1
|
Ye J, Wu M, Zhu B, Cheng B, Yu J. Three-dimensional Ni foam supported Pt/NiFe LDH catalyst with enhanced oxygen activation for room-temperature formaldehyde oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134672. [PMID: 38815397 DOI: 10.1016/j.jhazmat.2024.134672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Room-temperature catalytic oxidation of formaldehyde (HCHO) has been extensively investigated due to its high efficiency, convenience, and environmental friendliness. Herein, nickel-iron layered double hydroxide (NiFe LDH) nanosheets were synthesized in-situ on a nickel foil (NF) using a facile one-step hydrothermal method, followed by the deposition of ultra-low content (0.069 wt%) of Pt nanoparticles through NaBH4 reduction. The resulting three-dimensional (3D) hierarchical Pt/NiFe-NF catalyst exhibited exceptional activity for the complete decomposition of formaldehyde to carbon dioxide (CO2) at room temperature (∼95 % conversion within 1 h), as well as remarkable cycling stability. The 3D porous structure of Pt/NiFe-NF provides fast transport channels for the diffusion of gas molecules, making the active catalyst surfaces more accessible. Moreover, abundant hydroxyl groups in NiFe LDH serve as adsorption centers for HCHO molecules to form dioxymethylene (DOM) and formate intermediates. Furthermore, electronic interactions between NiFe LDH and Pt enhance the adsorption and activation of O2 on Pt surfaces, leading to the complete decomposition of intermediates into non-toxic products. This work presents new insights into the design and preparation of Pt-based 3D hierarchical catalysts with surface-rich hydroxyl groups for the efficient removal of indoor HCHO.
Collapse
Affiliation(s)
- Jiawei Ye
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, PR China
| | - Min Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, PR China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, PR China.
| |
Collapse
|
2
|
Ma Z, Li Y, Sun K, Ahmed J, Tian W, Xu J. Insights into the roles of superficial lattice oxygen in formaldehyde oxidation on birnessite. NANOSCALE 2024; 16:12541-12549. [PMID: 38884124 DOI: 10.1039/d4nr01089b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
K+-modified birnessite materials were constructed to remove formaldehyde (HCHO) in this work. The introduction of K+ led to weakening of the Mn-O bonds and enhanced the migration of superficial lattice oxygen, resulting in improved redox properties and catalytic activity. MnO2-3K with the largest specific surface area and greatest abundance of superficial lattice oxygen showed the best catalytic performance at 30-130 °C. The operando analyses reveal that HCHO is primarily activated to dioxymethylene (DOM) and subsequently converted to formate species (*COOH). The accumulation of formate species caused a decline in catalytic performance during extended testing at 30 °C, a challenge that could be mitigated by raising the temperature. Theoretical studies disclose that the *COOH → *H2CO3 step with the largest energy barrier is the rate limiting step for HCHO deep decomposition. Molecular oxygen could be activated at oxygen vacancies to replenish the depleted lattice oxygen after decomposition of carbonate species (*H2CO3) and CO2 and H2O desorption. The adsorbed oxygen and water did not limit the deep oxidation of HCHO. This research presents a promising approach for designing highly efficient, non-noble metal catalysts for formaldehyde degradation.
Collapse
Affiliation(s)
- Zhaoxia Ma
- College of Chemistry & Environment, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Yongqi Li
- College of Chemistry & Environment, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Kongyuan Sun
- College of Chemistry & Environment, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | - Wei Tian
- School of Physical Science and Technology, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, China
| | - Jinjia Xu
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Blvd, St. Louis, 63121, MO, USA
| |
Collapse
|
3
|
Bao X, Yan B, Yu Y, Xu B, Cui L, Zhou M, Wang Q, Wang P. A facile cellulose finishing strategy through in-situ growth of sliver-doped manganese dioxide assisted by amine-quinone for improving indoor living quality. Int J Biol Macromol 2024; 267:131448. [PMID: 38593901 DOI: 10.1016/j.ijbiomac.2024.131448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Nowadays, various harmful indoor pollutants especially including bacteria and residual formaldehyde (HCHO) seriously threaten human health and reduce the quality of public life. Herein, a universal substrate-independence finishing approach for efficiently solving these hybrid indoor threats is demonstrated, in which amine-quinone network (AQN) was employed as reduction agent to guide in-situ growth of Ag@MnO2 particles, and also acted as an adhesion interlayer to firmly anchor nanoparticles onto diverse textiles, especially for cotton fabrics. In contrast with traditional hydrothermal or calcine methods, the highly reactive AQN ensures the efficient generation of functional nanoparticles under mild conditions without any additional catalysts. During the AQN-guided reduction, the doping of Ag atoms onto cellulose fiber surface optimized the crystallinity and oxygen vacancy of MnO2, providing cotton efficient antibacterial efficiency over 90 % after 30 min of contact, companying with encouraging UV-shielding and indoor HCHO purification properties. Besides, even after 30 cycles of standard washing, the Ag@MnO2-decorated textiles can effectively degrade HCHO while well-maintaining their inherent properties. In summary, the presented AQN-mediated strategy of efficiently guiding the deposition of functional particles on fibers has broad application prospects in the green and sustainable functionalization of textiles.
Collapse
Affiliation(s)
- Xueming Bao
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Biaobiao Yan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Li Cui
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
4
|
Ma C, Pan J, Chen C, Dong Y, Yao F, Wang F, Song M. Investigation into the roles of interfacial H 2O structure in catalytic oxidation of HCHO and CO over CuMnO 2 catalysts. J Environ Sci (China) 2024; 137:310-320. [PMID: 37980018 DOI: 10.1016/j.jes.2022.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/20/2023]
Abstract
The rapid deactivation of cost-effective MnO2-based catalysts in humid air limits their application in practice, and the identification of the role of water in an oxidation process is significant for developing water-resistant MnO2-based catalysts. Here, CuMnO2 showed a 20.3% HCHO conversion in 10 hr at room temperature in humid air with relative humidity of 40%, but deactivated in 3 hr in dry air. The excellent activity and stability of HCHO oxidation in humid air were attributed to the positive effect of H2O on HCHO oxidation to the H2O-HOCH2OH supermolecule assemblies via hydrogen bonds formed on CuMnO2. H2O-HOCH2OH supermolecule assemblies tend to be oxidized to carbonate, which is further oxidized to CO2. Furthermore, CuMnO2 exhibited a much poorer activity of CO oxidation in humid air, but the CO conversion was still 100% in 10 hr in dry air. H2O showed a competitive adsorption effect to CO on CuMnO2. CuMnO2 could be applied in HCHO elimination in humid air and CO elimination in dry air.
Collapse
Affiliation(s)
- Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jushuang Pan
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Dong
- No. 52 Institute of China North Industries Group Yantai Branch Co. Ltd., Yantai 264000, China
| | - Feng Yao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Lv X, Wu S, Shao S, Yan D, Xu W, Jia H, He H. Efficient Catalytic Elimination of Chlorobenzene Based on the Water Vapor-Promoting Effect within Mn-Based Catalysts: Activity Enhancement and Polychlorinated Byproduct Inhibition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3985-3996. [PMID: 38357760 DOI: 10.1021/acs.est.3c09020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Achieving no or low polychlorinated byproduct selectivity is essential for the chlorinated volatile organic compounds (CVOCs) degradation, and the positive roles of water vapor may contribute to this goal. Herein, the oxidation behaviors of chlorobenzene over typical Mn-based catalysts (MnO2 and acid-modified MnO2) under dry and humid conditions were fully explored. The results showed that the presence of water vapor significantly facilitates the deep mineralization of chlorobenzene and restrains the formation of Cl2 and dichlorobenzene. This remarkable water vapor-promoting effect was conferred by the MnO2 substrate, which could suitably synergize with the postconstructed acidic sites, leading to good activity, stability, and desirable product distribution of acid-modified MnO2 catalysts under humid conditions. A series of experiments including isotope-traced (D2O and H218O) CB-TPO provided complete insights into the direct involvement of water molecules in chlorobenzene oxidation reaction and attributed the root cause of the water vapor-promoting effect to the proton-rich environment and highly reactive water-source oxygen species rather than to the commonly assumed cleaning effect or hydrogen proton transfer processes (generation of active OOH). This work demonstrates the application potential of Mn-based catalysts in CVOCs elimination under practical application conditions (containing water vapor) and provides the guidance for the development of superior industrial catalysts.
Collapse
Affiliation(s)
- Xuelong Lv
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaining Wu
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siting Shao
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxu Yan
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjian Xu
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongpeng Jia
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Dong T, Ji J, Yu L, Huang P, Li Y, Suo Z, Liu B, Hu Z, Huang H. Tunable Interfacial Electronic Pd-Si Interaction Boosts Catalysis via Accelerating O 2 and H 2O Activation. JACS AU 2023; 3:1230-1240. [PMID: 37124295 PMCID: PMC10131192 DOI: 10.1021/jacsau.3c00093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Engineering the interfacial structure between noble metals and oxides, particularly on the surface of non-reducible oxides, is a challenging yet promising approach to enhancing the performance of heterogeneous catalysts. The interface site can alter the electronic and d-band structure of the metal sites, facilitating the transition of energy levels between the reacting molecules and promoting the reaction to proceed in a favorable direction. Herein, we created an active Pd-Si interface with tunable electronic metal-support interaction (EMSI) by growing a thin permeable silica layer on a non-reducible oxide ZSM-5 surface (termed Pd@SiO2/ZSM-5). Our experimental results, combined with density functional theory calculations, revealed that the Pd-Si active interface enhanced the charge transfer from deposited Si to Pd, generating an electron-enriched Pd surface, which significantly lowered the activation barriers for O2 and H2O. The resulting reactive oxygen species, including O2 -, O2 2-, and -OH, synergistically facilitated formaldehyde oxidation. Additionally, moderate electronic metal-support interaction can promote the catalytic cycle of Pd0 ⇆ Pd2+, which is favorable for the adsorption and activation of reactants. This study provides a promising strategy for the design of high-performance noble metal catalysts for practical applications.
Collapse
Affiliation(s)
- Tao Dong
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Jian Ji
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
- Guangdong
Academy of Sciences, Institute of Chemical
Engineering, Guangzhou 510665, China
| | - Leyi Yu
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Pingli Huang
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Yiheng Li
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Ziyi Suo
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Biyuan Liu
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Zhuofeng Hu
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Haibao Huang
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| |
Collapse
|
7
|
Liu X, Wang C, Chen Y, Qin Q, Li Y, He H. Formaldehyde oxidation on Pd/USY catalysts at room temperature: The effect of acid pretreatment on supports. J Environ Sci (China) 2023; 125:811-822. [PMID: 36375962 DOI: 10.1016/j.jes.2022.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 06/16/2023]
Abstract
The complete catalytic oxidation of formaldehyde (HCHO) to CO2 and H2O at room temperature is a green route for indoor HCHO removal. Zeolite is an excellent carrier material for HCHO oxidation due to its large surface area, intricate pores and high adsorption capacity. However, the zeolite-supported noble metal catalysts have currently shown relatively low activity especially at room temperature. In this work, we present a facile acid treatment strategy for zeolite catalysts to improve the hydroxyl concentration and further enhance their catalytic activity for HCHO oxidation. Activity tests illustrated that HCHO could be completely oxidized to CO2 and H2O at a nearly 100% conversion rate with a weight hourly space velocity (WHSV) of 150,000 mL/(g∙hr) at 25°C, when the support of Pd/USY catalysts was pretreated by hydrochloric acid with a concentration of 0.20 mol/L. The characterization results revealed that the active hydroxyl groups originated from the dealumination in the acid treatment play a key role in the HCHO oxidation reaction. The deduced reaction mechanism suggests that bridging hydroxyl groups may oxidize HCHO to dioxymethylene (DOM) species and terminal hydroxyl groups are responsible for the transformation of DOM groups to formate (HCOO) species.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Wang
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences, Ningbo Urban Environment Observation and Research Station-NUEORS, Ningbo 315800, China
| | - Yumin Chen
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China; Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China.
| | - Qi Qin
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China
| | - Yaobin Li
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences, Ningbo Urban Environment Observation and Research Station-NUEORS, Ningbo 315800, China; Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China.
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences, Ningbo Urban Environment Observation and Research Station-NUEORS, Ningbo 315800, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Study on the Formaldehyde Oxidation Reaction of Acid-Treated Manganese Dioxide Nanorod Catalysts. Catalysts 2022. [DOI: 10.3390/catal12121667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Formaldehyde is an important downstream chemical of syngas. Furniture and household products synthesized from formaldehyde will slowly decompose and release formaldehyde again during use, which seriously affects indoor air quality. In order to solve the indoor formaldehyde pollution problem, this paper took the catalytic oxidation of formaldehyde as the research object; prepared a series of low-cost, acid-treated manganese dioxide nanorod catalysts; and investigated the effect of the acid-treatment conditions on the catalysts’ activity. It was found that the MnNR-0.3ac-6h catalyst with 0.3 mol/L sulfuric acid for 6 h had the best activity. The conversion rate of formaldehyde reached 98% at 150 °C and 90% at 25 °C at room temperature. During the reaction time of 144 h, the conversion rate of formaldehyde was about 90%, and the catalyst maintained a high activity. It was found that acid treatment could increase the number of oxygen vacancies on the surface of the catalysts and promote the production of reactive oxygen species. The amount of surface reactive oxygen species of the MnNR-0.3ac-6h catalyst was about 13% higher than that of the catalyst without acid treatment.
Collapse
|
9
|
Li JR, Zhang WP, Zhao J, Tian M, Wu K, Xiao H, He C. Accelerating the Low-Temperature Catalytic Oxidation of Acetone over Al-Substituted Mn-Al Oxides by Rate-Limiting Step Modulation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36536-36550. [PMID: 35917445 DOI: 10.1021/acsami.2c06186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In order to enhance the catalytic activity and improve the stability of Mn-Al oxides in acetone oxidation, it is interesting to have found that modulating and accelerating the rate-limiting step by Al substitution rather than just mixing of Mn and Al is crucial for hydrocarbon efficient catalytic destruction. Here, a series of Mn-Al oxides with different Al substitution ratios were prepared by a scalable and facile hydrothermal-redox strategy. The reaction rate, selectivity, and stability of the representative α-MnO2 catalyst in acetone oxidation can be remarkably promoted by simple replacing of the partial framework Mn with Al, which changes the rate-limiting step from acetic acid dissociation to ethanol decomposition accelerated by H2O molecules. Among them, MnAl0.5 displays the best catalytic performance with 90% of acetone converted at just 165 °C and a remarkable CO2 yield. DFT results suggest that the py and px orbitals of the O element take part in the formation of the carbonyl group when the intermediate of removing H* from ethanol reacts with the hydroxyl group of H2O. The dxz orbital of Mn with p-electron of Al plays a vital role in the rate-limiting step. The work provides new insights into engineering catalysts for industrial VOC efficient and economical mineralization.
Collapse
Affiliation(s)
- Jian-Rong Li
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, and Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Wan-Peng Zhang
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, and Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Junyi Zhao
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, and Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Mingjiao Tian
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Kun Wu
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, and Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Hang Xiao
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, and Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| |
Collapse
|
10
|
Wang X, Jiang T, Chen J, Zhang J, Mai Y. Hydroxy‐Modified Hierarchical Porous Na‐CoOx/CN Material for Low‐Concentration High‐Throughput Formaldehyde Oxidation at Room Temperature. Chempluschem 2022; 87:e202200218. [DOI: 10.1002/cplu.202200218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xi Wang
- Guangdong Academy of Sciences Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering 318 Che Bei Xi Road, Tianhe, Guangzhou 510665 Guangzhou CHINA
| | - Tingting Jiang
- Guangdong Academy of Sciences Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering CHINA
| | - Jiazhi Chen
- Guangdong Academy of Sciences Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering CHINA
| | - Junjie Zhang
- Guangdong Academy of Sciences Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering CHINA
| | - Yuliang Mai
- Guangdong Academy of Sciences Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering CHINA
| |
Collapse
|
11
|
Zhang WP, Wu K, Zhao J, He J, Wang L, Xiao H, Guo JB, Li JR. Promotional effects of calcination temperature and H 2O on the catalytic activity of Al-substituted MnAlO catalysts for low-temperature acetone oxidation. CHEMOSPHERE 2022; 301:134722. [PMID: 35483660 DOI: 10.1016/j.chemosphere.2022.134722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
In order to enhance the role of Al in the materials, Al-substituted MnAlO catalysts were synthesized via the hydrothermal-redox method at different calcination temperatures for acetone oxidation. There were Al-substituted α-MnO2 and amorphous aluminum oxide existed with homogeneous dispersion of elements in the catalysts. The surface property, reaction rate, CO2 yield and water resistance of MnAlO catalysts were greatly affected by calcination temperatures. MnAlO-450 catalyst exhibited the best catalytic performance (acetone conversion of 90% at 165 °C) with CO2 yield higher than 99.7%, which was mainly related to the weaker Mn-O bond strength, lower temperature reducibility and abundant Lewis acid sites. The acetone conversion of MnAlO-450 increased by as much as 16% in the presence of 1 vol% H2O compared to that in the absence of H2O at T50 (the temperature for 50% conversion of acetone). The acceleration consumption of ethanol as the main by-product by H2O improved the catalytic performance. This work would shed light on the Al substitution based catalysts for OVOC oxidation with highly efficient and water resistance.
Collapse
Affiliation(s)
- Wan-Peng Zhang
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Kun Wu
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Junyi Zhao
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Jun He
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo, 315100, PR China.
| | - Leiping Wang
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Hang Xiao
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Jian-Bing Guo
- College of Chemistry, Minnan Normal University, Zhang zhou, 363000, Fujian, PR China
| | - Jian-Rong Li
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China.
| |
Collapse
|
12
|
Yang JN, Yang HH, Niu MS, Zhou H, Yi X, Chang DL, Zhan J, Liu Y. Ultra-light 3D MnO 2-agar network with high and longevous performance for catalytic formaldehyde oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154818. [PMID: 35341871 DOI: 10.1016/j.scitotenv.2022.154818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Under the background of indoor air formaldehyde decontamination, a freestanding ultra-light assembly was fabricated via ice-templating approach starting from MnO2 nanoparticles and environmentally benign agar powder. The 3D composite of agar and MnO2 (AM-3D) was comparatively studied with powdered counterparts (including pure MnO2 and mixture of agar and MnO2) and the 3D-structured agar for formaldehyde oxidation, and their physicochemical properties were examined with XRD, ATR, SEM, XPS, isothermal N2 adsorption, ESR, Raman, CO-TPR and O2-TPD. For the single test of formaldehyde oxidation, the AM-3D catalyst exhibited 62.0%-67.0% removal percentage for ~400 mg/m3 formaldehyde, which did not demonstrate significant advantage over the control samples. However, thanks to the porous 3D agar scaffold with large spatial volume that could promote a rapid gas-phase formaldehyde concentration reduction, and the strong interaction between the dispersed MnO2 particles and agar substrate that could afford a large amount of reactive oxygen species to further oxidize the adsorbed formaldehyde, the AM-3D composite was a much better HCHO-to-CO2 converter and possessed much more advantageous stability for repeated cycles of formaldehyde oxidation: even after ten cycles, there was still 41.7% of formaldehyde removed. Furthermore, the viable sunlight irradiation could easily restore the activity of the used AM-3D catalyst back to the level approaching that of the fresh one. Finally, reaction pathways were put forward via the infrared spectroscopic and ion chromatographic investigations on the surface intermediates of the spent materials.
Collapse
Affiliation(s)
- Ji-Ning Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Huan-Huan Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Ming-Shuang Niu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Da-Lei Chang
- College of Sciences, Shihezi University, Shihezi 832003, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
13
|
Wang H, Liang Z, Liu C, Zhu L, Xu Y, Zhou L, Yan B. Construction of K and Tb Co-doped MnO 2 nanoparticles for enhanced oxidation and detoxication of organic dye waste. CHEMOSPHERE 2022; 297:134104. [PMID: 35218779 DOI: 10.1016/j.chemosphere.2022.134104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Developing low-cost and efficient materials for dye pollutant removal under mild condition remains a great challenge. Here K+ and Tb3+ co-doped porous MnO2 (K-Tb-MnO2) nanoparticles with tailored properties including crystal structure, surface area and catalytic activity have been synthesized. Experimental results reveal that K-Tb-MnO2 nanoparticle has higher specific surface area, Mn3+ content and surface oxygen vacancies than pristine MnO2 nanoparticle and single-doped MnO2 materials, showing the uniqueness of dual-doped metal ions. Using methyl blue (MB) as a model pollutant, its removal efficiency by K-Tb-MnO2 nanoparticles within 5 min is 93.6%, which is 18, 8.3, and 2.9 times higher than that of MnO2, K-MnO2, and Tb-MnO2 nanomaterials, respectively. Oxalic acid triggered MnO2 material dissolving assay and FT-IR spectrum suggested that remarkable performance of K-Tb-MnO2 nanoparticle toward MB removal can be attributed to a combined effect of adsorption (16% MB removal) and catalytic degradation (84% MB removal). Moreover, K-Tb-MnO2 nanoparticle mediated MB degradation is demonstrated to be a combination of non-radical oxidation by Mn3+ and radical-participated degradation, with 1O2 as the main species. And the intermediates and pathways of MB degradation were studied by liquid chromatography-mass spectrometry. Importantly, cell viability experiment suggests that the toxicity of MB dye could be efficiently alleviated after the treatment with K-Tb-MnO2 nanoparticle. These results demonstrate the great potential of the novel K-Tb-MnO2 particles to be used as a highly effective nanomaterials to reduce the risk of dye wastes toward the environment and human health.
Collapse
Affiliation(s)
- Haiqing Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Zhenda Liang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| | - Chao Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| | - Lishan Zhu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| | - Yongtao Xu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
14
|
Low-Temperature Oxidation Removal of Formaldehyde Catalyzed by Mn-Containing Mixed-Oxide-Supported Bismuth Oxychloride in Air. Catalysts 2022. [DOI: 10.3390/catal12030262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Mn-containing mixed-oxide-supported bismuth oxychloride (BiOCl) catalysts were prepared by calcining their corresponding parent hydrotalcite supported BiOCl. The crystal structure of BiOCl was found to be intact during calcination, while significant differences appeared in the chemical state of Mn and the redox capacities of the catalysts before and after calcination. Compared to the hydrotalcite-supported catalysts, the mixed-oxide-supported BiOCl showed much higher catalytic performance in the oxidation removal of formaldehyde due to the synergetic catalysis of more surface oxygen vacancies and higher surface basicity. The complete removal of formaldehyde could be achieved at 70 °C, and the removal efficiency was maintained more than 90% for 21 h. A possible reaction mechanism was also proposed.
Collapse
|
15
|
Liu F, Zhang S, Zhang X, Shen J, Wan L, Bahi A, Ko F. Synergy of surface sodium and hydroxyl on NaTi 2HO 5 nanotubes accelerating the Pt-dominated ambient HCHO oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126769. [PMID: 34388924 DOI: 10.1016/j.jhazmat.2021.126769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Surface hydroxyl is widely perceived as conducive to HCHO degradation. Here, a kind of sodium titanate with interlayered hydroxyls (NaTi2HO5) was prepared to study the action conditions of surface hydroxyls in HCHO oxidation. The nanotubes mainly exposing (001) and nanobelts mainly exposing (100) are synthesized as the two morphologies of NaTi2HO5. We found the (001) facet is much more favored to HCHO adsorption via HRTEM and XPS analysis. The DFT calculations prove that the synergy of surface hydroxyl and Na atom is perfect for HCHO chemisorption. By this means NaTi2HO5 nanotubes can partially oxidize HCHO into formate and release very few CO, measured by in situ DRIFTS. Dominated by Pt nanoparticles, the complete oxidation of HCHO can be performed on NaTi2HO5 nanotubes with enhanced early reaction speed. Rather than simple surface hydroxyl, the effective synergy of hydroxyl and positive ion is proposed as an advantage for HCHO oxidation.
Collapse
Affiliation(s)
- Fang Liu
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, PR China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Shiying Zhang
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, PR China.
| | - Xiangchao Zhang
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, PR China
| | - Jie Shen
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, PR China
| | - Long Wan
- College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Addie Bahi
- Department of Materials Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Frank Ko
- Department of Materials Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
16
|
Liu W, Xiang W, Guan N, Cui R, Cheng H, Chen X, Song Z, Zhang X, Zhang Y. Enhanced catalytic performance for toluene purification over Co3O4/MnO2 catalyst through the construction of different Co3O4-MnO2 interface. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Chen Y, Jiang G, Cui X, Zhang Z, Hou X. Fabrication of Pd/CeO 2 nanocubes as highly efficient catalysts for degradation of formaldehyde at room temperature. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00766a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The highly active Pd/CeO2 nanocube interface guarantees a high percentage of metallic Pd and the surface active O species is responsible for the complete decomposition of formaldehyde.
Collapse
Affiliation(s)
- Yafeng Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Guimin Jiang
- School of Environmental Science and Engineering and Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Xiangzhi Cui
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zuotai Zhang
- School of Environmental Science and Engineering and Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Xinmei Hou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, P.R. China
| |
Collapse
|