1
|
Gao M, Sun S, Shao C, Qiu Q, Kong C, Qiu L. Engineered stable partial nitrification/endogenous partial denitrification-anammox process for enhanced nitrogen removal from low carbon-to-nitrogen ratio wastewater. BIORESOURCE TECHNOLOGY 2025; 428:132466. [PMID: 40169103 DOI: 10.1016/j.biortech.2025.132466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Addressing the intractable challenges of nitrite instability and slow start-up in anammox for low carbon-to-nitrogen (C/N) ratio wastewater treatment, a one-stage partial nitrification/endogenous partial denitrification-anammox (PN/EPD-A) process in a sequencing batch biofilm reactor was proposed. By synergistically coupling PN and EPD, self-sustained nitrite supply for anammox was achieved. Concurrently, a layered biofilm structure, engineered through tailored aeration and carrier addition, facilitated the rapid enrichment of anammox bacteria. The results demonstrated exceptional performance, achieving a total nitrogen removal efficiency of 83.3 %, with anammox consistently contributing 75.8 % of the nitrogen removed. Microbial community analysis further indicated the stable coexistence of anammox bacteria, ammonia-oxidizing bacteria, and glycogen-accumulating organisms, with their relative abundance reaching 1.36 %, 2.19 % and 9.80 %, respectively. These findings unveiled a robust and efficient strategy to overcome the limitations of anammox technology in low C/N wastewater treatment, paving the way for its broader application in nitrogen removal.
Collapse
Affiliation(s)
- Mingchang Gao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Shaofang Sun
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China; Research Center for Functional Material & Water Purification Engineering of Shandong Province, Jinan 250022, China.
| | - Changtao Shao
- Shandong Industrial Ceramics Research and Design Institute, Zibo 255031, China
| | - Qi Qiu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China; Research Center for Functional Material & Water Purification Engineering of Shandong Province, Jinan 250022, China
| | - Congcong Kong
- Weifang Municiple Public Utility Service Center, Weifang 261000, China
| | - Liping Qiu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China; Research Center for Functional Material & Water Purification Engineering of Shandong Province, Jinan 250022, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| |
Collapse
|
2
|
Fan F, Li M, Dou J, Zhang J, Li D, Meng F, Dong Y. Functional characteristics and mechanisms of microbial community succession and assembly in a long-term moving bed biofilm reactor treating real municipal wastewater. ENVIRONMENTAL RESEARCH 2025; 267:120602. [PMID: 39674248 DOI: 10.1016/j.envres.2024.120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Moving bed biofilm reactor (MBBR) technology with diverse merits is efficient in treating various waste streams whereas their microbial functional properties and ecology still need in-depth investigation, especially in real wastewater treatment systems. Herein, a well-controlled MBBR treating municipal wastewater was established to investigate the long-term system performance and the underlying principles of community succession and assembly. The system successfully achieved ammonium, TN, and chemical oxygen demand (COD) removal of 96.7 ± 2.2%, 75.2 ± 3.6%, and 90.3 ± 3.8%, respectively, under simplified operation and low energy consumption. The effluent TN concentrations achieved 6.2 ± 1.6 mg-N/L despite the influent fluctuations. Diverse functional denitrifiers, such as Denitratisoma, Thermomonas, and Flavobacterium, and the anammox bacteria Candidatus Brocadia successfully enriched in anoxic chamber biofilms. The nitrifiers Nitrosomonas (∼0.73%) and Nitrospira (∼14.0%) exhibited appreciable nitrification capacity in specialized aerobic chambers. Ecological null model and network analysis revealed that microbial community assembly was mainly regulated by niche-based deterministic processes and air diffusion in the aerobic chamber resulted in more intense and complex bacterial interactions. Environmental filters including influent substrate and operating conditions (e.g., reactor configuration, DO, and temperature) greatly shaped the microbial community structure and affected carbon and nitrogen metabolism. The positive ecological roles of influent microflora and functional redundancy in biofilm communities were believed to facilitate functional stability. The anammox process coupled with partial denitrification in a specialized chamber demonstrated positive application implications. These findings provided valuable perspectives in deciphering the microbiological and ecological mechanisms, functional properties, and application potentials of MBBR.
Collapse
Affiliation(s)
- Fuqiang Fan
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai, 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Mingtao Li
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai, 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jiaqi Zhang
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Danyi Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yue Dong
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai, 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China.
| |
Collapse
|
3
|
Jiang C, Zhang L, Chi Y, Xu S, Xie Y, Yang D, Qian Y, Chen F, Zhang W, Wang D, Tian Z, Zhang S, Li YY, Zhuang X. Rapid start-up of an innovative pilot-scale staged PN/A continuous process for enhanced nitrogen removal from mature landfill leachate via robust NOB elimination and efficient biomass retention. WATER RESEARCH 2024; 249:120949. [PMID: 38070348 DOI: 10.1016/j.watres.2023.120949] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The start-up and stable operation of partial nitritation-anammox (PN/A) treatment of mature landfill leachate (MLL) still face challenges. This study developed an innovative staged pilot-scale PN/A system to enhance nitrogen removal from MLL. The staged process included a PN unit, an anammox upflow enhanced internal circulation biofilm (UEICB) reactor, and a post-biofilm unit. Rapid start-up of the continuous flow PN process (full-concentration MLL) was achieved within 35 days by controlling dissolved oxygen and leveraging free ammonia and free nitrous acid to selectively suppress nitrite-oxidizing bacteria (NOB). The UEICB was equipped with an annular flow agitator combined with the enhanced internal circulation device of the guide tube, which achieved an efficient enrichment of Candidatus Kuenenia in the biofilm (relative abundance of 33.4 %). The nitrogen removal alliance formed by the salt-tolerant anammox bacterium (Candidatus Kuenenia) and denitrifying bacteria (unclassified SBR1031 and Denitratisoma) achieved efficient nitrogen removal of UEICB (total nitrogen removal percentage: 90.8 %) and at the same time effective treatment of the refractory organic matter (ROM). The dual membrane process of UEICB fixed biofilm combined with post-biofilm is effective in sludge retention, and can stably control the effluent suspended solids (SS) at a level of less than 5 mg/L. The post-biofilm unit ensured that effluent total nitrogen (TN) remained below the 40 mg/L discharge standard (98.5 % removal efficiency). Compared with conventional nitrification-denitrification systems, the staged PN/A process substantially reduced oxygen consumption, sludge production, CO2 emissions and carbon consumption by 22.8 %, 67.1 %, 87.1 % and 87.1 %, respectively. The 195-day stable operation marks the effective implementation of the innovative pilot-scale PN/A process in treating actual MLL. This study provides insights into strategies for rapid start-up, robust NOB suppression, and anammox biomass retention to advance the application of PN/A in high-ammonia low-carbon wastewater.
Collapse
Affiliation(s)
- Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, China Key Laboratory of Environmental Biotechnology, Yiwu 322000, China
| | - Liang Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongzhi Chi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, China Key Laboratory of Environmental Biotechnology, Yiwu 322000, China.
| | - Yawen Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongmin Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunzhi Qian
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
| | - Fuqiang Chen
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Weijun Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongsheng Wang
- Yangtze River Delta Research Center for Eco-Environmental Sciences, China Key Laboratory of Environmental Biotechnology, Yiwu 322000, China
| | - Zhe Tian
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shujun Zhang
- Research and Development Center of Beijing Drainage Group Technology, Beijing 100022, China
| | - Yu-You Li
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, China Key Laboratory of Environmental Biotechnology, Yiwu 322000, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Zhang X, Al-Dhabi NA, Gao B, Zhou L, Zhang X, Zhu Z, Tang W, Chuma A, Chen C, Wu P. Robust rehabilitation of anammox system by granular activated carbon under long-term starvation stress: Microbiota restoration and metabolic reinforcement. BIORESOURCE TECHNOLOGY 2024; 393:130113. [PMID: 38013039 DOI: 10.1016/j.biortech.2023.130113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
This article investigates the buffering capacity and recovery-enhancing ability of granular activated carbon (GAC) in a starved (influent total nitrogen: 20 mg/L) anaerobic ammonium oxidation (anammox) reactor. The findings revealed that anammox aggregated and sustained basal metabolism with shorter performance recovery lag (6 days) and better nitrogen removal efficiency (84.9 %) due to weak electron-repulsion and abundance redox-active groups on GAC's surface. GAC-supported enhanced extracellular polymeric substance secretion aided anammox in resisting starvation. GAC also facilitated anammox bacterial proliferation and expedited the restoration of anammox microbial community from a starved state to its initial-level. Metabolic function analyses unveiled that GAC improved the expression of genes involved in amino acid metabolism and sugar-nucleotide biosynthesis while promoted microbial cross-feeding, ultimately indicating the superior potential of GAC in stimulating more diverse metabolic networks in nutrient-depleted anammox consortia. This research sheds light on the microbial and metabolic mechanisms underlying GAC-mediated anammox system in low-substrate habitats.
Collapse
Affiliation(s)
- Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bo Gao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xingxing Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zixuan Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wangwang Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Amen Chuma
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chongjun Chen
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
5
|
Wang Z, Liang H, Yan Y, Li X, Zhang Q, Peng Y. Stimulating extracellular polymeric substances production in integrated fixed-film activated sludge reactor for advanced nitrogen removal from mature landfill leachate via one-stage double anammox. BIORESOURCE TECHNOLOGY 2024; 391:129968. [PMID: 37925083 DOI: 10.1016/j.biortech.2023.129968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Introducing carbon sources to achieve nitrogen removal from mature landfill leachate not only increases the costs and carbon emissions but also inhibits the activity of autotrophic bacteria. Thus, this study constructed a double anammox system that combines partial nitrification-anammox (PNA) and endogenous partial denitrification-anammox (EPDA) within an integrated fixed-film activated sludge (IFAS) reactor. In this system, PNA primarily contributes to nitrogen removal pathways, achieving a nitrite accumulation rate of 98.23%. The production of extracellular polymer substances (EPS) in the IFAS reactor is stimulated by introducing co-fermentation liquid. Through the utilization of EPS, the system effectively achieves EPDA with the nitrite transformation rate of 97.20%. Under the intermittent aeration operation strategy, EPDA combined with PNA and anammox in the oxic and anoxic stages enhanced the nitrogen removal efficiency of the system to 99.70 ± 0.12%. The functional genus Candidatus kuenenia became enriched in biofilm sludge, while Thauera and Nitrosomonas predominated in floc sludge.
Collapse
Affiliation(s)
- Zhaozhi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Haoran Liang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ying Yan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
6
|
Yang R, Li Y, Chen J, Wu J, Zhang S, Chen S, Wang X. Characteristics variations of size-fractionated anammox granules and identification of the potential effects on these evolutions. ENVIRONMENTAL RESEARCH 2023; 237:116875. [PMID: 37640093 DOI: 10.1016/j.envres.2023.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Anaerobic ammonium oxidation (anammox) granulation which contributed to system stabilization and performance improvement has great potential in the field of wastewater nitrogen removal. The researchers fractionated anammox granules into small-size (0.5-0.9 mm), medium-size (1.8-2.2 mm), and large-size (2.8-3.5 mm) categories to examine their properties and mechanisms. Various analyses, including high-throughput sequencing, determination of inorganic elements and extracellular polymeric substances (EPS), and microbial function prediction, were conducted to characterize these granules and understand their impact. The results revealed distinct characteristics among the different-sized granules. Medium-size granules exhibited the highest sphericity, EPS content, and anammox abundance. In contrast, large-size granules had the highest specific surface area, heme c content, specific anammox activity, biodiversity, and abundance of filamentous bacteria. Furthermore, the precipitates within the granules were identified as CaCO3 and MgCO3, with the highest inorganic element content found in the large-size granules. Microbial community and function annotation also varied with granule size. Based on systematic analysis, the researchers concluded that cell growth, chemical precipitation, EPS secretion, and interspecies interaction all played a role in granulation. Small-size granules were primarily formed through cell growth and biofilm formation. As granule size increased, EPS secretion and chemical precipitation became more influential in the granulation process. In the large-size granules, chemical precipitation and interspecies interaction, including synergistic effects with nitrifying, denitrifying, and filamentous bacteria, as well as metabolic cross-feeding, played significant roles in aggregation. This interplay ultimately contributed to higher anammox activity in the large-size granules. By fully understanding the mechanisms involved in granulation, this study provides valuable insights for the acclimation of anammox granules with optimal sizes under different operational conditions.
Collapse
Affiliation(s)
- Ruili Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Fujian, Xiamen, 361021, PR China; Yancheng Institute of Technology, Jiangsu, Yancheng, 224051, PR China
| | - Yenan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Fujian, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinglin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Fujian, Xiamen, 361021, PR China
| | - Junbin Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Fujian, Xiamen, 361021, PR China
| | - Shici Zhang
- Hubei Geological Survey, Wuhan, 430034, PR China
| | - Shaohua Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Fujian, Xiamen, 361021, PR China
| | - Xiaojun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Fujian, Xiamen, 361021, PR China.
| |
Collapse
|
7
|
Li Y, Chen Z, Zhang Y, Wang Z, Zhang C, Deng Z, Huang L, Wang X, Fan J, Zhou S. Response of partial nitritation and denitrification processes to high levels of free ammonia in a pilot mature landfill leachate treatment system: Stability and microbial community dynamics. BIORESOURCE TECHNOLOGY 2023; 387:129571. [PMID: 37506935 DOI: 10.1016/j.biortech.2023.129571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The high levels of free ammonia (FA) challenge the application of partial nitritation (PN) and denitrification (DN) in the treatment of ammonia-rich wastewater. This study explored the impact of high levels of FA on the PN and DN stability and microbial community dynamics. By reducing reflux and increasing influent load, the concentrations of FA in PN and DN reactors increased from 28.9 mg/L and 140.0 mg/L to 1099.8 mg/L and 868.4 mg/L, respectively. During this process, the performance of PN and DN remained stable. The microbial analysis revealed that the Nitrosomonas exhibited strong tolerance to high levels of FA, and its relative abundance was positively correlated with amoABC (R2 0.984) and hao (R2 0.999) genes. The increase in microbial diversity could enhance the resistance ability of PN against the FA impact. In contrast, high levels of FA had scant influence on the microbial community and performance of DN.
Collapse
Affiliation(s)
- Yonggan Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Zhenguo Chen
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yangzhong Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Zhiyu Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Chuchu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Zexi Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Linxiang Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China; Hua an Biotech Co., Ltd., Foshan 528300, China.
| | - Junhao Fan
- Hua an Biotech Co., Ltd., Foshan 528300, China
| | | |
Collapse
|
8
|
Yan Y, Chen Y, Wu X, Dang H, Zeng T, Ma J, Tang C. Enhanced nitrogen removal from rural domestic sewage via partial nitrification-anammox in integrated vertical subsurface flow constructed wetland. ENVIRONMENTAL RESEARCH 2023; 233:116338. [PMID: 37311474 DOI: 10.1016/j.envres.2023.116338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
This study aimed to improve the removal of nitrogen treating rural domestic sewage by developing a novel strategy for achieving partial nitrification-anammox (PNA) in an integrated vertical subsurface flow constructed wetland (VSFCW). The influent ammonia was oxidized to nitrite in the partial nitrification VSFCW (VSFCWPN), and 5 mg/L of hydroxylamine was added under the appropriate dissolved oxygen concentration level (1.2 ± 0.2 mg/L) to stabilize the average nitrite accumulation rate at 88.24% and maintain the effluent NO2--N/NH4+-N ratio at 1.26 ± 0.15. The effluent from VSFCWPN was introduced to the following chamber (VSFCWAN), where ammonia and nitrite were removed by the autotrophic anammox process. This implementation achieved high removal efficiencies for chemical oxygen demand, total nitrogen, and PO43--P, reaching 86.26%, 90.22%, and 78.94%, respectively, with influent concentrations of 120.75 mg/L, 60.02 mg/L, and 5.05 mg/L. Substrate samples were collected from 10 cm height (PN1, AN1) and 25 cm height (PN2, AN2). Microbial community analysis showed that Nitrosomonas dominated the community composition in VSFCWPN, with an increase from 1.61% in the inoculated sludgePN to 16.31% (PN1) and 12.09% (PN2). Meanwhile, Ca. Brocadia accounted for 44.81% (AN1) and 36.50% (AN2) in VSFCWAN. These results confirm the feasibility of the proposed strategy for establishing PNA and efficiently treating rural domestic sewage in an integrated VSFCW.
Collapse
Affiliation(s)
- Yuan Yan
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Yongzhi Chen
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
| | - Xinbo Wu
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hongzhong Dang
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Tianxu Zeng
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Jiao Ma
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Chenxin Tang
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
9
|
Luo Z, Li Y, Chen B, Lei M, Zhang N, Zhang X, Li J. Effect of free ammonia on partial denitrification: Long-term performance, mechanism, and feasibility of PD/Anammox-FBBR for mature landfill leachate treatment. WATER RESEARCH 2023; 243:120238. [PMID: 37506632 DOI: 10.1016/j.watres.2023.120238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023]
Abstract
As a stable and effective approach for NO2--N accumulation, partial denitrification (PD) could significantly cut down operation cost, and PD/Anammox (PD/A) is a promising nitrogen removal process in wastewater treatment. The biotoxicity of free ammonia (FA) to nitrifying bacteria and anammox bacteria has been demonstrated, while whether FA affects PD bacteria is an open question. Here, long-term operation of PD-fixed bed biofilm reactor (PD-FBBR) treating synthetic wastewater and mature landfill leachate was conducted to reveal the mechanism concerning the effect of FA on PD bacteria. Stable NO2--N accumulation was achieved with NO3--N to NO2--N transformation ratio (NTR) of 60-70% during 280-day operation with FA ranged from 0 to 20.71 ± 0.23 mg/L, while NTR decreased and maintained at ∼30% when FA reached 40.59 ± 0.19 mg/L. Specific NOx--N reduction rate improved at low FA concentration (< 12 mg/L), while high FA level (> 25 mg/L) had inhibitory effect on PD bacteria. Under FA stress, more extracellular polymeric substances (EPS) were secreted, and the glnA gene abundance, glutamine synthase concentration, and glutamine concentration in cell and EPS significantly increased, indicating the enhancement of glutamine biosynthesis in PD bacteria for ammonia assimilation played an important role in response to FA stress. Metagenomic sequencing showed that FA stimulated the upregulation of narK (NO3--N/NO2--N antiporter) gene abundance and enhanced uptake of NO3--N and extrusion of NO2--N. Comamonas, unclassified_f__Comamonadaceae and Thauera were highly enriched in biofilm, which played a key role in the stable NO2--N accumulation. Furthermore, a novel two stage PD/A-FBBR was applied to mature landfill leachate treatment, and satisfactory total inorganic nitrogen removal efficiency ranged from 81.38 ± 3.56% to 89.16 ± 1.57% was obtained at relatively low COD/NO3--N of 2.57-2.84. Overall, these findings demonstrated how PD bacteria respond to FA stress and confirmed the feasibility of PD/A process in high FA wastewater treatment.
Collapse
Affiliation(s)
- Zhizhan Luo
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yong Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bohan Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mengen Lei
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Naixin Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Hong S, Winkler MKH, Wang Z, Goel R. Integration of EBPR with mainstream anammox process to treat real municipal wastewater: Process performance and microbiology. WATER RESEARCH 2023; 233:119758. [PMID: 36812815 DOI: 10.1016/j.watres.2023.119758] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The mainstream application of anaerobic ammonium oxidation (anammox) for sustainable N removal remains a challenge. Similarly, with recent additional stringent regulations for P discharges, it is imperative to integrate N with P removal. This research studied integrated fixed film activated sludge (IFAS) technology to simultaneously remove N and P in real municipal wastewater by combining biofilm anammox with flocculent activated sludge for enhanced biological P removal (EBPR). This technology was assessed in a sequencing batch reactor (SBR) operated as a conventional A2O (anaerobic-anoxic-oxic) process with a hydraulic retention time of 8.8 h. After a steady state operation was reached, robust reactor performance was obtained with average TIN and P removal efficiencies of 91.3 ± 4.1% and 98.4 ± 2.4%, respectively. The average TIN removal rate recorded over the last 100 d of reactor operation was 118 mg/L·d, which is a reasonable number for mainstream applications. The activity of denitrifying polyphosphate accumulating organisms (DPAOs) accounted for nearly 15.9% of P-uptake during the anoxic phase. DPAOs and canonical denitrifiers removed approximately 5.9 mg TIN/L in the anoxic phase. Batch activity assays, which showed that nearly 44.5% of TIN were removed by the biofilms during the aerobic phase. The functional gene expression data also confirmed anammox activities. The IFAS configuration of the SBR allowed operation at a low solid retention time (SRT) of 5-d without washing out biofilm ammonium-oxidizing and anammox bacteria. The low SRT, combined with low dissolved oxygen and intermittent aeration, provided a selective pressure to washout nitrite-oxidizing bacteria and glycogen-accumulating organisms, as relative abundances of.
Collapse
Affiliation(s)
- Soklida Hong
- Department of Civil and Environmental Engineering, University of Utah, 110 S Central Campus Drive, Salt Lake City, UT 84112, USA.
| | - Mari-K H Winkler
- Department of Civil and Environmental Engineering, University of Washington, 616 Northlake Place, Seattle, WA 98195, USA.
| | - Zhiwu Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA 20110, USA.
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, 110 S Central Campus Drive, Salt Lake City, UT 84112, USA.
| |
Collapse
|
11
|
Zhang Q, Zheng J, Zhao L, Liu W, Chen L, Cai T, Ji XM. Succession of microbial communities reveals the inevitability of anammox core in the development of anammox processes. BIORESOURCE TECHNOLOGY 2023; 371:128645. [PMID: 36681349 DOI: 10.1016/j.biortech.2023.128645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The lack of anammox seeds is regarded as the bottleneck of anammox-based processes. Although the interactions in anammox consortia have attracted increasing attention, little is known about the influence of inoculated sludge populations on the growth of anammox bacteria. In this study, four sludge of distinct communities mixed with anammox sludge (the relative abundance of Ca. Kuenenia was 1.96 %) were used as the seeds, respectively for the start-up of anammox processes. Notably, all these mixed microbial communities tend to form a similar microbial community, defined as the anammox core, containing anammox-bacteria (22.9 ± 5.9 %), ammonia-oxidizing-bacteria (0.8 ± 0.7 %), nitrite-oxidizing-bacteria (0.2 ± 0.2 %), Chloroflexi-bacteria (0.7 ± 0.4 %), and heterotrophic-denitrification-bacteria (0.3 ± 0.2 %). It also elucidated that the communities of Nitrosomonas-dominated sludge were the closest to the anammox core, and achieved the highest nitrogen-removal rate of 0.73 kg-N m-3 d-1. This study sheds light on the solution to the shortage of anammox seeds in the full-scale wastewater treatment application.
Collapse
Affiliation(s)
- Qi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinli Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Leizhen Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Liwei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Mishra S, Singh V, Ormeci B, Hussain A, Cheng L, Venkiteshwaran K. Anaerobic-aerobic treatment of wastewater and leachate: A review of process integration, system design, performance and associated energy revenue. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116898. [PMID: 36459783 DOI: 10.1016/j.jenvman.2022.116898] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Hybrid anaerobic-aerobic biological systems are an environmentally sustainable way of recovering bioenergy during the treatment of high-strength wastewaters and landfill leachate. This study provides a critical review of three major categories of anaerobic-aerobic processes such as conventional wetland, high-rate and integrated bioreactor systems applied for treatment of wastewaters and leachate. A comparative assessment of treatment mechanisms, critical operating parameters, bioreactor configurations, process control strategies, efficacies, and microbial dynamics of anaerobic-aerobic systems is provided. The review also explores the influence of wastewater composition on treatment performance, ammonium nitrogen removal efficacy, impact of mixing leachate, energy consumption, coupled bioenergy production and economic aspects of anaerobic-aerobic systems. Furthermore, the operational challenges, prospective modifications, and key future research directions are discussed. This review will provide in-depth understanding to develop sustainable engineering applications of anaerobic-aerobic processes for effective co-treatment of wastewaters and leachate.
Collapse
Affiliation(s)
- Saurabh Mishra
- College of Environment, Hohai University, Nanjing, Jiangsu Province, 210098, China; College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu Province, 210098, China.
| | - Virender Singh
- Department of Civil and Environmental Engineering, Carleton University, Mackenzie Building, 1125 Colonel By Drive, Ottawa, Ontario, ON K1S 5B6, Canada
| | - Banu Ormeci
- Department of Civil and Environmental Engineering, Carleton University, Mackenzie Building, 1125 Colonel By Drive, Ottawa, Ontario, ON K1S 5B6, Canada
| | - Abid Hussain
- Department of Civil and Environmental Engineering, Carleton University, Mackenzie Building, 1125 Colonel By Drive, Ottawa, Ontario, ON K1S 5B6, Canada
| | - Liu Cheng
- College of Environment, Hohai University, Nanjing, Jiangsu Province, 210098, China; College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu Province, 210098, China.
| | - Kaushik Venkiteshwaran
- Department of Civil, Coastal and Environmental Engineering, University of South Alabama, Mobile, Alabama, AL 36688, USA
| |
Collapse
|
13
|
Xu L, Chen Y, Wang Z, Zhang Y, He Y, Zhang A, Chen H, Xue G. Discovering dominant ammonia assimilation: Implication for high-strength nitrogen removal in full scale biological treatment of landfill leachate. CHEMOSPHERE 2023; 312:137256. [PMID: 36395888 DOI: 10.1016/j.chemosphere.2022.137256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Landfill leachate containing high-strength nitrogen is generated in domestic waste landfilling. The integration of anoxic and aerobic process (AO) based on nitrification and denitrification, has been a mainstream process of biological nitrogen removal (BNR). But the high-strength organics as well as aerobic effluent reflux might change the biochemical environment designed and operated as AO. In view of the nitrogen balance in a full scale landfill leachate treatment plant with two-stage AO, we found that approximately 90% removal of total nitrogen (TN) and ammonia (NH4+-N) focused on primary anoxic and aerobic stage. Meanwhile, the less nitrate and nitrite in the aerobic effluent were incapable of sustaining denitrification or anaerobic ammonia oxidation (anammox). The high reflux flow from aerobic to anoxic process enabled the similar microbial community and functional genes in anoxic and aerobic process units. However, the functional genes involving ammonia assimilation in all process units showcased the highest abundance compared to those correlated with other BNR pathways, including nitrification and denitrification, assimilatory and dissimilatory nitrate reduction, nitrogen fixation and anammox. The ammonia assimilation dominated the removals of TN and NH4+-N, rather than other BNR mechanism. The insight of dominant ammonia assimilation is favorable for illustrating the authentic BNR mechanism of landfill leachate in AO, thereby guiding the optimization of engineering design and operation.
Collapse
Affiliation(s)
- Lei Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuting Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zheng Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yueling He
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200000, China.
| |
Collapse
|
14
|
Ren S, Yang P, Zhang F, Jiang H, Wang C, Li X, Zhang Q, Peng Y. Continuous plug-flow anammox system for mature landfill leachate treatment: Key zone for anammox pathway. BIORESOURCE TECHNOLOGY 2022; 363:127865. [PMID: 36049709 DOI: 10.1016/j.biortech.2022.127865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
This study established the one-stage partial nitrification coupled anammox and partial denitrification coupled anammox process in an anoxic/oxic continuous plug-flow system and operated for 465 days to treat mature landfill leachate. 97.9 %-98.1 % of inorganic nitrogen was removed when the nitrogen loading rate was maintained at 0.33-0.36 kg N/m3/d, and a high anammox contribution to nitrogen removal (89.8 %-92.4 %) was achieved. The long-term in-situ free ammonia (FA) anoxic treatment contributed to the stable performances of partial nitrification and in-situ fermentation. The employed integrated fixed-film activated sludge technology favored the enrichment of hzsA, hzsB, hdh, amoA, hao, narG, and napA functional genes. The oxic zone, particularly oxic biofilm, was the key zone for anammox pathway, where Candidatus_Kuenenia (from 1.6 % to 8.3 %) with high tolerance to FA and salinity stress outcompeted Candidatus_Brocadia (from 18.3 % to 0.1 %) as the dominant anammox bacteria. This study could provide guidance for anammox-mediated landfill leachate treatment in practical projects.
Collapse
Affiliation(s)
- Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Pei Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Beijing Environmental Engineering Technology Co. Ltd., PR China
| | - Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chuanxin Wang
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd., PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
15
|
Jiang H, Li X, Zhang F, Wang Z, Ren S, Qiu J, Wang S, Peng Y. Advanced nitrogen removal from mature landfill leachate based on novel step-draining partial nitrification-denitrification and Anammox process: Significance of low volume exchange ratio. BIORESOURCE TECHNOLOGY 2022; 364:128025. [PMID: 36174894 DOI: 10.1016/j.biortech.2022.128025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
To save external carbon source dosage and simplify NH4+ to NO2- ratio control strategy, this study established a novel step-draining based partial nitrification-denitrification and Anammox (PND-AMX) system for advanced nitrogen removal from mature landfill leachate. Separation of partial nitrification and denitrification was realized based on step-draining, achieving 74.8 % nitrogen removal. 25 % was the optimal volume exchange ratio for synergistic removal of organics and nitrogen, allowing full use of carbon source. NH4+ to NO2- ratio was easily controlled by varying the volume ratio of the first and second effluent of PND reactor. Brocadia, Kuenenia and Jettenia collectively accounted for 13.61 % in AMX reactor, contributing 21.0 % of nitrogen removal. Nitrogen removal efficiency and nitrogen removal rate reached 98.3 ± 1.2 % and 3.07 ± 0.09 kgN/(m3∙d), respectively. Partial Anammox process based on step-draining was easier to realize and of practical significance for application in treatment of landfill leachate.
Collapse
Affiliation(s)
- Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jingang Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
16
|
Purposely Development of the Adaptive Potential of Activated Sludge from Municipal Wastewater Treatment Plant Focused on the Treatment of Landfill Leachate. Processes (Basel) 2022. [DOI: 10.3390/pr10030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Biological treatment is a key technology in landfill leachate treatment However, often its efficiency is not high enough due to the pollutants in concentrations above the critical ones. The present study aimed to investigate the adaptive responses that occur in activated sludge (AS) during landfill leachate purification. A model process with AS from a municipal wastewater treatment plant and landfill leachate in increasing concentrations was constructed. The data showed that when dilutions 25 and 50 times had been applied the structure of the AS was preserved, but the COD cannot be reduced below 209 mg O2/L. The feed of undiluted leachate destroyed the AS structure as SVI was reduced to 1 mL/g, biotic index to 1, floc size was greatly reduced and COD remained high (2526 mg O2/L). The dominant group of protozoa was changed from attached to free-swimming ciliates. An increase of the bacterial groups responsible for the xenobiotics elimination (aerobic heterotrophs, genera Pseudomonas, Acinetobacter, Azoarcus, Thauera, Alcaligenes) was registered. This was accompanied by a significant increase in free bacteria. The obtained data showed that for optimal treatment of this type of water it is necessary to include a combination of biological treatment with another non-biological method (membrane filtration, reverse osmosis, etc.).
Collapse
|
17
|
Liu J, Qiu S, Zhang L, He Q, Li X, Zhang Q, Peng Y. Intermittent pH control strategy in sludge anaerobic fermentation: Higher short-chain fatty acids production, lower alkali consumption, and simpler control. BIORESOURCE TECHNOLOGY 2022; 345:126517. [PMID: 34920083 DOI: 10.1016/j.biortech.2021.126517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The pH control to promote short-chain fatty acids (SCFAs) production during anaerobic alkaline fermentation basically focused on constant pH control. In this study, a simple and consumption-reducing intermittent pH control strategy at moderate temperature (23 ± 2 °C) was investigated with adjusting pH to 10 when naturally reduced to 8. The intermittent pH control strategy could alleviate the inhibition of acid-producing bacteria by strong alkaline and high FA concentration. Meanwhile, microbial diversity promoted by 6% and 69% while the relative abundance of acid-producing bacteria increased by 36% and 61% compared to blank and constant pH fermenters. The relative genes abundance related to amino acid metabolism and fatty acid production were mostly promoted and led to enhanced SCFAs production. In the long-term fermenter, the intermittent pH control strategy could result in a 68% reduction in alkali consumption and a 37% increase in SCFAs production compared to that of the constant pH at 10.
Collapse
Affiliation(s)
- Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shengjie Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiang He
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
18
|
Huang X, Xing Y, Wang H, Dai Z, Chen T. Nitrogen Advanced Treatment of Urban Sewage by Denitrification Deep-Bed Filter: Removal Performance and Metabolic Pathway. Front Microbiol 2022; 12:811697. [PMID: 35154036 PMCID: PMC8825488 DOI: 10.3389/fmicb.2021.811697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to explore the performance of denitrification deep-bed filter (DN-DBF) to treat municipal sewage for meeting a more stringent discharge standard of total nitrogen (TN) (10.0 mg L-1). A lab-scale DN-DBF was conducted to optimize operation parameters and reveal the microbiological mechanism for TN removal. The results showed that more than 12.7% TN removal was obtained by adding methanol compared with sodium acetate. The effluent TN concentration reached 6.0-7.0 mg L-1 with the optimal influent carbon and nitrogen ratio (C/N) and hydraulic retention time (HRT) (3:1 and 0.25 h). For the nitrogen removal mechanism, Blastocatellaceae_Subgroup_4 and norank_o_JG30-KF-CM45 were dominant denitrification floras with an abundance of 6-10%. Though large TN was removed at the top layer of DN-DBF, microbial richness and diversity at the middle layer were higher than both ends. However, the relative abundance of nitrite reductase enzymes (EC1.7.2.1) gradually increases as the depth increases; conversely, the relative abundance of nitrous oxide reductase gradually decreased.
Collapse
Affiliation(s)
- Xiao Huang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Yixiao Xing
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Hongjie Wang
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Zhongyi Dai
- China Municipal Engineering Central South Design and Research Institute Co., Ltd., Wuhan, China
| | - Tiantian Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
19
|
Nitrogen Removal from Mature Landfill Leachate via Anammox Based Processes: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14020995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mature landfill leachate is a complex and highly polluted effluent with a large amount of ammonia nitrogen, toxic components and low biodegradability. Its COD/N and BOD5/COD ratios are low, which is not suitable for traditional nitrification and denitrification processes. Anaerobic ammonia oxidation (anammox) is an innovative biological denitrification process, relying on anammox bacteria to form stable biofilms or granules. It has been extensively used in nitrogen removal of mature landfill leachate due to its high efficiency, low cost and sludge yield. This paper reviewed recent advances of anammox based processes for mature landfill leachate treatment. The state of the art anammox process for mature landfill leachate is systematically described, mainly including partial nitrification–anammox, partial nitrification–anammox coupled denitrification. At the same time, the microbiological analysis of the process operation was given. Anaerobic ammonium oxidation (anammox) has the merit of saving the carbon source and aeration energy, while its practical application is mainly limited by an unstable influent condition, operational control and seasonal temperature variation. To improve process efficiency, it is suggested to develop some novel denitrification processes coupled with anammox to reduce the inhibition of anammox bacteria by mature landfill leachate, and to find cheap new carbon sources (methane, waste fruits) to improve the biological denitrification efficiency of the anammox system.
Collapse
|
20
|
Zhang X, Zhang X, Wu P, Ma L, Chen J, Wang C, Li X, Liu W, Xu L. Hydroxylamine metabolism in mainstream denitrifying ammonium oxidation (DEAMOX) process: Achieving fast start-up and robust operation with bio-augmentation assistance under ambient temperature. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126736. [PMID: 34333411 DOI: 10.1016/j.jhazmat.2021.126736] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen removal from mainstream wastewater via DEnitrifying AMmonium OXidation (DEAMOX) is often challenged by undulated actual temperature and high loading rate. Here, we discovered NH2OH addition (HA) and bio-augmentation (BA) tactics on start-up and operation performance of DEAMOXs (R1 and R2) under ambient temperature (11.3-31.7 °C). Over 340-day operation suggested that R2 received 10 mg/L HA and 1:25 BA ratio (v/v, anammox/partial denitrification sludge) achieved desirable nitrogen removal efficiency (NRE) of 97.22% after 145-day, while R1 under higher BA ratio of 1:12.5 without HA obtained lower NRE (90.86%) after 184-day. Batch tests revealed that nitrate-nitrite transformation ratio reached 98.64% at low COD/NO3--N of 2.6 with HA. Significantly, compared with R2, R1 recovered quickly with satisfactory effluent total nitrogen of 4.21 mg/L despite nitrogen loading rate greater than 0.15 kg N/m3/d and temperature decreased to 14.6 °C. The abundant narG represented high nitrate reduction potential, hzsA and hdh were extensively detected as the symbolisation of anammox metabolism. Thauera, Denitratisoma and unclassified f Comamonadaceae dominated nitrite accumulation. Ca. Brocadia as the dominant anammox bacteria, and its population maintained stable against low temperature and load shocks by NH2OH intensification. Overall, this study offers an opportunity for the wide-applications of DEAMOX treating mainstream wastewater.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China.
| | - Liping Ma
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Chaochao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China
| | - Lezhong Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China
| |
Collapse
|
21
|
Zhang F, Peng Y, Liu Y, Zhao L. Improving stability of mainstream Anammox in an innovative two-stage process for advanced nitrogen removal from mature landfill leachate. BIORESOURCE TECHNOLOGY 2021; 340:125617. [PMID: 34339997 DOI: 10.1016/j.biortech.2021.125617] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
This study presents an innovative mainstream Anammox based on multiple NO2--N supplement pathways to treat actual mature landfill leachate over 180 days. Desirable effluent quality of 11.8 mg/L total nitrogen (TN) and nitrogen removal efficiency of 98.8% were achieved despite fluctuation conditions of 1.5-fold influent substrates and 8.0-fold dissolved oxygen overload. Nitrogen mass balance confirmed Anammox was the dominant nitrogen removal pathway, contributing up to 87.9%. Functional genes of ammonia monooxygenase (amoA), hydrazine synthase (hzsB), and ratio of nitrate/nitrite reductase were highly detected. Anammox genera, Candidatus_Kuenenia (4.1%) and Candidatus_Brocadia (5.3%) were dominant in two functional systems, respectively, due to the different affinity of nitrite, oxygen, and organic carbon. As an economical and sustainable technology, the innovative process enabled a 95.1% decrease in organic carbon demand, a 61.5% reduction in aeration energy consumption, and 77.6% lower biomass production compared with traditional nitrification-denitrification process.
Collapse
Affiliation(s)
- Fangzhai Zhang
- China Architecture Design and Research Group, Beijing 100044, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongwang Liu
- China Architecture Design and Research Group, Beijing 100044, PR China
| | - Li Zhao
- China Architecture Design and Research Group, Beijing 100044, PR China.
| |
Collapse
|
22
|
Zhang F, Peng Y, Wang Z, Jiang H, Ren S, Qiu J. Achieving synergetic treatment of sludge supernatant, waste activated sludge and secondary effluent for wastewater treatment plants (WWTPs) sustainable development. BIORESOURCE TECHNOLOGY 2021; 337:125416. [PMID: 34320732 DOI: 10.1016/j.biortech.2021.125416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
A novel process that combines partial nitrification, fermentation and Anammox-partial denitrification (NFAD) was proposed to co-treat ammonia rich sludge supernatant (NH4+-N = 1194.1 mg/L), external WAS (MLSS = 22092.6 mg/L) and WWTP secondary effluent (NO3--N = 58.6 mg/L). Three separated reactors were used for partial nitrification (PN-SBR), integrated fermentation and denitrification (IFD-SBR) and combined Anammox-partial denitrification (AD-UASB), respectively. The process resulted in excellent nitrogen removal efficiency (NRE) of 98.7%, external sludge reduction efficiency (SRE) of 44.6% and external sludge reduction rate of 4.1 kg/m3 after 200 days of continuous operation. IFD-SBR and AD-UASB contributed towards 89.4% and 9.2% nitrogen removal, respectively. In AD-UASB, cooperation between Anammox bacteria (4.1% Candidatus Brocadia) and partial denitrifying bacteria (3.2% Thauera) resulted in significant stability of Anammox pathway, which contributed up to 84.1% nitrogen removal in the combined Anammox-partial denitrification process. NFAD saved up to 100% organic resource demand and 25% of aeration consumption compared with the traditional nitrification-denitrification process.
Collapse
Affiliation(s)
- Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Zhong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jingang Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|