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71 Nanjing, 210008, China.
| |
Collapse
|
12
|
Qin Z, Zhao Z, Xia L, Yu G, Miao A, Liu Y. Significant roles of core prokaryotic microbiota across soil profiles in an organic contaminated site: Insight into microbial assemblage, co-occurrence patterns, and potentially key ecological functions. ENVIRONMENTAL RESEARCH 2023; 231:116195. [PMID: 37207735 DOI: 10.1016/j.envres.2023.116195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Extreme environmental disturbances induced by organic contaminated sites impose serious impacts on soil microbiomes. However, our understanding of the responses of the core microbiota and its ecological roles in organic contaminated sites is limited. In this study, we took a typical organic contaminated site as an example and investigated the composition and structure, assembly mechanisms of core taxa and their roles in key ecological functions across soil profiles. Results presented that core microbiota with a considerably lower number of species (7.93%) than occasional taxa presented comparatively high relative abundances (38.04%) yet, which was mainly comprised of phyla Proteobacteria (49.21%), Actinobacteria (12.36%), Chloroflexi (10.63%), and Firmicutes (8.21%). Furthermore, core microbiota was more influenced by geographical differentiation than environmental filtering, which possessed broader niche widths and stronger phylogenetic signals for ecological preferences than occasional taxa. Null modelling suggested that stochastic processes dominated the assembly of the core taxa and maintained a stable proportion along soil depths. Core microbiota had a greater impact on microbial community stability and possessed higher functional redundancy than occasional taxa. Additionally, the structural equation model illustrated that core taxa played pivotal roles in degrading organic contaminants and maintaining key biogeochemical cycles potentially. Overall, this study deepens our knowledge of the ecology of core microbiota under complicated environmental conditions in organic contaminated sites, and provides a fundamental basis for preserving and potentially utilizing core microbiota to maintain soil health.
Collapse
Affiliation(s)
- Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Liling Xia
- Nanjing Vocational University of Industry Technology, Nanjing, 210016, China
| | - Guangwen Yu
- China National Chemical Civil Engineering Co., Ltd, Nanjing, 210031, China
| | - Aihua Miao
- China National Chemical Civil Engineering Co., Ltd, Nanjing, 210031, China
| | - Yuhong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
13
|
Gao D, Zhao H, Wang L, Li Y, Tang T, Bai Y, Liang H. Current and emerging trends in bioaugmentation of organic contaminated soils: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115799. [PMID: 35930885 DOI: 10.1016/j.jenvman.2022.115799] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Organic contaminated soils constitute an important environmental problem, whereas field applicability of existing physical-chemical methods has encountered numerous obstacles, such as high chemical cost, large energy consumption, secondary pollution, and soil degradation. Bioaugmentation is an environmentally friendly and potentially economic technology that efficiently removes toxic pollutants from organic contaminated soils by microorganisms or their enzymes and bioremediation additives. This review attempted to explore the recent advances in bioaugmentation of organic contaminated soils and provided a comprehensive summary of various bioaugmentation methods, including bacterial, fungus, enzymes and bioremediation additives. The practical application of bioaugmentation is frequently limited by soil environmental conditions, microbial relationships, enzyme durability and remediation cycles. To tackle these problems, the future of bioaugmentation can be processed from sustainability of broad-spectrum bioremediation carriers, microbial/enzyme agents targeting combined contaminants, desorption of environmentally friendly additives and small molecular biological stimulants. Findings of this research are expected to provide new references for bioaugmentation methods that are practically feasible and economically potential.
Collapse
Affiliation(s)
- Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Huan Zhao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ying Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Teng Tang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yuhong Bai
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
14
|
Cao H, Li X, Qu C, Gao M, Cheng H, Ni N, Yao S, Bian Y, Gu C, Jiang X, Song Y. Bioaccessibility and Toxicity Assessment of Polycyclic Aromatic Hydrocarbons in Two Contaminated Sites. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:592-599. [PMID: 35635563 DOI: 10.1007/s00128-022-03530-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil contaminants, and their bioaccessibility determines their environmental risks in contaminated land. In the present study, the residual concentrations of PAHs in the soils of two industrial sites were determined, and their bioaccessibility was estimated by the hydroxypropyl-β-cyclodextrin extraction (HPCD) extraction method. The results showed heavy PAH contamination at both site S1 (0.38-3342.5 mg kg-1) and site S2 (0.2-138.18 mg kg-1), of which high molecular weight (HMW) PAHs (4-, 5-, and 6-ring compounds) accounted for approximately 80%. The average bioaccessibility of PAHs at sites S1 and S2 was 52.02% and 29.28%, respectively. The bioaccessibility of certain PAH compounds decreased with increasing ring number of the molecule. Lower PAH bioaccessibility was detected in loamy and silty soil textures than in sandy soil. Moreover, among the soil properties, the dissolved organic matter, total organic carbon, total potassium, and total manganese concentrations had significant effects on the bioaccessibility of PAHs. The toxicity analysis showed that the composition and bioaccessibility of PAHs could affect their potential toxicity in soil. We suggest that bioaccessibility should be taken into consideration when assessing the toxicity of PAHs in soil, and more attention should be given to low-ring PAHs with high bioaccessibility.
Collapse
Affiliation(s)
- Huihui Cao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Changsheng Qu
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, 210000, China
| | - Meng Gao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ni Ni
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Shi Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Li S, Tang J, Yu C, Liu Q, Wang L. Efficient degradation of anthracene in soil by carbon-coated nZVI activated persulfate. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128581. [PMID: 35247741 DOI: 10.1016/j.jhazmat.2022.128581] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The easy passivation defect of nano zero-valent iron (nZVI) greatly limits its application in site pollution remediation. Carbon coating can effectively inhibit the passivation of nZVI, but its effectiveness in the soil is still unknown. This study investigated the feasibility of carbon-coated nZVI (Fe0@C) as a persulfate (PS) activator to degrade anthracene (ANT) in soil. The results show that the Fe0@C/PS system can remove 51.6% of ANT in the soil after 0.5 h of reaction, and reach 76.4% after 12 h of reaction. Not only that, the Fe0@C/PS system shows a good removal effect on ANT within the initial pH range of 3-9. Free radical scavenging experiments show that superoxide radicals (O2•-) and singlet oxygen (1O2) are mainly responsible for the removal of ANT, while O2•- may be mainly used as a precursor for the generation of 1O2. The activation of PS by Fe0@C can generate a large number of free radicals, and soil components (such as β-MnO2) can promote the conversion of O2•- to 1O2. Furthermore, the possible degradation pathway of ANT was also proposed. The findings are of great significance to fill up the knowledge gaps in the application of nZVI in soil remediation.
Collapse
Affiliation(s)
- Song Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Chen Yu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qinglong Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Lan Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
16
|
Yi S, Li F, Wu C, Wei M, Tian J, Ge F. Synergistic leaching of heavy metal-polycyclic aromatic hydrocarbon in co-contaminated soil by hydroxamate siderophore: Role of cation-π and chelation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127514. [PMID: 34879514 DOI: 10.1016/j.jhazmat.2021.127514] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Exploring a novel green efficient bioeluant is a golden key to unlock the ex-situ scale remediation of soil contaminated with heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs). Hydroxamate siderophore (HDS) produced by Pseudomonas fluorescens HMP01, with certain hydrophobicity and strong coordination because of its special chemical structure (e.g., hydroxamic acid and dihydroxy quinoline chromophore), was used to investigate the bioleaching efficiency of HMs and PAHs from actual contaminated soils and underlying mechanisms. Results showed that leaching efficiency for HMs and PAHs from the co-contaminated soil was higher than that of single contaminated soil due to the cation-π interaction and coordination, which was closely related to the spacial configuration changes of the complex. HDS not only increased the bioleaching efficiency of cationic HMs by chelation (the leaching amount of Cd2+, Pb2+, Hg2+, Cu2+, Zn2+, and Ni2+ achieved 27.5, 110.4, 6.9, 477.7, 10,606.9, and 137.4 mg/kg HDS, respectively) but also enhanced the bioleaching amount of PAHs by solubilization (the leaching amount of phenanthrene reached 90.2 mg/kg HDS. Also, the residual HDS in soils caused no significant ecological risk. As expected, HDS is a desirable bioeluant to promote the scale application of the ex-situ remediation of soil contaminated with HMs and PAHs.
Collapse
Affiliation(s)
- Shengwei Yi
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China
| | - Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China.
| | - Chen Wu
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China
| | - Ming Wei
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China
| | - Jiang Tian
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China
| | - Fei Ge
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China
| |
Collapse
|