1
|
Zhou M, Liu Z, Hu B. Impact of arsenic and PAHs compound contamination on microorganisms in coking sites: From a community to individual perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124628. [PMID: 39074691 DOI: 10.1016/j.envpol.2024.124628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/30/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Arsenic (As) and polycyclic aromatic hydrocarbons (PAHs) are highly toxic, carcinogenic and teratogenic, and are commonly found in soils of industrial sites such as coking plants. They exert environmental stresses on soil microorganisms, but their compounding effects have not been systematically studied. Exploring the effects of compound contamination on microbial communities, species and genes is important for revealing the ecological damage caused by compound contamination and offering scientific insights into soil remediation strategies. In this study, we selected soil samples from 0 to 100 cm depth of a coking site with As, PAHs and compound contamination. We investigated the compound effects of As and PAHs on microbial communities by combining high-throughput sequencing, metagenomic sequencing and genome assembly. Compared with single contamination, compound contamination reduced the microbial community diversity by 10.68%-12.07% and reduced the community richness by 8.39%-18.61%. The compound contamination decreased 32.41%-46.02% of microbial PAHs metabolic gene abundance, 11.36%-19.25% of cell membrane transport gene abundance and 12.62%-57.77% of cell motility gene abundance. Xanthobacteraceae, the biomarker for compound contaminated soils, harbors arsenic reduction genes and PAHs degradation pathways of naphthalene, benzo [a]pyrene, fluorene, anthracene, and phenanthrene. Its broad metabolic capabilities, encompassing sulfur metabolism and quorum sensing, facilitate the acquisition of energy and nutrients, thereby conferring ecological niche advantages in compound contaminated environments. This study underscores the significant impacts of As and PAHs on the composition and function of microbial communities, thereby enriching our understanding of their combined effects and providing insights for the remediation of compound contaminated sites.
Collapse
Affiliation(s)
- Meng Zhou
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zishu Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, 310058, China.
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Tian K, Zhang Y, Yao D, Tan D, Fu X, Chen R, Zhong M, Dong Y, Liu Y. Synergistic interactions in core microbiome Rhizobiales accelerate 1,4-dioxane biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135098. [PMID: 38970977 DOI: 10.1016/j.jhazmat.2024.135098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Next-generation sequencing (NGS) has revolutionized taxa identification within contaminant-degrading communities. However, uncovering a core degrading microbiome in diverse polluted environments and understanding its associated microbial interactions remains challenging. In this study, we isolated two distinct microbial consortia, namely MA-S and Cl-G, from separate environmental samples using 1,4-dioxane as a target pollutant. Both consortia exhibited a persistent prevalence of the phylum Proteobacteria, especially within the order Rhizobiales. Extensive analysis confirmed that Rhizobiales as the dominant microbial population (> 90 %) across successive degradation cycles, constituting the core degrading microbiome. Co-occurrence network analysis highlighted synergistic interactions within Rhizobiales, especially within the Shinella and Xanthobacter genera, facilitating efficient 1,4-dioxane degradation. The enrichment of Rhizobiales correlated with an increased abundance of essential genes such as PobA, HpaB, ADH, and ALDH. Shinella yambaruensis emerged as a key degrader in both consortia, identified through whole-genome sequencing and RNA-seq analysis, revealing genes implicated in 1,4-dioxane degradation pathways, such as PobA and HpaB. Direct and indirect co-cultivation experiments confirmed synergistic interaction between Shinella sp. and Xanthobacter sp., enhancing the degradation of 1,4-dioxane within the core microbiome Rhizobiales. Our findings advocate for integrating the core microbiome concept into engineered consortia to optimize 1,4-dioxane bioremediation strategies.
Collapse
Affiliation(s)
- Kun Tian
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yue Zhang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dandan Yao
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Ding Tan
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Xingjia Fu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Ruihuan Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ming Zhong
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yuanhua Dong
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yun Liu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
3
|
Samadi A, Kermanshahi Pour A, Beims RF, Xu CC. Delignified porous wood as biofilm support for 1,4-dioxane-degrading bacterial consortium. ENVIRONMENTAL TECHNOLOGY 2024; 45:2541-2557. [PMID: 36749305 DOI: 10.1080/09593330.2023.2178330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Delignified porous wood samples were used as carriers for biofilm formation of a bacterial consortium with the ability to degrade 1,4-dioxane (DX). The delignification treatment of the natural wood resulted in higher porosity, formation of macropores, increase in surface roughness and hydrophilicity of the treated wood pieces. These superior properties of two types of treated carriers (respectively, A and B) compared to the untreated wood resulted in 2.19 ± 0.52- and 2.66 ± 0.23-fold higher growth of biofilm. Moreover, analysis of the fatty acid profiles indicated an increase in proportion of the saturated fatty acids during the biofilm formation, characterising an enhancement in rigidity and hydrophobicity of the biofilms. DX initial concentration of 100 mg/L was completely degraded (detection limit 0.01 mg/L) in 24 and 32 h using the treated A and B woods, while only 25.84 ± 5.95% was removed after 32 h using the untreated wood. However, fitting the DX biodegradation data to the Monod model showed a lower maximum specific growth rate for biofilm (0.0276 ± 0.0018 1/h) versus planktonic (0.0382 ± 0.0024 1/h), because of gradual accumulation of inactive cells in the biofilm. Findings of this study can contribute to the knowledge of biofilm formation regarding the physical/chemical properties of biofilm carriers and be helpful to the ongoing research on bioremediation of DX.
Collapse
Affiliation(s)
- Aryan Samadi
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Canada
| | - Azadeh Kermanshahi Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Canada
| | - Ramon Filipe Beims
- Department of Biochemical and Chemical Engineering, University of Western Ontario, London, Canada
| | - Chunbao Charles Xu
- Department of Biochemical and Chemical Engineering, University of Western Ontario, London, Canada
| |
Collapse
|
4
|
Wu M, Zhao D, Gu B, Wang Z, Hu J, Yu Z, Yu J. Efficient degradation of aqueous dichloromethane by an enhanced microbial electrolysis cell: Degradation kinetics, microbial community and metabolic mechanisms. J Environ Sci (China) 2024; 139:150-159. [PMID: 38105043 DOI: 10.1016/j.jes.2023.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 12/19/2023]
Abstract
Dichloromethane (DCM) has been listed as a toxic and harmful water pollutant, and its removal needs attention. Microbial electrolysis cells (MECs) are viewed as a promising alternative for pollutant removal, which can be strengthened from two aspects: microbial inoculation and acclimation. In this study, the MEC for DCM degradation was inoculated with the active sludge enhanced by Methylobacterium rhodesianum H13 (strain H13) and then acclimated in the form of a microbial fuel cell (MFC). Both the introduction of strain H13 and the initiation in MFC form significantly promoted DCM degradation. The degradation kinetics were fitted by the Haldane model, with Vmax, Kh, Ki and vmax values of 103.2 mg/L/hr, 97.8 mg/L, 268.3 mg/L and 44.7 mg/L/hr/cm2, respectively. The cyclic voltammogram implies that DCM redox reactions became easier with the setup of MEC, and the electrochemical impedance spectrogram shows that the acclimated and enriched microbes reduced the charge transfer resistance from the electrode to the electrolyte. In the biofilm, the dominant genera shifted from Geobacter to Hyphomicrobium in acclimation stages. Moreover, Methylobacterium played an increasingly important role. DCM metabolism mainly occurred through the hydrolytic glutathione S-transferase pathway, given that the gene dcmA was identified rather than the dhlA and P450/MO. The exogenous electrons facilitated the reduction of GSSG, directly or indirectly accelerating the GSH-catalyzed dehalogenation. This study provides support for the construction of an efficient and stable MEC for DCM removal in water environment.
Collapse
Affiliation(s)
- Meng Wu
- College of Environment, College of Biotechnology and Bioengineering, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Di Zhao
- Shentuo Environment (Hangzhou) Co. Ltd., Hangzhou 311121, China
| | - Bing Gu
- Zhejiang Tianyi Environmental Co. Ltd., Hangzhou 310000, China
| | - Ziru Wang
- College of Environment, College of Biotechnology and Bioengineering, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Hu
- College of Environment, College of Biotechnology and Bioengineering, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Zhiliang Yu
- College of Environment, College of Biotechnology and Bioengineering, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianming Yu
- College of Environment, College of Biotechnology and Bioengineering, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Waidner LA, Daniel CE, Kovar SE, Spain JC. Use of qPCR to monitor 2,4-dinitroanisole degrading bacteria in water and soil slurry cultures. J Ind Microbiol Biotechnol 2024; 51:kuae047. [PMID: 39580361 PMCID: PMC11631463 DOI: 10.1093/jimb/kuae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/22/2024] [Indexed: 11/25/2024]
Abstract
Prediction and process monitoring during natural attenuation, bioremediation, and biotreatment require effective strategies for detection and enumeration of the responsible bacteria. The use of 2,4-dinitroanisole (DNAN) as a component of insensitive munitions leads to environmental contamination of firing ranges and manufacturing waste streams. Nocardioides sp. strain JS1661 degrades DNAN under aerobic conditions via a pathway involving an unusual DNAN demethylase. We used the deeply branched sequences of DNAN degradation functional genes as a target for development of a molecular method for detection of the bacteria. A qPCR assay was designed for the junction between dnhA and dnhB, the adjacent genes encoding DNAN demethylase. The assay allowed reproducible enumeration of JS1661 during growth in liquid media and soil slurries. Results were consistent with biodegradation of DNAN, accumulation of products, and classical biomass estimates, including most probable number and OD600. The results provide a sensitive and specific molecular method for prediction of degradation potential and process evaluation during degradation of DNAN. ONE-SENTENCE SUMMARY A unique target sequence in functional genes enables the design of a simple and specific qPCR assay for enumeration of aerobic 2,4-dinitroanisole-degrading bacteria in soil and water.
Collapse
Affiliation(s)
- Lisa A Waidner
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Pkwy, Building 58, Pensacola, USA
| | - Carrie E Daniel
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Pkwy, Building 58, Pensacola, USA
| | - Sarah E Kovar
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Pkwy, Building 58, Pensacola, USA
| | - Jim C Spain
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Pkwy, Building 58, Pensacola, USA
| |
Collapse
|
6
|
Tian K, Zhang Y, Chen R, Tan D, Zhong M, Yao D, Dong Y, Liu Y. Self-assembling a 1,4-dioxane-degrading consortium and identifying the key role of Shinella sp. through dilution-to-extinction and reculturing. Microbiol Spectr 2023; 11:e0178723. [PMID: 37882576 PMCID: PMC10714792 DOI: 10.1128/spectrum.01787-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/26/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Assembling a functional microbial consortium and identifying key degraders involved in the degradation of 1,4-dioxane are crucial for the design of synergistic consortia used in enhancing the bioremediation of 1,4-dioxane-contaminated sites. However, due to the vast diversity of microbes, assembling a functional consortium and identifying novel degraders through a simple method remain a challenge. In this study, we reassembled 1,4-dioxane-degrading microbial consortia using a simple and easy-to-operate method by combining dilution-to-extinction and reculture techniques. We combined differential analysis of community structure and metabolic function and confirmed that Shinella species have a stronger 1,4-dioxane degradation ability than Xanthobacter species in the enriched consortium. In addition, a new dioxane-degrading bacterium was isolated, Shinella yambaruensis, which verified our findings. These results demonstrate that DTE and reculture techniques can be used beyond diversity reduction to assemble functional microbial communities, particularly to identify key degraders in contaminant-degrading consortia.
Collapse
Affiliation(s)
- Kun Tian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Yue Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Environment, Hohai University, Nanjing, China
| | - Ruihuan Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ding Tan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Ming Zhong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Dandan Yao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Yuanhua Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Yun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
7
|
Seshan H, Santillan E, Constancias F, Chandra Segaran US, Williams RBH, Wuertz S. Metagenomics and metatranscriptomics suggest pathways of 3-chloroaniline degradation in wastewater reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166066. [PMID: 37549699 DOI: 10.1016/j.scitotenv.2023.166066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Biological wastewater treatment systems are often affected by shifts in influent quality, including the input of toxic chemicals. Yet the mechanisms underlying the adaptation of activated sludge process performance are rarely studied in a controlled and replicated experimental setting, particularly when challenged with a sustained toxin input. Three replicate bench-scale bioreactors were subjected to a chemical disturbance in the form of 3-chloroaniline (3-CA) over 132 days, after an acclimation period of 58 days, while three control reactors received no 3-CA input. Ammonia oxidation was initially affected by 3-CA. Within three weeks of the experiment, microbial communities in all three treatment reactors adapted to biologically degrade 3-CA resulting in partial ammonia oxidation recovery. Combining process and microbial community data from amplicon sequencing with potential functions gleaned from assembled metagenomics and metatranscriptomics data, two putative degradation pathways for 3-CA were identified. The first pathway, determined from metagenomics data, involves a benzoate dioxygenase and subsequent meta-cleavage of the aromatic ring. The second, determined from intensive short-term sampling for gene expression data in tandem with 3-CA degradation, involves a phenol monooxygenase followed by ortho-cleavage of the aromatic ring. The relative abundances of amplicon sequence variants associated with the genera Gemmatimonas, OLB8, and Taibaiella correlated significantly with 3-CA degradation. Metagenome-assembled genome data also showed the genus OLB8 to be differentially enriched in treatment reactors, making it a strong candidate as 3-CA degrader. Using replicated reactors, this study has demonstrated the impact of a sustained stress on the activated sludge process. The unique and novel features of this study include the identification of putative pathways and potential degraders of 3-CA using long-term and short-term sampling in tandem with multiple methods in a controlled and replicated experiment.
Collapse
Affiliation(s)
- Hari Seshan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA
| | - Ezequiel Santillan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA
| | - Florentin Constancias
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Uma Shankari Chandra Segaran
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 119077, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore..
| |
Collapse
|
8
|
Samadi A, Kermanshahi Pour A, Gagnon G. Biodegradation of 1,4-dioxane in a continuous-flow bioelectrochemical reactor by biofilm of Pseudonocardia dioxanivorans CB1190 and microbial community on conductive carriers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122572. [PMID: 37717901 DOI: 10.1016/j.envpol.2023.122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
Bioelectrochemical degradation is an environmentally friendly, cost-effective and controllable way of providing electron acceptor to the microorganisms. A two-chamber continuous-flow bioelectrochemical reactor (BER) was developed in this study. The objective was to investigate the potential for enhancing the bioelectrochemical degradation of 1,4-dioxane (DX) by Pseudonocardia dioxanivorans CB1190 (CB1190) and microbial community biofilm on conductive and non-conductive carriers in low potentials (1.0-1.2 V) and currents (<2 mA). In the case of CB1190, biodegradation experiments at 1.0 V did not result in any observable change in DX removal efficiency (32.63 ± 2.48%) compared to the 0.0 V (31.69 ± 2.33%). However, the removal efficiency was much higher at 1.2 V (59.08 ± 0.86%). The higher removal at 1.2 V was attributed to an increase in dissolved oxygen (DO) concentration from 3.77 ± 0.33 mg/L at 0.0 V to 5.40 ± 0.11 mg/L at 1.2 V, which resulted from water electrolysis. In the case of microbial community, on the other hand, DX removal efficiency increased at 1.0 V (30.98 ± 1.10%) compared to 0.0 V (23.40 ± 1.02%) that can be attributed to a simultaneous increase in microbial activity from 2389 ± 118.5 ngATP/mgVSS at 0.0 V to 2942 ± 109 ngATP/mgVSS at 1.0 V. Analysis of the changes in microbial composition indicated enrichment of Alistipes and Lutispora at 1.0 V due to the ability of these genera to directly transfer electrons with conductive surface. On the other hand, no change was observed in the microbial community in the case of non-conductive carriers. Results of this study showed that electro-assisted biodegradation of DX at low potentials is possible through two different mechanisms (oxygen production and direct electron transfer with electrode) which makes this technique flexible and cost-effective. The novelty of this work lies in exploring the use of electrical assistance to enhance the biodegradation of DX in the presence of CB1190 and the microbial community. This study more specifically investigated lower potential than required water electrolysis potential, allowing microorganisms to be stimulated through mechanisms unrelated to oxygen generation.
Collapse
Affiliation(s)
- Aryan Samadi
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Azadeh Kermanshahi Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Graham Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
9
|
Guo W, Li D, Zhang Z, Mo R, Peng Y, Li Y. A novel approach for the fractionation of organic components and microbial degraders in ADM1 and model validation based on the methanogenic potential. WATER RESEARCH 2023; 236:119945. [PMID: 37054607 DOI: 10.1016/j.watres.2023.119945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
The anaerobic digestion model No 1 (ADM1), with fixed fractions of the substrate components, is currently used to simulate methane production during the anaerobic digestion (AD) of waste activated sludge (WAS). However, the goodness-of-fit for the simulation is not ideal due to the different characteristics of WAS from different regions. In this study, a novel methodology based on a modern instrumental analysis and 16S rRNA gene sequence analysis for the fractionation of organic components and microbial degraders in the WAS is investigated to modify the fractions of the components in the ADM1. The combination of Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and nuclear magnetic resonance (NMR) analyses were used to achieve a rapid and accurate fractionation of the primary organic matters in the WAS that was verified using both the sequential extraction method and the excitation-emission matrix (EEM). The protein, carbohydrate, and lipid contents in the four different sludge samples measured using the above combined instrumental analyses were 25.0 - 50.0%, 2.0 - 10.0%, and 0.9 - 2.3%. The microbial diversity based on 16S rRNA gene sequence analysis was utilized to re-set the initial fractions of the microbial degraders in the ADM1. A batch experiment was utilized to further calibrate the kinetic parameters in the ADM1. Based on the above optimization of the stoichiometric and kinetic parameters, the ADM1 with full parameter modification for WAS (ADM1-FPM) simulated the methane production of the WAS very well with a Theil's inequality coefficient (TIC) of 0.049, which was increased by 89.8% than that of the default ADM1 fit. The proposed approach, with its rapid and reliable performance, demonstrated a strong application potential for the fractionation of organic solid waste and the modification of ADM1, which contributed to a better simulation of methane production during the AD of organic solid wastes.
Collapse
Affiliation(s)
- Wenjie Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dunjie Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhipeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rongrong Mo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
10
|
Samadi A, Kermanshahi-Pour A, Budge SM, Huang Y, Jamieson R. Biodegradation of 1,4-dioxane by a native digestate microbial community under different electron accepting conditions. Biodegradation 2023; 34:283-300. [PMID: 36808270 DOI: 10.1007/s10532-023-10019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/06/2023] [Indexed: 02/21/2023]
Abstract
The potential of a native digestate microbial community for 1,4-dioxane (DX) biodegradation was evaluated under low dissolved oxygen (DO) concentrations (1-3 mg/L) under different conditions in terms of electron acceptors, co-substrates, co-contaminants and temperature. Complete DX biodegradation (detection limit of 0.01 mg/L) of initial 25 mg/L was achieved in 119 days under low DO concentrations, while complete biodegradation happened faster at 91 and 77 days, respectively in nitrate-amended and aerated conditions. In addition, conducting biodegradation at 30 ˚C showed that the time required for complete DX biodegradation in unamended flasks reduced from 119 days in ambient condition (20-25 °C) to 84 days. Oxalic acid, which is a common metabolite of DX biodegradation was identified in the flasks under different treatments including unamended, nitrate-amended and aerated conditions. Furthermore, transition of the microbial community was monitored during the DX biodegradation period. While the overall richness and diversity of the microbial community decreased, several families of known DX-degrading bacteria such as Pseudonocardiaceae, Xanthobacteraceae and Chitinophagaceae were able to maintain and grow in different electron-accepting conditions. The results suggested that DX biodegradation under low DO concentrations, where no external aeration was provided, is possible by the digestate microbial community, which can be helpful to the ongoing research for DX bioremediation and natural attenuation.
Collapse
Affiliation(s)
- Aryan Samadi
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada.
| | - Suzanne M Budge
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, NS, B3H 4R2, Canada
| | - Yannan Huang
- Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS, Canada
| | - Rob Jamieson
- Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
11
|
Characterization of 1,4-dioxane degrading microbial community enriched from uncontaminated soil. Appl Microbiol Biotechnol 2023; 107:955-969. [PMID: 36625913 DOI: 10.1007/s00253-023-12363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/01/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
1,4-Dioxane is a contaminant of emerging concern that has been commonly detected in groundwater. In this study, a stable and robust 1,4-dioxane degrading enrichment culture was obtained from uncontaminated soil. The enrichment was capable to metabolically degrade 1,4-dioxane at both high (100 mg L-1) and environmentally relevant concentrations (300 μg L-1), with a maximum specific 1,4-dioxane degradation rate (qmax) of 0.044 ± 0.001 mg dioxane h-1 mg protein-1, and 1,4-dioxane half-velocity constant (Ks) of 25 ± 1.6 mg L-1. The microbial community structure analysis suggested Pseudonocardia species, which utilize the dioxane monooxygenase for metabolic 1,4-dioxane biodegradation, were the main functional species for 1,4-dioxane degradation. The enrichment culture can adapt to both acidic (pH 5.5) and alkaline (pH 8) conditions and can recover degradation from low temperature (10°C) and anoxic (DO < 0.5 mg L-1) conditions. 1,4-Dioxane degradation of the enrichment culture was reversibly inhibited by TCE with concentrations higher than 5 mg L-1 and was completely inhibited by the presence of 1,1-DCE as low as 1 mg L-1. Collectively, these results demonstrated indigenous stable and robust 1,4-dioxane degrading enrichment culture can be obtained from uncontaminated sources and can be a potential candidate for 1,4-dioxane bioaugmentation at environmentally relevant conditions. KEY POINTS: •1,4-Dioxane degrading enrichment was obtained from uncontaminated soil. • The enrichment culture could degrade 1,4-dioxane to below 10 μg L-1. •Low Ks and low cell yield of the enrichment benefit its application in bioremediation.
Collapse
|
12
|
Tawfik A, Al-Sayed A, Hassan GK, Nasr M, El-Shafai SA, Alhajeri NS, Khan MS, Akhtar MS, Ahmad Z, Rojas P, Sanz JL. Electron donor addition for stimulating the microbial degradation of 1,4 dioxane by sequential batch membrane bioreactor: A techno-economic approach. CHEMOSPHERE 2022; 306:135580. [PMID: 35810864 DOI: 10.1016/j.chemosphere.2022.135580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The presence of 1,4 dioxane in wastewater is associated with severe health and environmental issues. The removal of this toxic contaminant from the industrial effluents prior to final disposal is necessary. The study comprehensively evaluates the performance of sequential batch membrane bioreactor (MBR) for treating wastewater laden with 1,4 dioxane. Acetate was supplemented to the wastewater feed as an electron donor for enhancing and stimulating the microbial growing activities towards the degradation of 1,4 dioxane. The removal efficiency of 1,4 dioxane was maximized to 87.5 ± 6.8% using an acetate to dioxane (A/D) ratio of 4.0, which was substantially dropped to 31.06 ± 3.7% without acetate addition. Ethylene glycol, glyoxylic acid, glycolic acid, and oxalic acid were the main metabolites of 1,4 dioxane biodegradation using mixed culture bacteria. The 1,4 dioxane degrading bacteria, particularly the genus of Acinetobacter, were promoted to 92% at the A/D ratio of 4.0. This condition encouraged as well the increase of the main 1,4 dioxane degraders, i.e., Xanthomonadales (12.5%) and Pseudomonadales (9.1%). However, 50% of the Sphingobacteriales and 82.5% of Planctomycetes were reduced due to the inhibition effect of the 1,4 dioxane contaminate. Similarly, the relative abundance of Firmicutes, Verrucomicrobia, Chlamydiae, Actinobacteria, Chloroflexi, and Nitrospirae was reduced in the MBR at the A/D ratio of 4.0. The results derived from the microbial analysis and metabolites detection at different A/D ratios indicated that acetate supplementation (as an electron donor) maintained an essential role in encouraging the microorganisms to produce the monooxygenase enzymes responsible for the biodegradation process. Economic feasibility of such a MBR system showed that for a designed flow rate of 30 m3∙d-1, the payback period from reusing the treated wastewater would reach 6.6 yr. The results strongly recommend the utilization of mixed culture bacteria growing on acetate for removing 1,4 dioxane from the wastewater industry, achieving dual environmental and economic benefits.
Collapse
Affiliation(s)
- Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt.
| | - Aly Al-Sayed
- National Research Centre, Water Pollution Research Department, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Gamal K Hassan
- National Research Centre, Water Pollution Research Department, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| | - Saber A El-Shafai
- National Research Centre, Water Pollution Research Department, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Nawaf S Alhajeri
- Department of Environmental Technology Management, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.
| | - Mohd Shariq Khan
- Department of Chemical Engineering, Dhofar University, Salalah, 211, Oman
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Patricia Rojas
- Universidad Autonoma de Madrid, Department of Molecular Biology, Madrid, 28049, Spain
| | - Jose L Sanz
- Universidad Autonoma de Madrid, Department of Molecular Biology, Madrid, 28049, Spain
| |
Collapse
|
13
|
Inoue D, Hisada K, Ike M. Effectiveness of tetrahydrofuran at enhancing the 1,4-dioxane degradation ability of activated sludge lacking prior exposure to 1,4-dioxane. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1707-1718. [PMID: 36240306 DOI: 10.2166/wst.2022.296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
1,4-dioxane (DX) is a contaminant of emerging concern in water environments. The enrichment of DX-degrading bacteria indigenous to activated sludge is key for the efficient biological removal of DX in wastewater. To identify an effective substrate, which enables the selective enrichment of DX-degrading bacteria and has lower toxicity and persistence than DX, this study explored the effectiveness of tetrahydrofuran (THF) at enhancing the DX degradation ability of activated sludge without historical exposure to DX. Although the activated sludge initially exhibited negligible ability to degrade DX (100 mg-C/L) as the sole carbon source, the repeated batch cultivation on THF could enrich bacterial populations capable of degrading DX, inducing the DX degradation ability in activated sludge as effectively as DX did. The THF-enrichment culture after 4 weeks degraded 100 mg-C/L DX almost completely within 21 d. Sequencing analyses revealed that soluble di-iron monooxygenase group 5C, including THF/DX monooxygenase, would play a dominant role in the initial oxidation of DX in THF-enrichment culture, which completely differed from the enrichment culture cultivated on DX. The results indicate that THF can be applied as an effective substrate to enhance the DX degradation ability of microbial consortia, irrespective of the intrinsic ability.
Collapse
Affiliation(s)
- Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan E-mail:
| | - Kazuki Hisada
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan E-mail:
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan E-mail:
| |
Collapse
|
14
|
Gu J, Zhu Y, Guo M, Yin X, Liang M, Lou X, Chen J, Zhou L, Fan D, Shi L, Hu G, Ji G. The potential mechanism of BPF-induced neurotoxicity in adult zebrafish: Correlation between untargeted metabolomics and gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156221. [PMID: 35623532 DOI: 10.1016/j.scitotenv.2022.156221] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/11/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol F (BPF) is becoming the main substitute for bisphenol A (BPA) in plastics for food and beverage applications. Previous studies have demonstrated the neurotoxicity of BPF; however, its lifecycle toxicity and the underlying mechanisms remain poorly understood. In the current study, zebrafish were continuously exposed to BPF for four months from the embryo to adult stages in order to assess its neurotoxicity. Locomotor behaviors significantly decreased after BPF exposure, which was accompanied by a decrease in body weight, length, and hatching rate. Additionally, BPF increased the expression of inflammatory genes in the brain and destroyed the zebrafishes' intestinal integrity. Meanwhile, the 16S rRNA gene sequence results showed a significantly decreased microbiota abundance and diversity following BPF treatment. Neurotransmitter metabolites were also altered by BPF. Notably, the correlation analysis between microbiota and neurotransmitter metabolism verified that gut microbiota dysbiosis was closely related to the disturbance of neurotransmitter metabolites. Therefore, the present study evaluated the neurotoxicity of lifecycle exposure to BPF and unraveled a novel mechanism involving disturbance of neurotransmitter metabolism and gut dysbiosis, which may provide potential targets for BPF-mediated neurotoxicity.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuanhui Zhu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Min Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaogang Yin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Mengyuan Liang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xinyu Lou
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jingrong Chen
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Linjun Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Deling Fan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences,Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
15
|
Dai C, Wu H, Wang X, Zhao K, Lu Z. Network and meta-omics reveal the cooperation patterns and mechanisms in an efficient 1,4-dioxane-degrading microbial consortium. CHEMOSPHERE 2022; 301:134723. [PMID: 35489450 DOI: 10.1016/j.chemosphere.2022.134723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/09/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
1,4-Dioxane is an emerging wastewater contaminant with probable human carcinogenicity. Our current understanding of microbial interactions during 1,4-dioxane biodegradation process in mixed cultures is limited. Here, we applied metagenomic, metatranscriptomic and co-occurrence network analyses to unraveling the microbial cooperation between degrader and non-degraders in an efficient 1,4-dioxane-degrading microbial consortium CH1. A 1,4-dioxane-degrading bacterium, Ancylobacter polymorphus ZM13, was isolated from CH1 and had a potential of being one of the important degraders due to its high relative abundance, highly expressed monooxygenase genes tmoABCDEF and high betweenness centrality of networks. The strain ZM13 cooperated obviously with 6 bacterial genera in the network, among which Xanthobacter and Mesorhizobium could be involved in the intermediates metabolism with responsible genes encoding alcohol dehydrogenase (adh), aldehyde dehydrogenase (aldh), glycolate oxidase (glcDEF), glyoxylate carboligase (gcl), malate synthase (glcB) and 2-isopropylmalate synthase (leuA) differentially high-expressed. Also, 1,4-dioxane facilitated the shift of biodiversity and function of CH1, and those cooperators cooperated with ZM13 in the way of providing amino acids or fatty acids, as well as relieving environmental stresses to promote biodegradation. These results provide new insights into our understandings of the microbial interactions during 1,4-dioxane degradation, and have important implications for predicting microbial cooperation and constructing efficient and stable synthetic 1,4-dioxane-degrading consortia for practical remediation.
Collapse
Affiliation(s)
- Chuhan Dai
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Li W, Li W, He K, Tang L, Liu Q, Yang K, Chen YD, Zhao X, Wang K, Lin H, Lv S. Peroxymonosulfate activation by oxygen vacancies-enriched MXene nano-Co 3O 4 co-catalyst for efficient degradation of refractory organic matter: Efficiency, mechanism, and stability. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128719. [PMID: 35325862 DOI: 10.1016/j.jhazmat.2022.128719] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Cobalt-based catalysts have been widely explored in the degradation of organic pollutants based on peroxymonosulfate (PMS) activation. Herein, we report an MXene nano-Co3O4 co-catalyst enriched with oxygen vacancies (Ov) and steadily fixed in nickel foam (NF) plates, which is used as an efficient and stable PMS activator for the removal of 1,4-dioxane (1,4-D). Ti originating from MXene was doped into the Co3O4 crystal, generating large amounts of Ov, which could provide more active sites to enhance PMS activation and facilitate the transformation of Co2+ and Co3+, causing a high stability. As a result, the 1,4-D removal efficiency of the NF/MXene-Co3O4/PMS system (kapp: 2.41 min-1) was about four times higher than that of the NF/Co3O4/PMS system (kapp: 0.62 min-1). In addition, singlet oxygen was the predominant reactive oxygen species. Notably, the 1,4-D removal of the NF/MXene-Co3O4/PMS system was over 95% after 20 h operation in the single-pass filtration mode with only 3.72% accumulative Co leaching, showing excellent stability and reusability of NF/MXene-Co3O4. This work provides a defect engineering strategy to design a robust and stable catalytic system for water treatment, which expands the application of MXene in the field of environmental remediation.
Collapse
Affiliation(s)
- Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Kuanchang He
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Longxiang Tang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Qian Liu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Kui Yang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yi-Di Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xin Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Kai Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Hui Lin
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Sihao Lv
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
17
|
Isaka K, Masuda T, Omae S, Mishima I, Ike M. Effect of nitrogen, phosphorus, and sulfur on the start-up of a biological 1,4-dioxane removal process using Pseudonocardia sp. D17. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Dang H, Cupples AM. Identification of the phylotypes involved in cis-dichloroethene and 1,4-dioxane biodegradation in soil microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148690. [PMID: 34198077 DOI: 10.1016/j.scitotenv.2021.148690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Co-contamination with chlorinated compounds and 1,4-dioxane has been reported at many sites. Recently, there has been an increased interest in bioremediation because of the potential to degrade multiple contaminants concurrently. Towards improving bioremediation efficacy, the current study examined laboratory microcosms (inoculated separately with two soils) to determine the phylotypes and functional genes associated with the biodegradation of two common co-contaminants (cis-dichloroethene [cDCE] and 1,4-dioxane). The impact of amending microcosms with lactate on cDCE and 1,4-dioxane biodegradation was also investigated. The presence of either lactate or cDCE did not impact 1,4-dioxane biodegradation one of the two soils. Lactate appeared to improve the initiation of the biological removal of cDCE in microcosms inoculated with either soil. Stable isotope probing (SIP) was then used to determine which phylotypes were actively involved in carbon uptake from cDCE and 1,4-dioxane in both soil communities. The most enriched phylotypes for 13C assimilation from 1,4-dioxane included Rhodopseudomonas and Rhodanobacter. Propane monooxygenase was predicted (by PICRUSt2) to be dominant in the 1,4-dioxane amended microbial communities and propane monooxygenase gene abundance values correlated with other enriched (but less abundant) phylotypes for 13C-1,4-dioxane assimilation. The dominant enriched phylotypes for 13C assimilation from cDCE included Bacteriovorax, Pseudomonas and Sphingomonas. In the cDCE amended soil microcosms, PICRUSt2 predicted the presence of DNA encoding glutathione S-transferase (a known cDCE upregulated enzyme). Overall, the work demonstrated concurrent removal of cDCE and 1,4-dioxane by indigenous soil microbial communities and the enhancement of cDCE removal by lactate. The data generated on the phylotypes responsible for carbon uptake (as determined by SIP) could be incorporated into diagnostic molecular methods for site characterization. The results suggest concurrent biodegradation of cDCE and 1,4-dioxane should be considered for chlorinated solvent site remediation.
Collapse
Affiliation(s)
- Hongyu Dang
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|