1
|
Wu Y, Yang F, Zhao H, Xu Z, Zhang Q. Efficient recovery of valuable metals from electroplating sludge smelting soot via a combined alkali roasting and acid-free aluminum salts leaching methods. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 192:102-113. [PMID: 39616864 DOI: 10.1016/j.wasman.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/24/2024] [Indexed: 12/10/2024]
Abstract
Electroplating sludge smelting soot (ESSS), contains high-grade value metals (such as Zn, Sn, Pb, precious metals Au and Pt) and large amounts of harmful elements Br and S, which could potentially cause valuable resources wastage and environmental pollution, therefore requires responsible recycling. An efficient and eco-friendly process for the cascade recovery of Zn, Sn, Pb, and precious metals Au and Pt from ESSS was proposed, combining NaOH roasting and acid-free aluminum salts leaching. Optimal NaOH roasting conditions achieved high extraction efficiencies for Zn, Sn, and Pb, which were then separated via water leaching. A novel Al(NO3)3 + AlCl3 leaching system was developed to recover Au and Pt from the enriched residue. By optimizing the NaOH roasting conditions and the Al(NO3)3 + AlCl3 leaching conditions, the decomposition and conversion of 99.91 % Zn, 99.56 % Sn, and 98.72 % Pb in ESSS were achieved, simultaneously accomplishing the leaching of 87.89 % Au and 100 % Pt. Mechanisms of NaOH roasting and Al(NO3)3 + AlCl3 leaching were elucidated using XRD, SEM, ICP, XRF, and DFT calculations. Leaching kinetics of Au and Pt were also studied. Finally, Au and Pt were efficiently recovered from the leaching solution by lead powder replacement. This study provides a feasible and promising solution for the green and efficient recovery of valuable metals from ESSS.
Collapse
Affiliation(s)
- Yufeng Wu
- College of Materials Science & Engineering, Beijing University of Technology, No. 100, Pingleyuan Street, Chaoyang District, Beijing 100124, PR China
| | - Fan Yang
- College of Materials Science & Engineering, Beijing University of Technology, No. 100, Pingleyuan Street, Chaoyang District, Beijing 100124, PR China
| | - Hang Zhao
- College of Materials Science & Engineering, Beijing University of Technology, No. 100, Pingleyuan Street, Chaoyang District, Beijing 100124, PR China
| | - Ziyi Xu
- College of Materials Science & Engineering, Beijing University of Technology, No. 100, Pingleyuan Street, Chaoyang District, Beijing 100124, PR China
| | - Qijun Zhang
- College of Materials Science & Engineering, Beijing University of Technology, No. 100, Pingleyuan Street, Chaoyang District, Beijing 100124, PR China.
| |
Collapse
|
2
|
Gao J, Sun F, Liu P, Zhou J, Zhang Y. Sludge Recycling from Non-Lime Purification of Electrolysis Wastewater: Bridge from Contaminant Removal to Waste-Derived NOX SCR Catalyst. Catalysts 2024; 14:535. [DOI: 10.3390/catal14080535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Catalysts for the selective catalytic reduction (NOX SCR) of nitrogen oxides can be obtained from sludge in industrial waste treatment, and, due to the complex composition of sludge, NOX SCR shows various SCR efficiencies. In the current work, an SCR catalyst developed from the sludge produced with Fe/C micro-electrolysis Fenton technology (MEF) in wastewater treatment was investigated, taking into account various sludge compositions, Fe/C ratios, and contaminant contents. It was found that, at about 300 °C, the NOX removal rate could reach 100% and there was a wide decomposition temperature zone. The effect of individual components of electroplating sludge, i.e., P, Fe and Ni, on NOX degradation performance of the obtained solids was investigated. It was found that the best effect was achieved when the Fe/P was 8/3 wt%, and variations in the Ni content had a limited effect on the NOX degradation performance. When the Fe/C was 1:2 and the Fe/C/P was 1:2:0.4, the electroplating sludge formed after treatment with Fe/C MEF provided the best NOX removal rate at 100%. Moreover, the characterization results show that the activated carbon was also involved in the catalytic reduction degradation of NOX. An excessive Fe content may cause agglomeration on the catalyst surface and thus affect the catalytic efficiency. The addition of P effectively reduces the catalytic reaction temperature, and the formation of phosphate promotes the generation of adsorbed oxygen, which in turn contributes to improvements in catalytic efficiency. Therefore, our work suggests that controlling the composition in the sludge is an efficient way to modulate SCR catalysis, providing a bridge from contaminant-bearing waste to efficient catalyst.
Collapse
Affiliation(s)
- Ju Gao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fucheng Sun
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Zhejiang Environmental Science & Design Institute, 109 Tianmushan Rd., Hangzhou 310000, China
| | - Pei Liu
- Shanghai Solid Waste Disposal Co., Ltd., 2491 Jiazhugong Rd., Shanghai 201807, China
| | - Jizhi Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yufeng Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Xi Y, Li F, Shen W, Li X, Zhang P, Zhu N, Wu P, Dang Z. Novel pathway of stabilized Cu 2S volatilization by derivated CH 3Cl. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134656. [PMID: 38776817 DOI: 10.1016/j.jhazmat.2024.134656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Stabilized heavy metals-containing phases and low chlorine utilization limit heavy metals chlorination reactions. The traditional method of adding chlorinating agents can promote heavy metals chlorination volatilization, but the limiting factor has not been resolved and more chlorides are emitted. Herein, a new reaction pathway to promote heavy metals chlorination volatilization through the transformation of stabilized heavy metals-containing phases and chlorine species by the addition of biomass at the sintering is first reported. The Cu volatilization efficiency increased sharply from 50.50% to 93.21% compared with the control, Zn, Pb, and Cd were nearly completely volatilized. Results show that the biomass carbonization process was more important for Cu chlorination volatilization. Stabilized heavy metals-containing phases were converted from Cu2S to CuO and Cu2O with the biochar and oxygen, increasing the activity of Cu. The chlorine species KCl reacted with CH3-containing groups to form CH3Cl, which reacted with CuO with a lower Delta G than HCl and Cl2, increasing the tendency for the conversion of CuO to CuCl. Cu chlorination volatilization process, following shrinking core kinetic model and controlled by chemical reactions. The outcomes fundamentally addresses the limiting step for heavy metals chlorination volatilization, supporting the incineration fly ash harmless treatment.
Collapse
Affiliation(s)
- Yunhao Xi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fei Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Weiqing Shen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiang Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Pengfei Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters Ministry of Education, Guangzhou 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China.
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters Ministry of Education, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters Ministry of Education, Guangzhou 510006, PR China
| |
Collapse
|
4
|
Guo S, Wang H, Liu X, Zhang Z, Liu Y. Approaches for the Treatment and Resource Utilization of Electroplating Sludge. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1707. [PMID: 38612220 PMCID: PMC11013125 DOI: 10.3390/ma17071707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
The disposal of electroplating sludge (ES) is a major challenge for the sustainable development of the electroplating industry. ESs have a significant environmental impact, occupying valuable land resources and incurring high treatment costs, which increases operational expenses for companies. Additionally, the high concentration of hazardous substances in ES poses a serious threat to both the environment and human health. Despite extensive scholarly research on the harmless treatment and resource utilization of ES, current technology and processes are still unable to fully harness its potential. This results in inefficient resource utilization and potential environmental hazards. This article analyzes the physicochemical properties of ES, discusses its ecological hazards, summarizes research progress in its treatment, and elaborates on methods such as solidification/stabilization, heat treatment, wet metallurgy, pyrometallurgy, biotechnology, and material utilization. It provides a comparative summary of different treatment processes while also discussing the challenges and future development directions for technologies aimed at effectively utilizing ES resources. The objective of this text is to provide useful information on how to address the issue of ES treatment and promote sustainable development in the electroplating industry.
Collapse
Affiliation(s)
- Song Guo
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.G.); (H.W.)
| | - Huimin Wang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.G.); (H.W.)
| | - Xiaoming Liu
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.G.); (H.W.)
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zengqi Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.G.); (H.W.)
| | - Yu Liu
- China International Engineering Consulting Corporation, Beijing 100048, China;
| |
Collapse
|
5
|
Zhao J, Hu X, Kong L, Peng X. UV irradiation induced simultaneous reduction of Cu(II) and degradation of EDTA in Cu(II)-EDTA in wastewater containing Cu(II)-EDTA. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133131. [PMID: 38086297 DOI: 10.1016/j.jhazmat.2023.133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
Decomplexation of Cu(II)-EDTA followed by chemical precipitation of free Cu(II) ions can effectively degrade EDTA in Cu(II)-EDTA and remove Cu(II), but requires large precipitant dosage and inevitably produces a large amount of copper-containing sludge that is difficult to deal with. Herein, we demonstrated that simultaneous reduction of Cu(II) and degradation of EDTA in Cu(II)-EDTA can be achieved by UV irradiation of wastewater containing Cu(II)-EDTA without adding reagent. 93.65% of Cu(II) was reduced to Cu(0) with a high purity of 99.93 wt%, which can be recycled, thus avoiding the generation of copper-containing sludge. 96.67% of EDTA in Cu(II)-EDTA was degraded, and the final products were HCHO, NH4+, NO3- and low-molecular acids. In depth, the dominant degradation mechanism of EDTA in Cu(II)-EDTA was photo-induced successive decarboxylation through homolysis of C-O and C-C bond of -CH2-COOH group, followed by ligand to metal charge transfer (LMCT) and hydrolysis reactions. The minor degradation mechanism of EDTA in Cu(II)-EDTA was successive decarboxylation by •OH radicals. Simultaneously, Cu(II) was reduced to Cu(0) by H• and eaq- produced by UV irradiation of Cu(II)-EDTA. This study provided an approach of simultaneous removal of heavy metals and degradation of EDTA in Cu(II)-EDTA in wastewater containing heavy metal-EDTA complex.
Collapse
Affiliation(s)
- Jinmin Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyun Hu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linghao Kong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xianjia Peng
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Wang H, Liu X, Zhang Z. Approaches for electroplating sludge treatment and disposal technology: Reduction, pretreatment and reuse. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119535. [PMID: 37979382 DOI: 10.1016/j.jenvman.2023.119535] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/20/2023]
Abstract
Electroplating sludge (ES) has become an obstacle to the sustainable development of the electroplating industry. Electroplating sludge has a large storage capacity, with a high concentration of soluble pollutants (heavy metals), which has great potential to harm the local ecosystems and human health. Although much research has been done in this area, there seems to be no mature and stable solution. Therefore, the latest technologies for the reduction, pretreatment and reuse of electroplating sludge are emphatically introduced based on the analysis of the characteristics of electroplating sludge and its impact on the ecological environment. The factors hindering the treatment and disposal of electroplating sludge are pointed out, and reasonable and feasible suggestions to solve this problem are proposed. The solidification and removal mechanism of heavy metals in electroplating sludge is emphatically analyzed. The physicochemical and separation processes of heavy metals, as well as thermal treatment technique are discussed. Finally, it is proposed to establish a database of the physicochemical properties and elemental content of electroplating sludge to achieve its systematic treatment and digestion. We hope that this paper can help solve the problem of electroplating sludge and promote the sustainable development of the electroplating industry.
Collapse
Affiliation(s)
- Huimin Wang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoming Liu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Zengqi Zhang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
7
|
Zheng J, Zheng Z, Li L, Li X, Liu W, Lin Z. Acid-leaching mechanism of electroplating sludge: based on a comprehensive analysis of heavy-metal occurrence and the dynamic evolution of coexisting mineral phases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113600-113608. [PMID: 37851258 DOI: 10.1007/s11356-023-30403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Electroplating sludge is a typical heavy metal-containing hazardous waste with tens of millions of tons produced annually in China. Acid leaching is the most common method to extract valuable heavy metals for resource recycling and environmental protection. However, the coexisting elements, which are released from electroplating sludge to the leaching solution, will hinder the recycling of valuable heavy metals. In this work, dynamic acid-leaching experiments, X-ray diffraction analysis, and simulation calculations were conducted. It was found that coexisting elements (mainly Ca, Fe, and Al) account for a large proportion, and calcium salts as coexisting mineral phase (especially CaCO3) are ubiquitous in electroplating sludge. Moreover, the evolution of coexisting mineral phase plays an essential role in the acid-leaching process: (1) the dissolution of CaCO3 contributed a strong acid-neutralization capability and released Ca2+; (2) H2SO4 is the optimal extracting reagent, since it triggered the transformation of calcium salts to CaSO4·2H2O, reducing the Ca2+ concentration; (3) the coexisting elements Fe and Al would form ferrous and aluminum salt minerals with the acid-leaching process, which reduces the leaching of low-value elements. This work provides a new perspective on the acid-leaching mechanism of electroplating sludge, where the evolution of the mineral phase effect the release of valuable heavy metals and coexisting elements. This work also provides as comprehensive information as possible on electroplating sludge and inspires the improvement of the acid-leaching method.
Collapse
Affiliation(s)
- Jiayi Zheng
- Guangzhou Environmental Protection Investment Group Co., Ltd., Guangzhou, 510016, People's Republic of China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Zhengqiang Zheng
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, 510006, Guangdong, People's Republic of China
| | - Li Li
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xiaoqin Li
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, 510006, Guangdong, People's Republic of China
| | - Weizhen Liu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, 510006, Guangdong, People's Republic of China.
| | - Zhang Lin
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| |
Collapse
|
8
|
Cao C, Yu J, Xu X, Li F, Yang Z, Wang G, Zhang S, Cheng Z, Li T, Pu Y, Xian J, Yang Y, Pu Z. A review on fabricating functional materials by electroplating sludge: process characteristics and outlook. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64827-64844. [PMID: 37093385 DOI: 10.1007/s11356-023-26934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
As the end product of the electroplating industry, electroplating sludge (ES) has a huge annual output and an abundant heavy metal (HM). The effective disposal of ES is attracting increasing attention. Currently, the widely used ES disposal methods (e.g. landfill and incineration) make it difficult to effectively control of HMs and synchronously utilise metal resources, leading to a waste of metal resources, HMs migration, and potential harm to the environment and human health. Therefore, techniques to limit HMs release into the environment and promote the efficient utilisation of metal resources contained within ES are of great interest. Based on these requirements, material reuse is a great potential means of ES management. This review presents an overview of the process flows, principles and feasibilities of the methods employed for the material reuse of ES. Several approaches have been investigated to date, including (1) additions in building materials, (2) application in pigment production, and (3) production of special functional materials. However, these three methods vary in their treatment scales, property requirements, ability to control HMs, and degree of utilisation of metal resources in ES. Currently, the safety of products and costs are not paid enough attention, and the large-scale disposal of HMs is not concordant with the effective management of HMs. Accordingly, this study proposes a holistic sustainable materialised reuse pattern of ES, which combines the scale and efficiency of sludge disposal and pays attention to the safety of products and the cost of transformation process for commercial application.
Collapse
Affiliation(s)
- Chenchen Cao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Yu
- School of Geography and Tourism, Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, Anhui Normal University, Wuhu, 241003, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, China.
| | - Feng Li
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhanbiao Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, China
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, China
| | - Zhang Cheng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junren Xian
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanxiang Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
9
|
Jiabao Q, Zhan Q, Hongyu C, Zhihua W, Qi H, Yuxin Z, Hong Z, Yidi G, Ying Z, Xianze W, Suiyi Z. Pyrometallurgy treatment of electroplating sludge, emulsion mud and coal ash: ZnAlFeO 4 spinel separation and stabilization in calcium metasilicate glass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117101. [PMID: 36566727 DOI: 10.1016/j.jenvman.2022.117101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Electroplating sludge was a hazardous waste comprised of heavy metals and other Fe/Al/Ca/Si impurities, and produced massively in surface treatment industry. In the past, it was commonly purified via hydrometallurgy, chlorination and reduction calcination routes, but also blended as additive in rotary kiln, to stabilize the heavy metals in geopolymer. Herein, an alternative strategy was developed to treat a real electroplating sludge for recycling magnetic Zn-rich spinel and stabilizing Zn in calcium metasilicate glass via a facile pyrometallurgy route with the blending of emulsion mud and coal ash. The sludge contained 35.6% Zn and 0.54% Cr and then was blended with 50% emulsion mud. After calcination at 1200 °C, the product was highly dispersed, whilst octahedral ZnAlFeO4 spinel with Zn content of 40.0% were formed and separated by using magnet, in accordance with the recycling efficiency of 51.2% Zn from the electroplating sludge. But after calcination at 1400 °C, the gypsum in emulsion mud was decomposed as CaO and accelerated the dissolution of Si-bearing substance as calcium metasilicate glass for covering ZnAlFeO4 spinel, resulting in the Zn leaching of 1568 mg/L. By adding 50% Si-rich coal ash in the calcination system, more calcium metasilicate glass were generated, and then the Zn concentration in the toxic leaching test was only 12.09 mg/L. During the calcination, Cr showed similar performance to Al/Fe and involved in the spinel formation. This provided a new route to recycle Zn from Zn-rich electroplating sludge and to solidify heavy metals via calcium metasilicate glass route.
Collapse
Affiliation(s)
- Qin Jiabao
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China
| | - Qu Zhan
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China
| | - Chen Hongyu
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, 501 Zhongkai-road, Guangzhou, China
| | - Wang Zhihua
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China; Henan-Tuoren Medical Equipment Group Co., Ltd, Menggang-town, Changyuan, China
| | - Han Qi
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China
| | - Zhang Yuxin
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China
| | - Zhang Hong
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China
| | - Gao Yidi
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China
| | - Zhang Ying
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China
| | - Wang Xianze
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China
| | - Zhu Suiyi
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, 501 Zhongkai-road, Guangzhou, China.
| |
Collapse
|
10
|
Liu Y, Lv M, Wu X, Ding J, Dai L, Xue H, Ye X, Chen R, Ding R, Liu J, Van der Bruggen B. Recovery of copper from electroplating sludge using integrated bipolar membrane electrodialysis and electrodeposition. J Colloid Interface Sci 2023; 642:29-40. [PMID: 37001455 DOI: 10.1016/j.jcis.2023.03.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Electroplating sludge, though a hazardous waste, is a valuable resource as it contains a large amount of precious metals. In this study, copper was recovered from the electroplating sludge using a technology that integrates bipolar membrane electrodialysis (BMED) and electrodeposition. The experimental results showed that Cu2+ in the electroplating sludge was successfully separated and concentrated in the BMED system without adding any chemical reagents; the concentrated Cu2+ was recovered in the form of copper foil in an electrodeposition system. Current density clearly affected the Cu2+ separation and concentration in the BMED system; the current density, solution pH and Cu2+ concentration drastically affected the Cu2+ electrodeposition ratio and the morphology and purity of the obtained copper foil. Under the optimised experimental conditions, 96.4% of Cu2+ was removed from the electroplating sludge and 65.4% of Cu2+ was recovered in the foil form. On increasing the number of electroplating sludge compartments from one to two and three, the current efficiency for recovering Cu2+ increased from 17.4% to 28.5% and 35.2%, respectively, and the specific energy consumption decreased from 11.3 to 6.7 and 5.3 kW h/kg of copper, respectively. The purity of the copper foil was higher than 99.5%. Thus, the integrated technology can be regarded as an effective method for recovering copper from electroplating sludge.
Collapse
|
11
|
Duan H, Li J, Xue J, Qi D. Metal-Enhanced Helical Chirality of Coil Macromolecules: Bioinspired by Metal Coordination-Induced Protein Folding. Biomacromolecules 2023; 24:344-357. [PMID: 36563170 DOI: 10.1021/acs.biomac.2c01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although the supramolecular helical structures of biomacromolecules have been studied, the examples of supramolecular systems that are assembled using coils to form helical polymer chains are still limited. Inspired by enhanced helical chirality at the supramolecular level in metal coordination-induced protein folding, a series of alanine-based coil copolymers (poly-(l-co-d)-ala-NH2) carrying (l)- and (d)-alanine pendants were synthesized as a fresh research model to study the cooperative processes between homochirality property and metal coordination. The complexes of poly-(l-co-d)-ala-NH2 and metal ions underwent a coil-to-helix transition and exhibited remarkable nonlinear effects based on the enantiomeric excess of the monomer unit in the copolymers, affording enhanced helical chirality compared to poly-(l-co-d)-ala-NH2. More importantly, the synergistic effect of amplification of asymmetry and metal coordination triggered the formation of a helical molecular orbital on the polymer backbone via the coordination with the d orbital of copper ions. Thus, the helical chirality enhancement degree of poly-(l-co-d)-ala-NH2/Cu2+ complexes (31.4) is approximately 3 times higher than that of poly-(l-co-d)-ala-NH2/Ag+ complexes (9.8). This study not only provides important mechanistic insights into the enhancement of helical chirality for self-assembly but also establishes a new strategy for studying the homochiral amplification of asymmetry in biological supramolecular systems.
Collapse
Affiliation(s)
- Huimin Duan
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.,Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Jiawei Li
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.,Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China.,Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Jiadan Xue
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.,Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China.,Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| |
Collapse
|
12
|
Zhou Z, Liu T, Wu J, Li H, Chu S, Zhu X, Zhang L, Lu J, Ivanets A, Davronbek B, Ma K, Su X. Preparation of copper-based catalysts from electroplating sludge by ultrasound treatment and their antibiotic degradation performance. ENVIRONMENTAL RESEARCH 2023; 216:114567. [PMID: 36244441 DOI: 10.1016/j.envres.2022.114567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The recovery of heavy metals from electroplating sludge is important for alleviating heavy metal pollution and recycling metal resources. However, the selective recovery of metal resources is limited by the complexity of electroplating sludge. Herein, CuFe bimetallic Fenton-like catalysts were successfully prepared from electroplating sludge by a facile room-temperature ultrasonic-assisted co-precipitation method. The prepared CuFe-S mainly consisted of nanorods with diameters of 20-30 nm and lengths of 100-200 nm and a small number of irregular particles. Subsequently, we performed tetracycline (TC) degradation experiments, and the results showed that the product CuFe-S had very good performance over a wide pH range (2-11). At an initial pH = 2, CuFe-S could degrade 91.9% of 50 mg L-1 TC aqueous solution within 30 min, which is better than that of a single metal catalyst. Free radical scavenging experiments and electron paramagnetic resonance (EPR) tests revealed that ·OH was the main active species for the degradation of TC by CuFe-S. In conclusion, a CuFe bimetallic Fenton-like catalyst was developed for the catalytic degradation of antibiotics, which provides a novel technical route for the resource utilization of electroplating sludge and shows an important practical application prospect.
Collapse
Affiliation(s)
- Zhenxing Zhou
- Ministry Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Tianbao Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Jinxiong Wu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Hongling Li
- Huizhou TCL Environmental Technology Co., Ltd, Huizhou, Guangdong, 516000, PR China
| | - Shasha Chu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Xiaoquan Zhu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Lijuan Zhang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Jing Lu
- Geologic Party No.216, CNNC, Urumqi, 830000, PR China
| | - Andrei Ivanets
- Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus, Surganova St., 9/1, 220072, Minsk, Belarus
| | - Bekchanov Davronbek
- Department of Polymer Chemistry, National University of Uzbekistan, Tashkent, 100174, Uzbekistan
| | - Kongjun Ma
- Ministry Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| |
Collapse
|
13
|
Abstract
With the development of society and industry, the treatment and disposal of sludge have become a challenge for environmental protection. Co-pyrolysis is considered a sustainable technology to optimize the pyrolysis process and improve the quality and performance of pyrolysis products. Researchers have investigated the sludge co-pyrolysis process of sludge with other wastes, such as biomass, coal, and domestic waste, in laboratories. Co-pyrolysis technology has reduced pyrolysis energy consumption and improved the range and quality of pyrolysis product applications. In this paper, the various types of sludge and the factors influencing co-pyrolysis technology have been classified and summarized. Simultaneously, some reported studies have been conducted to investigate the co-pyrolysis characteristics of sludge with other wastes, such as biomass, coal, and domestic waste. In addition, the research on and development of sludge co-pyrolysis are expected to provide theoretical support for the development of sludge co-pyrolysis technology. However, the technological maturity of sludge pyrolysis and co-pyrolysis is far and needs further study to achieve industrial applications.
Collapse
|
14
|
Tian B, Cui Y, Qin Z, Wen L, Li Z, Chu H, Xin B. Indirect bioleaching recovery of valuable metals from electroplating sludge and optimization of various parameters using response surface methodology (RSM). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114927. [PMID: 35358844 DOI: 10.1016/j.jenvman.2022.114927] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Electroplating sludge contains amounts of valuable/toxic metals as a typical hazardous solid waste, but existing technology is hard to simultaneously gain the high recovery of valuable metals and its convert into general solid waste. In this study, indirect bioleaching process was optimized by using RSM for high recovery of four valuable metals (Ni, Cu, Zn and Cr) from electroplating sludge and its shift into general waste. The results showed that the maximum leaching rate respectively was 100% for Ni, 96.5% for Cu, 100% for Zn and 76.1% for Cr at the optimal conditions. In particular, bioleaching saw a much better performance than H2SO4 leaching in removal of highly toxic Cr (76.1% vs. 30.2%). The extraction efficiency of Cr by H2SO4 leaching sharply rose to 72.6% in the presence of 9.0 g/L Fe3+, suggesting that Fe3+ played an important role in the bioleaching of Cr. Based on bioleaching dynamics analysis, it was speculated that Fe3+ passes through the solid shell and enter inside the sludge to attack Cr assisting by extracellular polymeric substances (EPS), leading to high extraction and low residue of Cr. Meanwhile, due to high-efficient release and removal of valuable/toxic metals by bioleaching, the bioleached residues successfully degraded into general based on TCLP test and can be reused as construction material safely.
Collapse
Affiliation(s)
- Bingyang Tian
- School of Materials, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yanchao Cui
- School of Materials, Beijing Institute of Technology, Beijing, 100081, PR China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Zijian Qin
- School of Materials, Beijing Institute of Technology, Beijing, 100081, PR China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Lingkai Wen
- School of Materials, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Zhihua Li
- School of Materials, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Huichao Chu
- School of Materials, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Baoping Xin
- School of Materials, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
15
|
Huang Q, Wang Q, Liu X, Li X, Zheng J, Gao H, Li L, Xu W, Wang S, Xie M, Xiao Y, Lin Z. Effective separation and recovery of Zn, Cu, and Cr from electroplating sludge based on differential phase transformation induced by chlorinating roasting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153260. [PMID: 35065102 DOI: 10.1016/j.scitotenv.2022.153260] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/15/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals in electroplating sludge (ES) are usually amorphous and easily released in the environment. Especially for the ES containing multiple heavy metals, owing to the complex composition and lack of effective disposal method, it has been storage for a long time. In order to avoid environmental pollution, effective treatment methods are very urgent and necessary. Here, chlorinating roasting method was developed to enlarge the phase difference of heavy metals to fulfill the utilization of ES containing multiple heavy metals (Zn, Cr, and Cu). When CaCl2 was used as additive, Zn and Cu were volatilized to the gas phase, while Cr was oxidized to Cr(V)/(VI) and retained in the solid phase with readily leachable state. The recovery percentage of Zn, Cu, and Cr can reach 99%, 98%, and 96% respectively by chlorinating roasting for 4 h at 1000 °C with the CaCl2 addition proportion of 100%. After further extraction and purification, the purity of Cr and Zn can reach 92% and 99% respectively. Moreover, the mechanism of the differential phase transformation induced by chlorinating roasting was analyzed by the method of thermodynamics and kinetics. The kinetic reaction equation of the ZnCl2 and CuCl2 volatilization process can be described by phase boundary reaction and the function is G(α) = 1-(1-α)1/3. This work provides a simple and effective method for the treatment of ES containing multiple heavy metals.
Collapse
Affiliation(s)
- Qiuyun Huang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China; Chinese National Engineering Research Center for Control &Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, PR China
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China; Chinese National Engineering Research Center for Control &Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, PR China
| | - Xueming Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Xiaoqin Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Jiayi Zheng
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Huiqin Gao
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Li Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China.
| | - Wenbin Xu
- Dongjiang Environmental Co. Ltd., Shenzhen, Guangdong 518000, PR China
| | - Shi Wang
- Dongjiang Environmental Co. Ltd., Shenzhen, Guangdong 518000, PR China
| | - Mengqin Xie
- Baoshan Iron and Steel Co. Ltd., Shanghai 201900, PR China
| | - Yongli Xiao
- Baoshan Iron and Steel Co. Ltd., Shanghai 201900, PR China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China; Chinese National Engineering Research Center for Control &Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, PR China
| |
Collapse
|
16
|
Qu Z, Su T, Zhu S, Chen Y, Yu Y, Xie X, Yang J, Huo M, Bian D. Stepwise extraction of Fe, Al, Ca, and Zn: A green route to recycle raw electroplating sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113700. [PMID: 34517231 DOI: 10.1016/j.jenvman.2021.113700] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/23/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Electroplating sludge is a hazardous waste produced in large quantities in the electroplating industry during production. It is rich in heavy metal resources and can be recovered as value-added heavy metal products. To recover Zn in electroplating sludge, Fe/Al/Ca impurities were effectively removed as hematite, boehmite, and calcium sulfate, respectively, via a facile hydrothermal method with reduction of nitric acid by addition of glucose. After the sludge was dissolved in nitric acid, the generated solution contained 6.1 g/L of Zn, 2.2 g/L of Fe, 2.5 g/L of Al, and 2.9 g/L of Ca. First, approximately 100% Fe was extracted as hematite nanoparticles containing 94.6 wt% Fe2O3 after the solution was treated at 190 °C for 6 h. Second, when the temperature was elevated to 270 °C, nearly 99% Al was isolated as boehmite particles containing 95.2 wt% Al2O3. Third, more than 98% Ca was removed as anhydrite, which contained 95.9 wt% CaSO4, by adding sulfuric acid. During the steps, the total loss of Zn was less than 3%, and 5.75 g/L of residual Zn was recovered as zincite containing 92.2 wt% ZnO by adjusting the pH to 8. The dissolved Fe, Al, and Ca impurities were successfully removed as purified hematite, boehmite, and anhydrite, respectively, through the stepwise separation method by adjusting reaction temperatures and pH. The high content of Zn in the electroplating sludge was finally purified as zincite.
Collapse
Affiliation(s)
- Zhan Qu
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Ting Su
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Suiyi Zhu
- School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Yu Chen
- School of Environment, Northeast Normal University, Changchun, 130117, China; Jilin Institute of Forestry Survey and Design, Changchun, 130022, China
| | - Yang Yu
- Guangdong Shouhui Lantian Engineering and Technology Corporation, Guangzhou, 510075, China
| | - Xinfeng Xie
- Michigan Technological University, School of Forest Resources and Environmental Science, Houghton, MI, 49932, USA
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Dejun Bian
- Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| |
Collapse
|