1
|
Sbarberi R, Magni S, Ponti B, Tediosi E, Neri MC, Binelli A. Multigenerational effects of virgin and sampled plastics on the benthic macroinvertebrate Chironomus riparius. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107205. [PMID: 39667267 DOI: 10.1016/j.aquatox.2024.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Although sediments are important reservoirs of plastics, most of the ecotoxicological studies on these contaminants are focused on the organisms living in the water column, while only a smaller number of evidence concerns the plastic impact on benthic species. Therefore, this study compared the multigenerational effects on the sediment-dwelling midge Chironomus riparius exposed to both virgin polystyrene microbeads (22,400-224,000 plastics/kg sediments dry weight), and plastic mixtures (40-420 plastics/kg dry weight) collected from four of the main tributaries of Po River (Ticino, Adda, Oglio and Mincio Rivers, Northern Italy) to evaluate the role played by other characteristics related to these physical contaminants in determining their toxicity as opposed to concentration alone. The modified Chironomid Life-Cycle Toxicity Test (OECD 233) was used to evaluate the multigenerational effects on the Emergence and Development Rates, Fecundity and Fertility. In addition, a biomarkers' suite of cellular stress, neurotoxicity, and energetic metabolism was applied in the 2nd generation (2nd/3rd instar of larvae) to investigate the potential mechanisms associated to the apical effects. Our results showed no significant (p > 0.05) multigenerational effect for any of the endpoints tested for the virgin plastics' exposures. Coherently, no significant effects on biomarkers were measured. Concerning the sampled plastics, the particles collected in Adda River instead induced a significant decrease (p < 0.05) of the Emergence Rate in the 2nd generation, suggesting that this parameter was the most susceptible among those measured. These results highlight that the different plethora of polymers, sizes and shapes of plastics sampled in natural ecosystems, compared to homogeneous characteristics of virgin polystyrene microbeads, appears to have considerable importance over concentration alone in determining the toxicity of these emerging contaminants.
Collapse
Affiliation(s)
- Riccardo Sbarberi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Benedetta Ponti
- LabAnalysis group, Via Saronnino 86/A, 21040 Origgio, Varese, Italy
| | - Erica Tediosi
- LabAnalysis group, Via Saronnino 86/A, 21040 Origgio, Varese, Italy
| | | | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
2
|
Magni S, Sbarberi R, Dolfini D, Nigro L, Binelli A. Behind conventional (micro)plastics: An ecotoxicological characterization of aqueous suspensions from End-of-Life Tire particles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107032. [PMID: 39068809 DOI: 10.1016/j.aquatox.2024.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Million tons of tires become waste every year, and the so-called End-of-Life Tires (ELTs) are ground into powder (ELT-dp; size < 0.8 mm) and granules (ELT-dg; 0.8 < size < 2.5 mm) for recycling. The aim of this study was to evaluate the sub-lethal effects of three different concentrations (0.1, 1, and 10 mg/L) of aqueous suspensions from ELT-dp and ELT-dg on Danio rerio (zebrafish) larvae exposed from 0 to 120 h post-fertilization (hpf). Chronic effects were assessed through biomarkers, real-time PCR, and proteomics. We observed a significant increase in swimming behavior and heart rate only in specimens exposed to ELT-dp suspensions at 1 and 10 mg/L, respectively. Conversely, the activities of detoxifying enzymes ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST) showed significant modulation only in specimens exposed to ELT-dg groups. Although no effects were observed through real-time PCR, proteomics highlighted alterations induced by the three ELT-dp concentrations in over 100 proteins involved in metabolic pathways of aromatic and nitrogen compounds. The results obtained suggest that the toxic mechanism of action (MoA) of ELT suspensions is mainly associated with the induction of effects by released chemicals in water, with a higher toxicity of ELT-dp compared to ELT-dg.
Collapse
Affiliation(s)
- Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Riccardo Sbarberi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Diletta Dolfini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
3
|
Magni S, Fossati M, Pedrazzani R, Abbà A, Domini M, Menghini M, Castiglioni S, Bertanza G, Binelli A, Della Torre C. Plastics in biogenic matrices intended for reuse in agriculture and the potential contribution to soil accumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123986. [PMID: 38636833 DOI: 10.1016/j.envpol.2024.123986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
The spread of biogenic matrices for agricultural purposes can lead to plastic input into soils, raising a question on possible consequences for the environment. Nonetheless, the current knowledge concerning the presence of plastics in biogenic matrices is very poor. Therefore, the objective of the present study was a quali-quantitative characterization of plastics in different matrices reused in agriculture as manures, digestate, compost and sewage sludges. Plastics were quantified and characterized using a Fourier Transform Infrared Spectroscopy coupled with an optical microscope (μFT-IR) in Attenuated Total Reflectance mode. Our study showed the presence of plastics in all the investigated samples, albeit with differences in the content among the matrices. We measured a lower presence in animal matrices (0.06-0.08 plastics/g wet weight w.w.), while 3.14-5.07 plastics/g w.w. were measured in sewage sludges. Fibres were the prevalent shape and plastic debris were mostly in the micrometric size. The most abundant polymers were polyester (PEST), polypropylene (PP) and polyethylene (PE). The worst case was observed in the compost sample, where 986 plastics/g w.w. were detected. The majority of these plastics were compostable and biodegradable, with only 8% consisting of fragments of PEST and PE. Our results highlighted the need to thoroughly evaluate the contribution of reused matrices in agriculture to the plastic accumulation in the soil system.
Collapse
Affiliation(s)
- Stefano Magni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Italy
| | - Marco Fossati
- Istituto di Ricerche Farmacologiche Mario Negri IRCSS, Italy
| | - Roberta Pedrazzani
- Dipartimento di Ingegneria Meccanica e Industriale, Università degli Studi di Brescia, Italy
| | - Alessandro Abbà
- Dipartimento di Ingegneria Civile, Architettura, Territorio, Ambiente e di Matematica, Università degli Studi di Brescia, Italy
| | - Marta Domini
- Dipartimento di Ingegneria Civile, Architettura, Territorio, Ambiente e di Matematica, Università degli Studi di Brescia, Italy
| | - Michele Menghini
- Dipartimento di Ingegneria Meccanica e Industriale, Università degli Studi di Brescia, Italy
| | | | - Giorgio Bertanza
- Dipartimento di Ingegneria Civile, Architettura, Territorio, Ambiente e di Matematica, Università degli Studi di Brescia, Italy
| | - Andrea Binelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Italy
| | | |
Collapse
|
4
|
Nigro L, Magni S, Ortenzi MA, Gazzotti S, Della Torre C, Signorini SG, Sbarberi R, Binelli A. Unveiling the multilevel impact of four water-soluble polymers on Daphnia magna: From proteome to behaviour (a case study). JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134000. [PMID: 38508107 DOI: 10.1016/j.jhazmat.2024.134000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
The ubiquitous presence of water-soluble polymers (WSPs) in freshwater environments raises concerns regarding potential threats to aquatic organisms. This study investigated, for the first time, the effects of widely used WSPs -polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyacrylic acid (PAA), and polyethylene glycol (PEG)- using a multi-level approach in the freshwater biological model Daphnia magna. This integrated assessment employed a suite of biomarkers, evaluation of swimming behaviour, and proteomic analysis to investigate the effects of three environmentally relevant concentrations (0.001, 0.5, and 1 mg/L) of the tested WSPs from molecular to organismal levels, assessing both acute and chronic effects. Our findings reveal that exposure to different WSPs induces specific responses at each biological level, with PEG being the only WSP inducing lethal effects at 0.5 mg/L. At the physiological level, although all WSPs impacted both swimming performance and heart rate of D. magna specimens, PAA exhibited the greatest effects on the measured behavioural parameters. Furthermore, proteomic analyses demonstrated altered protein profiles following exposure to all WSPs, with PVA emerging as the most effective.
Collapse
Affiliation(s)
- Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy.
| | - Marco Aldo Ortenzi
- Department of Chemistry, University of Milan, Via Golgi 19, Milan 20133, Italy
| | - Stefano Gazzotti
- Department of Chemistry, University of Milan, Via Golgi 19, Milan 20133, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | | | - Riccardo Sbarberi
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| |
Collapse
|
5
|
Binelli A, Magni S, Della Torre C, Sbarberi R, Cremonesi C, Galafassi S. Monthly variability of floating plastic contamination in Lake Maggiore (Northern Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170740. [PMID: 38340826 DOI: 10.1016/j.scitotenv.2024.170740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The monitoring of plastics in freshwater ecosystems has witnessed a significant increase in recent years, driven by the awareness that approximately 80 % of marine plastic litter originates from terrestrial sources transported to the seas through lakes and rivers. Consequently, it is imperative to develop monitoring plans that offer a comprehensive understanding of plastic contamination in these aquatic environments, given their seasonal variations in hydrochemical characteristics and anthropogenic sources. Historically, most global lake monitoring campaigns have been limited to one-time or, at most, seasonal sampling. In this context, the primary objective of the present study was to assess the quantitative and qualitative monthly variations of floating plastics in Lake Maggiore, a large European lake with high ecological and economic significance. Twelve transverse transects were conducted from January to December 2022 using a Manta-net with a 100 μm mesh. Characterization of each plastic particle was performed using a μ-Fourier Transform Infrared Spectroscope (μFT-IR). The results revealed relatively low levels of contamination in Lake Maggiore when compared with other lakes worldwide exclusively from a secondary origin. However, a considerable heterogeneity was observed, both quantitatively and qualitatively. Notably, we identified a 13-fold difference between the minimum (0.02 plastics/m3 in September) and maximum (0.29 plastics/m3 in December) concentrations of plastics, accompanied by significant variations in polymer composition. Our monitoring underscored the necessity of also considering the temporal variation as a potential factor influencing plastic contamination in a lake. Moreover, frequent sampling emerged as a crucial requirement to accurately gauge the extent of plastic pollution, yielding robust and valuable data essential for effective environmental management.
Collapse
Affiliation(s)
- Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Riccardo Sbarberi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Cristina Cremonesi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Silvia Galafassi
- National Research Council, Water Research Institute (CNR-IRSA), Largo Tonolli 50, 28922 Verbania Pallanza, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
6
|
Sbarberi R, Magni S, Boggero A, Della Torre C, Nigro L, Binelli A. Comparison of plastic pollution between waters and sediments in four Po River tributaries (Northern Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168884. [PMID: 38042177 DOI: 10.1016/j.scitotenv.2023.168884] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
The monitoring of plastic contamination in freshwaters is still pioneering in comparison with marine environments, and few studies analyzed the distribution of these pollutants in both aqueous and bottom compartments of continental waters. Therefore, the aim of this study was the comparison of plastic pollution in both waters and sediments of four Po River tributaries (Ticino, Adda, Oglio and Mincio Rivers), which outflow from the main Italian sub-alpine Lakes, in order to establish the strengths and weaknesses of both matrices. The main results pointed out a heterogeneous plastic contamination, with the lowest values in Ticino (0.9 ± 0.5 plastics/m3 in waters and 6.8 ± 4.5 plastics/kg dry weight - d.w. - in sediments) and the highest in Mincio (62.9 ± 53.9 plastics/m3 in waters and 26.5 ± 13.3 plastics/kg d.w in sediments), highlighting a plastic amount in sediments four times higher than waters. Plastic pollution, mainly due to microplastics, was associated principally to a domestic input in both waters and sediments of Ticino and Adda Rivers, as well as in sediments of Oglio, while an industrial pollution was found in waters and sediments of Mincio and Oglio waters. Our data clearly highlighted as the monitoring of both matrices provide complementary information for a holistic risk assessment of these emerging contaminants in freshwaters: the aqueous matrix provides an instantaneous picture of contamination, while sediments the history of pollution.
Collapse
Affiliation(s)
- Riccardo Sbarberi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Angela Boggero
- National Research Council - Water Research Institute (CNR-IRSA), Corso Tonolli 50, 28922 Verbania Pallanza, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
7
|
Binelli A, Nigro L, Sbarberi R, Della Torre C, Magni S. To be or not to be plastics? Protein modulation and biochemical effects in zebrafish embryos exposed to three water-soluble polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167699. [PMID: 37832656 DOI: 10.1016/j.scitotenv.2023.167699] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Water-soluble polymers (WSPs) are a particular category of polymers that, due to their capability to be soluble in water, come out of the classic definition of plastic and therefore also from its regulation and control, representing a possible new environmental problem considering the number of consumer products in which they are contained. For this reason, the aim of this study was to evaluate the possible adverse effects of three of the most used WSPs (polyacrylic acid - PAA, polyethylene glycol - PEG, polyvinylpyrrolidone - PVP), administered at relevant environmental concentrations (0.001, 0.5 and 1 mg/L) to Danio rerio (zebrafish) embryos up to 120 h post fertilization. To assess the WSP toxicity at the molecular, cellular and organism level we used an integrated ecotoxicological approach of both biomarkers and high-throughput technology based on gel-free proteomics. The main results showed how all the three WSPs up-regulated many proteins (up to 74 in specimens exposed to 1 mg/L PVP) with a wide range of molecular functions and involved in numerous cellular pathways of exposed specimens. On the other hand, the measurement of biomarkers showed how PAA and PVP were able to activate the antioxidant machinery following an over-production of reactive oxygen species, while PEG produced no significant changes in the biomarkers measured. Based on the obtained results, the use and application of WSPs should be revised and regulated.
Collapse
Affiliation(s)
- Andrea Binelli
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy.
| | - Riccardo Sbarberi
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Camilla Della Torre
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Magni
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
8
|
Mosconi G, Panseri S, Magni S, Malandra R, D’Amato A, Carini M, Chiesa L, Della Torre C. Plastic Contamination in Seabass and Seabream from Off-Shore Aquaculture Facilities from the Mediterranean Sea. J Xenobiot 2023; 13:625-640. [PMID: 37987441 PMCID: PMC10660701 DOI: 10.3390/jox13040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
We characterized the presence of plastics in different organs of the gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) from some off-shore aquaculture facilities of the Mediterranean Sea. Plastics were detected in 38% of analyzed fish. Higher contamination was observed in fish from Turkey and Greece with respect to Italy, without significant differences between the geographical areas. Plastics accumulated mostly in the gastrointestinal tract and, to a lower extent, in the muscle, which represents the edible part of fish. Based on the particle detected, a maximum amount of 0.01 plastic/g wet weight (w.w.) can occur in muscles, suggesting a low input for humans through consumption. A large portion of the particles identified was represented by man-made cellulose-based fibers. The characterization of the polymeric composition suggests that plastics taken up by fish can have land-based and pelagic origins, but plastics can be introduced also from different aquaculture practices.
Collapse
Affiliation(s)
- Giacomo Mosconi
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy; (G.M.); (S.P.); (L.C.)
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy; (G.M.); (S.P.); (L.C.)
| | - Stefano Magni
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Renato Malandra
- ATS Milano-Città Metropolitana, Veterinary Unit, 20122 Milan, Italy;
| | - Alfonsina D’Amato
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (A.D.); (M.C.)
| | - Marina Carini
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (A.D.); (M.C.)
| | - Luca Chiesa
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy; (G.M.); (S.P.); (L.C.)
| | | |
Collapse
|
9
|
Della Torre C, Riccardi N, Magni S, Modesto V, Fossati M, Binelli A. First comparative assessment of contamination by plastics and non-synthetic particles in three bivalve species from an Italian sub-alpine lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121752. [PMID: 37156439 DOI: 10.1016/j.envpol.2023.121752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
This study aimed to compare the contamination from plastics and non-synthetic particles in the three freshwater bivalve mollusks Unio elongatulus, (native) and Corbicula fluminea and Dreissena polymorpha (invasive), collected in Lake Maggiore, the second greatest Italian lake. Organisms were collected from eight sites located throughout the lake, during three years (2019-2021). The quali-quantitative characterization of particles has been carried out using a Fourier Transform Infrared Microscope System (μFT-IR). Results showed that both plastics and non-synthetic particles released in the water are taken up by bivalves, even though low intake-up to 6 particles/individuals-were measured for all the three species. Microfibers of both synthetic (polyester, polyamide) and natural (cellulose) origin represented the particles mostly ingested by bivalves. A significant decrease of particle loads was observed in 2020 with respect to 2019 and 2021, significantly different for D. polymorpha and U. elongatulus, suggesting a transient reduction of the particle release in the lake in this year. Our findings highlight the need to improve the understanding of the mechanisms of uptake and clearance of these contaminants by filter feeding organisms, and their adverse consequences in realistic environmental conditions.
Collapse
Affiliation(s)
| | | | - Stefano Magni
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Marco Fossati
- Department of Biosciences, University of Milan, Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Mazzoleni S, Magni S, Tretola M, Luciano A, Ferrari L, Bernardi CEM, Lin P, Ottoboni M, Binelli A, Pinotti L. Packaging contaminants in former food products: Using Fourier Transform Infrared Spectroscopy to identify the remnants and the associated risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130888. [PMID: 36746085 DOI: 10.1016/j.jhazmat.2023.130888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Food waste and feed-food competition can be reduced by replacing traditional feed ingredients such as cereals, with former food products (FFPs) in livestock diets. These foodstuffs, initially intended for human consumption, are recovered, mechanically unpacked, and then ground. Despite this simple and inexpensive treatment, packaging contaminants (remnants) are often unavoidable in the final product. To maximize the exploitation of FFPs and to minimize the associated risks, packaging remnants need to be quantified and characterized. This study tested the efficacy of the Fourier Transform Infrared Spectroscopy coupled with an optical microscope (μFT-IR) in identifying packaging remnants in 17 FFP samples collected in different geographical areas. After a visual sorting procedure, presumed packaging remnants were analyzed by μFT-IR. The results showed significant differences (p < 0.05) between the FFPs in terms of the total number of foreign particles found (plastics, cellulose and aluminum remnants, ranging from 4 to 19 particles per 20 g fresh matter), and also regarding the number of cellulose and aluminum particles. These data clearly demonstrate the need for sensitive instruments that can characterize the potential contaminants in the FFPs. This would then help to reduce the overestimation of undesirable contaminants typical of simple visual sorting, which is currently the most common method.
Collapse
Affiliation(s)
- Sharon Mazzoleni
- Department of Veterinary Medicine and Animal Science, DIVAS, University of Milan, 26900 Lodi, Italy
| | - Stefano Magni
- Department of Biosciences, DBS, University of Milan, 20133 Milan, Italy.
| | - Marco Tretola
- Department of Veterinary Medicine and Animal Science, DIVAS, University of Milan, 26900 Lodi, Italy; Agroscope, Institute for Livestock Sciences, La Tioleyre 4, 1725 Posieux, Switzerland
| | - Alice Luciano
- Department of Veterinary Medicine and Animal Science, DIVAS, University of Milan, 26900 Lodi, Italy
| | - Luca Ferrari
- Department of Veterinary Medicine and Animal Science, DIVAS, University of Milan, 26900 Lodi, Italy
| | | | - Peng Lin
- Department of Veterinary Medicine and Animal Science, DIVAS, University of Milan, 26900 Lodi, Italy
| | - Matteo Ottoboni
- Department of Veterinary Medicine and Animal Science, DIVAS, University of Milan, 26900 Lodi, Italy
| | - Andrea Binelli
- Department of Biosciences, DBS, University of Milan, 20133 Milan, Italy
| | - Luciano Pinotti
- Department of Veterinary Medicine and Animal Science, DIVAS, University of Milan, 26900 Lodi, Italy; CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20133 Milan, Italy
| |
Collapse
|
11
|
Fang C, Zheng R, Hong F, Chen S, Chen G, Zhang M, Gao F, Chen J, Bo J. First evidence of meso- and microplastics on the mangrove leaves ingested by herbivorous snails and induced transcriptional responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161240. [PMID: 36587672 DOI: 10.1016/j.scitotenv.2022.161240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Although evidence suggests the ubiquity of meso- and microplastics (MMPs) in mangrove forests, our knowledge of their bioavailability and risk on mangrove leaves is scarce. Here, we investigated MMP contamination concerning submerged mangrove leaves and herbivorous snails that mainly feed on them from the four mangrove forests located in Beibu Gulf, Guangxi Province, China. Results showed that the MMP abundance on the mangrove leaves ranged from 0.01 ± 0.00 to 0.42 ± 0.15 items cm-2, while it ranged from 0.33 ± 0.21 to 6.20 ± 2.91 items individual-1 in the snails. There were significant positive correlations between snails and leaves regarding the abundance of total MMPs and the proportions of MMPs with the same characteristics. Expanded polystyrene (EPS) that mainly derived from aquaculture rafts, accounted for a major component both on the leaves and in the snails in Shi Jiao (SJ). Both the detection frequency and percentage of larger EPS (2.00-17.50 mm) on the leaves in SJ were higher than other sites. Meanwhile, the detection frequency, abundance and percentage of larger EPS on the leaves had significant positive correlations with those of micro-EPS in the snails. These findings suggested that mangrove leaves may represent a viable pathway for MMPs to enter the herbivorous snails. Larger EPS with higher frequency of occurrence on mangrove leaves were more likely to be encountered and ingested by snail considering its opportunistic feeding behavior. In addition, 11 sensitive genes involved in the processes of metabolism, intestinal mucosal immune systems, and cellular transduction in the snails were significantly suppressed by MMP exposure, which may be potentially used as early biomarkers to indicate the biological effects of MMPs under realistic environmental conditions. Overall, this study provides novel insights into the fate, sources, and biological effects of MMPs on mangrove leaves.
Collapse
Affiliation(s)
- Chao Fang
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Ronghui Zheng
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fukun Hong
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shunyang Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Guangcheng Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Min Zhang
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fulong Gao
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jincan Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jun Bo
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
12
|
Gallitelli L, Di Lollo G, Adduce C, Maggi MR, Trombetta B, Scalici M. Aquatic plants entrap different size of plastics in indoor flume experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:161051. [PMID: 36549519 DOI: 10.1016/j.scitotenv.2022.161051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Plastics accumulate in the environment affecting biota and ecosystems. Although rivers are vectors of land-based plastics to the sea, macroplastics and microplastics in rivers are recently studied. Most studies focused on floating plastic transport to the sea through rivers considering only abiotic hydromorphological factors. In this view, among biotic factors, vegetation has recently been found to entrap plastics. Indeed, the role of vegetation is pivotal in affecting riverine plastic transport. While marine vegetation blocking plastics has been studied, research in freshwater ecosystems is neglected. Since hydrological factors have a pivotal role in riverine plastic transport and few is known on plant entrapment, the interaction between hydrological variables and plastic entrapment by vegetation has not yet been investigated. Given that the composition, transport, and fate of "submerged" plastics in the water column are neglected, we aimed at investigating the behaviour of plants in entrapping plastics within a specific laboratory flume tank. Specifically, we assessed whether (i) aquatic plants block different plastic sizes within the water column and (ii) different factors (e.g. water level, density of plants) affect plastic entrapment. Our results showed that, according to plant density, the higher the plant density the higher the entrapment of plastics by plants - independently of plastic size. Considering the water level, macro-, meso-, and microplastics were trapped similarly. Moreover, Potamogeton crispus blocked fewer microplastics compared with Myriophyllum spicatum. Our results might have impact as plants acted as temporary plastic trappers and can be used as tools for mitigating plastic pollution. Future research might investigate if this laboratory approach can be applied in field for recollecting plastics and consequently mitigating the problem. In conclusion, good management of plants in watercourses, canals, and rivers should be ideal for enhancing river functionality and ecosystem services for human well-being (i.e. the plastic entrapment service by plants).
Collapse
Affiliation(s)
- L Gallitelli
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.
| | - G Di Lollo
- Department of Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
| | - C Adduce
- Department of Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
| | - M R Maggi
- Department of Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
| | - B Trombetta
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - M Scalici
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| |
Collapse
|
13
|
Wang Z, Ding J, Song X, Zheng L, Huang J, Zou H, Wang Z. Aging of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends under different conditions: Environmental concerns on biodegradable plastic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158921. [PMID: 36411603 DOI: 10.1016/j.scitotenv.2022.158921] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Biodegradable plastics (BPs) have been used to replace conventional plastics owing to their environmental harmless and ease of degradation. However, the aging processes of BPs in different environments remain unclear. In this study, we used poly (lactic acid)/poly (butylene adipate-co-terephthalate) (PLA/PBAT) films as model BPs and investigated the 30-d aging behavior of PLA/PBAT films under four conditions (i.e., air without ultraviolet (UV) irradiation, water without UV irradiation, air with UV irradiation, and water with UV irradiation). Our results showed that the aging of PLA/PBAT films was insignificant in all groups except the water with UV irradiation group. In the physical characterization, the PLA/PBAT films exhibited layered structures in water with UV irradiation condition, and the submicron- and nano-sized particles adhered to the bigger-sized fragments. In the chemical characterization, the carbonyl index (CI) of PLA/PBAT films in water with UV irradiation condition decreased from 3.84 to 1.36, and the oxygen-to-carbon (O/C) ratio reached a maximum of 1.78 at 20 d and declined to 0.49 at 30 d, indicating that the oxygen-containing functional groups underwent bond breaking and showed a rapid aging process. This is mainly attributed to the combined effect of hydrolysis and photolysis increases the contact area of PLA/PBAT films and accelerates the aging process. Furthermore, based on two-dimensional correlation spectroscopy (2D-COS) analysis, we suggest that free radicals generated in water with UV irradiation conditions also accelerate the aging process of PLA/PBAT films. This study explored the aging processes of PLA/PBAT films under different conditions, which could aid in clarifying the environmental behavior and provide further information to assess the potential risks of BPs.
Collapse
Affiliation(s)
- Zhenguo Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China.
| | - Xiaojun Song
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lixing Zheng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jichao Huang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| |
Collapse
|
14
|
Magni S, Della Torre C, Nigro L, Binelli A. Can COVID-19 pandemic change plastic contamination? The Case study of seven watercourses in the metropolitan city of Milan (N. Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154923. [PMID: 35378182 PMCID: PMC8975594 DOI: 10.1016/j.scitotenv.2022.154923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 05/22/2023]
Abstract
The more or less extensive lockdowns, quarantines, smart working and the closure of numerous recreational or personal care activities due to the COVID-19 pandemic have not only heavily changed the habits and behaviors of all of us, but have also had consequences on the release of some types of pollutants. The aim of this study was to evaluate the possible changes due to the indirect effects of the pandemic in the contamination of plastic mixtures sampled in 9 sites of the main watercourses of the metropolitan city of Milan (N. Italy), which is one of the major industrialized and urbanized areas in Italy. To achieve this goal, we carried out two sampling campaigns, the first one carried out in November 2019, before the arrival of the SARS-CoV-2 virus in Italy, the second in November 2020, during a severe regional lockdown that coincided with other restrictions imposed at the national level. The main results showed a difference in contamination of plastics between the two samplings, not so much due to a quantitative variation, but certainly qualitative. We obtained non-homogeneous data with respect to changes in the number of plastics sampled in the different waterbodies, while it was evident that the plastics' contamination has shifted from a primary and industrial origin to one due to a secondary origin of the sampled plastics, linked especially to the fragmentation of common use objects, or deriving from synthetic garments.
Collapse
Affiliation(s)
- Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
15
|
Nigro L, Magni S, Ortenzi MA, Gazzotti S, Della Torre C, Binelli A. Are "liquid plastics" a new environmental threat? The case of polyvinyl alcohol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106200. [PMID: 35605492 DOI: 10.1016/j.aquatox.2022.106200] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Despite the pollution induced by plastics become a well-known and documented problem, bringing many countries to adopt restrictions about their production, commercialization and use, the impact of another emerging category of synthetic polymers, represented by the Water-Soluble Polymers (WSPs), also known as "liquid plastics", is overlooked by scientific community. WSPs are produced in large quantities and used in a wide plethora of applications such as food packaging, pharmaceuticals and personal care products, cosmetics and detergents, with a consequent continuous release in the environment. The aim of this study was the investigation of the possible toxicity induced by polyvinyl alcohol (PVA), one of the main produced and used WSPs, on two freshwater model organisms, the crustacean Daphnia magna and the teleost Danio rerio (zebrafish). We evaluated the effects of solubilized standard PVA powder and PVA-based commercial bags for carp-fishing, at 3 different concentrations (1 µg/L, 0.5 mg/L and 1 mg/L), through the exposures for 14 days of D. magna (daphnids; age < 24 h) and for 5 days of zebrafish embryos (up to 120 h post fertilization - hpf). As acute effects we evaluated the immobilization/mortality of specimens, while for chronic toxicity we selected several endpoints with a high ecological relevance, as the behavioural alteration on swimming performance, in real-time readout, and the activity of monoamine oxidase (MAO), a neuro-enzyme with a potential implication in the organism movement. The results showed the lack of significant effects induced by the selected substances, at all tested concentrations and in both model organisms. However, considering the wide plethora of available WSPs, other investigations are needed to provide the initial knowledge of risk assessment of these compounds contained in some consumer products.
Collapse
Affiliation(s)
- Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy.
| | - Marco Aldo Ortenzi
- Department of Chemistry, University of Milan, Via Golgi 19, Milan 20133, Italy
| | - Stefano Gazzotti
- Department of Chemistry, University of Milan, Via Golgi 19, Milan 20133, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| |
Collapse
|
16
|
Magni S, Tediosi E, Maggioni D, Sbarberi R, Noé F, Rossetti F, Fornai D, Persici V, Neri MC. Ecological Impact of End-of-Life-Tire (ELT)-Derived Rubbers: Acute and Chronic Effects at Organism and Population Levels. TOXICS 2022; 10:201. [PMID: 35622615 PMCID: PMC9144162 DOI: 10.3390/toxics10050201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/04/2022] [Accepted: 04/17/2022] [Indexed: 02/06/2023]
Abstract
Considering the large amount of tires that reach the end of life every year, the aim of this study was the evaluation of both acute and chronic effects of end-of-life-tire (ELT)-derived rubber granules (ELT-dg) and powder (ELT-dp) on a freshwater trophic chain represented by the green alga Pseudokirchneriella subcapitata, the crustacean Daphnia magna and the teleost Danio rerio (zebrafish). Adverse effects were evaluated at the organism and population levels through the classical ecotoxicological tests. Acute tests on D. magna and D. rerio revealed a 50% effect concentration (EC50) > 100.0 mg/L for both ELT-dg and ELT-dp. Chronic exposures had a lowest observed effect concentration (LOEC) of 100.0 mg/L for both ELT-dg and ELT-dp on P. subcapitata grow rate and yield. LOEC decreased in the other model organisms, with a value of 9.8 mg/L for D. magna, referring to the number of living offspring, exposed to ELT-dg suspension. Similarly, in D. rerio, the main results highlighted a LOEC of 10.0 mg/L regarding the survival and juvenile weight parameters for ELT-dg and a LOEC of 10.0 mg/L concerning the survival and abnormal behavior in specimens exposed to ELT-dp. Tested materials exhibited a threshold of toxicity of 9.8 mg/L, probably a non-environmental concentration, although further investigations are needed to clarify the potential ecological impact of these emerging contaminants.
Collapse
Affiliation(s)
- Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy;
| | - Erica Tediosi
- ChemService Controlli e Ricerche s.r.l.—Lab Analysis Group, Via Fratelli Beltrami 15, 20026 Novate Milanese, Italy; (F.N.); (M.C.N.)
| | - Daniela Maggioni
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy;
| | - Riccardo Sbarberi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy;
| | - Francesca Noé
- ChemService Controlli e Ricerche s.r.l.—Lab Analysis Group, Via Fratelli Beltrami 15, 20026 Novate Milanese, Italy; (F.N.); (M.C.N.)
| | - Fabio Rossetti
- Lab Analysis s.r.l., Via Europa 5, 27041 Casanova Lonati, Italy;
| | | | - Valentina Persici
- Waste and Chemicals s.r.l., Circonvallazione Gianicolense 216E, 00152 Rome, Italy;
| | - Maria Chiara Neri
- ChemService Controlli e Ricerche s.r.l.—Lab Analysis Group, Via Fratelli Beltrami 15, 20026 Novate Milanese, Italy; (F.N.); (M.C.N.)
| |
Collapse
|
17
|
Binelli A, Della Torre C, Nigro L, Riccardi N, Magni S. A realistic approach for the assessment of plastic contamination and its ecotoxicological consequences: A case study in the metropolitan city of Milan (N. Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150574. [PMID: 34592284 DOI: 10.1016/j.scitotenv.2021.150574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The study of the contamination of plastic mixtures sampled in natural environments is currently focused on their qualitative and quantitative assessment, while the evaluation of their effects on organisms is normally performed by experiments carried out at exposure conditions (size, shape, polymers) often far from the environmental ones. To improve the ecological realism, the aim of this study was to collect different plastic mixtures in 9 sampling stations located in 7 watercourses within the metropolitan city of Milan, one of the most anthropized and industrialized European areas, to evaluate both their qualitative and quantitative characteristics and, at the same time, to assess their ecotoxicological effects by exposing for 7 days some specimens of the freshwater bivalve Dreissena polymorpha to the mixtures collected in the sampling sites. The plastic characterization was performed by a Fourier-Transform Infrared spectrometer coupled with an optical microscope (μFT-IR), after several stages aimed to sample cleaning, separation of plastics and visual sorting. The possible effects caused by the plastic mixtures were carried out by the measurements of a biomarker suite to evaluate many cellular and molecular endpoints in mussel tissues. The main results showed a widespread and heterogeneous contamination of plastics in the entire metropolitan area, with contamination peaks found above all in the only two rivers of natural origin (Olona River and Lambro River) where comparable or higher values were reached than plastic concentrations measured in several European rivers. Despite this worrying contamination, the ecotoxicological data obtained after the exposures to the plastic mixtures collected in the selected water bodies showed only a mild effect on oxidative stress and on the variation of some antioxidant enzymes.
Collapse
Affiliation(s)
- Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | | | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
18
|
Do Freshwater Fish Eat Microplastics? A Review with A Focus on Effects on Fish Health and Predictive Traits of MPs Ingestion. WATER 2021. [DOI: 10.3390/w13162214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microplastics (MPs) have received increasing attention in the last decade and are now considered among the most concerning emerging pollutants in natural environments. Here, the current knowledge on microplastic ingestion by wild freshwater fish is reviewed with a focus on the identification of possible factors leading to the ingestion of MPs and the consequences on fish health. Within the literature, 257 species of freshwater fishes from 32 countries have been documented to ingest MPs. MPs ingestion was found to increase with rising level of urbanization, although a direct correlation with MPs concentration in the surrounding water has not been identified. MPs ingestion was detected in all the published articles, with MPs presence in more than 50% of the specimens analyzed in one study out of two. Together with the digestive tract, MPs were also found in the gills, and there is evidence that MPs can translocate to different tissues of the organism. Strong evidence, therefore, exists that MPs may represent a serious risk for ecosystems, and are a direct danger for human health. Moreover, toxicological effects have also been highlighted in wild catches, demonstrating the importance of this problem and suggesting the need for laboratory experiments more representative of the environmental situation.
Collapse
|