1
|
Cheng M, Li R, Du X, Zhang Z, Zhang H. Highly efficient removal of diclofenac sodium with polystyrene supported ionic liquid. ENVIRONMENTAL TECHNOLOGY 2024; 45:3276-3282. [PMID: 37184044 DOI: 10.1080/09593330.2023.2214856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
ABSTRACTDiclofenac sodium (DS) is now recognized as an emerging pollutant, and is one of the most commonly discovered pharmaceuticals in water due to its extensive application in the clinic. This study examined the adsorption performance of a polystyrene-supported ionic liquid material (PS-[Nim][Cl]) for the removal of diclofenac sodium (DS) from water. The data from this study showed that maximum removal of DS can be achieved even in conditions with significant pH and temperature fluctuations. The adsorption process was rapid, more than 90% of DS could be removed within the first 10 min and adsorption equilibrium could be reached in just 30 min with a high removal efficiency (>99.9%). Adsorption reached saturation with a maximum adsorption capacity of approximately 785.2 mg/g. Moreover, the presence of K+, Na+, Ca2+, Mg2+, Cl-, and H2PO4- ions had little influence on DS adsorption, even when concentrations of these ions were 10,000 times higher than that of DS in water samples. The adsorbent also showed promising performance for the treatment of environmental water samples and groundwater containing DS.
Collapse
Affiliation(s)
- Meng Cheng
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Xin Du
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Zihao Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Hao Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| |
Collapse
|
2
|
Li X, Li L, Tang L, Mei J, Fu J. Unveiling combined ecotoxicity: Interactions and impacts of engineered nanoparticles and PPCPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170746. [PMID: 38342466 DOI: 10.1016/j.scitotenv.2024.170746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Emerging contaminants such as engineered nanoparticles (ENPs), pharmaceuticals and personal care products (PPCPs) are of great concern because of their wide distribution and incomplete removal in conventional wastewater and soil treatment processes. The production and usage of ENPs and PPCPs inevitably result in their coexistence in different environmental media, thus posing various risks to organisms in aquatic and terrestrial ecosystems. However, the existing literature on the physicochemical interactions between ENPs and PPCPs and their effects on organisms is rather limited. Therefore, this paper summarized the ecotoxicity of combined ENPs and PPCPs by discussing: (1) the interactions between ENPs and PPCPs, including processes such as aggregation, adsorption, transformation, and desorption, considering the influence of environmental factors like pH, ionic strength, dissolved organic matter, and temperature; (2) the effects of these interactions on bioaccumulation, bioavailability and biotoxicity in organisms at different trophic levels; (3) the impacted of ENPs and PPCPs on cellular-level biological process. This review elucidated the potential ecological hazards associated with the interaction of ENPs and PPCPs, and serves as a foundation for future investigations into the ecotoxicity and mode of action of ENPs, PPCPs, and their co-occurring metabolites.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Liyan Li
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| | - Jingting Mei
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Jing Fu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| |
Collapse
|
3
|
Li Q, Li H, Zong X, Sun H, Liu Y, Zhan Z, Mei S, Qi Y, Huang Y, Ye Y, Pan F. Highly efficient adsorption of ciprofloxacin from aqueous solutions by waste cation exchange resin-based activated carbons: Performance, mechanism, and theoretical calculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169534. [PMID: 38141999 DOI: 10.1016/j.scitotenv.2023.169534] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
This study focused on the preparation of a highly efficient activated carbon adsorbent from waste cation exchange resins through one-step carbonization to remove ciprofloxacin (CIP) from aqueous solutions. Scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectrometry, and X-ray photoelectron spectroscopy were used to characterize the physicochemical properties of the carbonized materials. The CIP removal efficiency, influencing factors, and adsorption mechanisms of CIP on the carbonized resins were investigated. Density functional theory (DFT) computations were performed to elucidate the adsorption mechanisms. The CIP removal reached 93 % when the adsorbent dosage was 300 mg/L at 25 °C. The adsorption capacity of the carbonized resins to CIP gradually decreased with an increasing pH from 3.0 to 7.0 and sharply declined with a pH from 7.0 to 11.0. The adsorption process better fitted by the pseudo second-order kinetic and Langmuir models, indicating that the interaction between CIP and the carbonized resins was monolayer adsorption. The maximum adsorption capacity fitted by the Langmuir model was 384.4 mg/g at 25 °C. Microstructural analysis showed that the adsorption of CIP on the carbonized resins was a joint effect of H-bonding, ion exchange, and graphite-N adsorption. Computational results signified the strong H-bonding and ion exchange interactions existed between CIP and carbonized resins. The high adsorption and reusability suggest that waste cation exchange resin-based activated carbons can be used as an effective and reusable adsorbent for removing CIP from aqueous solutions.
Collapse
Affiliation(s)
- Qiang Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Haochen Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Xiaofei Zong
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Haochao Sun
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Yunhao Liu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Ziyi Zhan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Shou Mei
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Yanjie Qi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yangbo Huang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Yuxuan Ye
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Fei Pan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
4
|
Choi J, Hwang DS, Lim C, Lee DW. Interaction mechanism between low molecular weight chitosan nanofilm and functionalized surfaces in aqueous solutions. Carbohydr Polym 2024; 324:121504. [PMID: 37985092 DOI: 10.1016/j.carbpol.2023.121504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/22/2023]
Abstract
Low-molecular-weight chitosan (LMW chitosan, <10 kDa) have a significant potential for biomedical applications (e.g., antimicrobial and gene/drug delivery) because of their higher water solubility at pH values ranging from 3.0 to 8.5, compared to that of the high-molecular-weight (>100 kDa) chitosan. A comprehensive understanding of the LMW interaction mechanism with specific functional groups is necessary to predict their binding efficiency to other molecules for effectively utilizing their potential within biological systems. In this study, we used a surface forces apparatus (SFA) to investigate molecular interactions between LMW chitosan and four different functionalized self-assembled monolayers (SAMs) in aqueous solutions at pH values of 3.0, 6.5, and 8.5. Chitosan exhibited the strongest interaction energy with methyl-terminated SAM (CH3-SAM), indicating the significance of hydrophobic interaction. Many chitin/chitosan fibers in nature bind polyphenols (e.g., eumelanin) to form robust composites, which can be attributed to the strong attraction between chitosan and phenyl-SAM, presumably caused by cation-π interactions. These findings demonstrate the potential of modulating the magnitude of the interaction energy by controlling the solution pH and types of targeted functional groups to realize the optimal design of chitosan-based hybrid composites with other biomolecules or synthetic materials.
Collapse
Affiliation(s)
- Jieun Choi
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea; R&D Center, ANPOLY INC., Pohang, Gyeongsangbuk-do 37666, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus I-CREATE, Incheon 21983, South Korea
| | - Chanoong Lim
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Dong Woog Lee
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
5
|
Bozyiğit GD, Zaman BT, Özdemir OK, Kılınç Y, Chormey DS, Bakırdere S, Engin GO. Removal of two antidepressant active pharmaceutical ingredients from hospital wastewater by polystyrene-coated magnetite nanoparticles-assisted batch adsorption process. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:77. [PMID: 38135867 DOI: 10.1007/s10661-023-12231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
This study employed simple polystyrene-coated magnetite nanoparticles (PS@MNPs)-assisted batch adsorption process for the removal of two antidepressant active ingredients (amitriptyline HCl and sertraline HCl) from hospital wastewater. Dominant parameters of the adsorption process including pH, adsorbent amount, and contact period were optimized through the univariate approach to enhance the adsorption efficiency. Upon reaching optimum adsorption conditions, equilibrium experiments were performed by spiking the adsorbates in hospital wastewater in the concentration range of 100-2000 μg/L. The concentrations of the adsorbates in the effluent were calculated using the matrix-matching calibration strategy to enhance the accuracy of quantification. A validated switchable solvent-based liquid phase microextraction (SS-LPME) method was employed to enrich the two active pharmaceutical ingredients (APIs) prior to sensitive determination with GC-MS (gas chromatography-mass spectrometry). The equilibrium data were mathematically modeled employing the Langmuir and Freundlich adsorption isotherm models. The isotherm constants were calculated, and the results showed that both the isotherm models fitted well with the experimental data. The efficient and simple batch adsorption strategy reported in this study was successfully employed to remove amitriptyline HCl and sertraline HCl from hospital wastewater at low concentrations.
Collapse
Affiliation(s)
- Gamze Dalgıç Bozyiğit
- Department of Environmental Engineering, Yildiz Technical University, 34220, İstanbul, Türkiye.
| | - Buse Tuğba Zaman
- Department of Chemistry, Yildiz Technical University, 34220, İstanbul, Türkiye
| | - Oğuz Kaan Özdemir
- Department of Metallurgical and Materials Engineering, Yildiz Technical University, 34220, İstanbul, Türkiye
| | - Yağmur Kılınç
- Department of Environmental Engineering, Bülent Ecevit University, 67100, Zonguldak, Türkiye
| | - Dotse Selali Chormey
- Department of Chemistry, Yildiz Technical University, 34220, İstanbul, Türkiye
- Yildiz Technical University, Neutec Pharmaceutical, Technopark, 34220, İstanbul, Türkiye
| | - Sezgin Bakırdere
- Department of Chemistry, Yildiz Technical University, 34220, İstanbul, Türkiye
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, Ankara, Türkiye
| | - Guleda Onkal Engin
- Department of Environmental Engineering, Yildiz Technical University, 34220, İstanbul, Türkiye
| |
Collapse
|
6
|
Li JY, Liu ZQ, Cui YH, Yang SQ, Gu J, Ma J. Abatement of Aromatic Contaminants from Wastewater by a Heat/Persulfate Process Based on a Polymerization Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18575-18585. [PMID: 36642924 DOI: 10.1021/acs.est.2c06137] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A novel approach to the abatement of pollutants consisting of their conversion to separable solid polymers is explored by a heat/persulfate (PDS) process for the treatment of high-temperature wastewaters. During this process, a simultaneous decontamination and carbon recovery can be achieved with minimal use of PDS, which is significantly different from conventional degradation processes. The feasibility of this process is demonstrated by eight kinds of typical organic pollutants and by a real coking wastewater. For the treatment of the selected pollutants, 30.2-91.9% DOC abatement was achieved with 24.8-91.2% carbon recovery; meanwhile, only 5.2-47.0% of PDS was consumed compared to a conventional degradation process. For the treatment of a real coking wastewater, 71.0% DOC abatement was achieved with 66.0% carbon recovery. With phenol as a representative compound, our polymerization-based heat/PDS process is applicable in a wide pH range (3.5-9.0) with a carbon recovery of >87%. Both SO4•- and HO• can be initiators for polymerization, with different contribution ratios under various conditions. Phenol monomers are semioxidized to form phenolic radicals, which are polymerized via chain transfer or chain growth processes to form separable solid phenol polymers, benzenediol polymers, and cross-linked polymers.
Collapse
Affiliation(s)
- Jia-Ying Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan430074, China
| | - Zheng-Qian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan430074, China
| | - Yu-Hong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan430074, China
| | - Sui-Qin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan430074, China
| | - Jia Gu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, Jiangsu, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| |
Collapse
|
7
|
Jia H, Xu H, Shi M, Lu K, Tao Y, Xia M, Wang F. Construction of ACNF/Polypyrrole/MIL-100-Fe composites with exceptional removal performance for ceftriaxone and indomethacin inspired by "Ecological Infiltration System". J Colloid Interface Sci 2023; 650:1152-1163. [PMID: 37473475 DOI: 10.1016/j.jcis.2023.07.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Developing advanced adsorbents for removing the alarming level of pharmaceuticals active compounds (PhACs) pollution is an urgent task for environmental treatment. Herein, a novel acid-treated carbon nanofiber/polypyrrole/MIL-100-Fe (ACNF/PPy/MIL-100-Fe) with stable 3D-supporting skeleton and hierarchical porous structure had been fabricated to erasure ceftriaxone (CEF) and indomethacin (IDM) from aqueous solution. ACNF as scaffold achieved the highly uniform growth of MIL-100-Fe and PPy. Viewing the large BET surface area (SBET, 999.7 m2/g), highly exposed accessible active sites and copious functional groups, ACNF/PPy/MIL-100-Fe separately showed an excellent adsorption capacity for CEF (294.7 mg/g) and IDM (751.8 mg/g), outstripping the most previously reported adsorbents. Moreover, ACNF/PPy/MIL-100-Fe reached rapid adsorption kinetics and standout reusability property. Further, the redesigned easy-to-recyclable ACF/PPy/MIL-100-Fe inspired by the electrode formation craft achieved prominent adsorption capacity and good reusability property. The adsorption mechanism was evaluated via Fourier transformed infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The outcomes revealed that the splendid adsorption capability mainly depended on the electrostatic interactions, hydrogen bonding and π-π interactions. This work sheds light on one facile practical strategy to exploit advanced materials in water environmental remediation.
Collapse
Affiliation(s)
- Huijuan Jia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haihua Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingxing Shi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Keren Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yu Tao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
8
|
do Nascimento BF, de Araújo CMB, Del Carmen Pinto Osorio D, Silva LFO, Dotto GL, Cavalcanti JVFL, da Motta Sobrinho MA. Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85344-85358. [PMID: 37382818 DOI: 10.1007/s11356-023-28242-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/10/2023] [Indexed: 06/30/2023]
Abstract
The work proposes the application of a nanocomposite formed by graphene oxide and magnetite to remove chloroquine, propranolol, and metformin from water. Tests related to adsorption kinetics, equilibrium isotherms and adsorbent reuse were studied, and optimization parameters related to the initial pH of the solution and the adsorbent dosage were defined. For all pharmaceuticals, adsorption tests indicated that removal efficiency was independent of initial pH at adsorbent dosages of 0.4 g L-1 for chloroquine, 1.2 g L-1 for propranolol, and 1.6 g L-1 for metformin. Adsorption equilibrium was reached within the first few minutes, and the pseudo-second-order model represented the experimental data well. While the equilibrium data fit the Sips isotherm model at 298 K, the predicted maximum adsorption capacities for chloroquine, propranolol, and metformin were 44.01, 16.82, and 12.23 mg g-1, respectively. The magnetic nanocomposite can be reused for three consecutive cycles of adsorption-desorption for all pharmaceuticals, being a promising alternative for the removal of different classes of pharmaceuticals in water.
Collapse
Affiliation(s)
- Bruna Figueiredo do Nascimento
- Department of Chemical Engineering, Federal University of Pernambuco, Av. Prof. Arthur de Sá, S/N, Recife-PE, 50.740-521, Brazil.
| | - Caroline Maria Bezerra de Araújo
- Department of Chemical Engineering, Faculty of Engineering of the University of Porto, s/n, R. Dr. Roberto Frias, 4200-465, Porto, Portugal
| | | | | | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | | | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco, Av. Prof. Arthur de Sá, S/N, Recife-PE, 50.740-521, Brazil
| |
Collapse
|
9
|
Ashraf M, Ahammad SZ, Chakma S. Advancements in the dominion of fate and transport of pharmaceuticals and personal care products in the environment-a bibliometric study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64313-64341. [PMID: 37067715 PMCID: PMC10108824 DOI: 10.1007/s11356-023-26796-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
The study on the fate and transport of Pharmaceuticals and Personal Care Products, PPCPs (FTP) in the environment, has received particular attention for over two decades. The PPCPs threaten ecology and human health even at low concentrations due to their synergistic effects and long-range transport. The research aims to provide an inclusive map of the scientific background of FTP research over the last 25 years, from 1996 to 2020, to identify the main characteristics, evolution, salient research themes, trends, and research hotspots in the field of interest. Bibliometric networks were synthesized and analyzed for 577 journal articles extracted from the Scopus database. Consequently, seven major themes of FTP research were identified as follows: (i) PPCPs category; (ii) hazardous effects; (iii) occurrence of PPCPs; (iv) PPCPs in organisms; (v) remediation; (vi) FTP-governing processes; and (vii) assessment in the environment. The themes gave an in-depth picture of the sources of PPCPs and their transport and fate processes in the environment, which originated from sewage treatment plants and transported further to sediment/soils/groundwater/oceans that act as the PPCPs' major sink. The article provided a rigorous analysis of the research landscape in the FTP study conducted during the specified years. The prominent research themes, content analysis, and research hotspots identified in the study may serve as the basis of real-time guidance to lead future research areas and a prior review for policymakers and practitioners.
Collapse
Affiliation(s)
- Maliha Ashraf
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, India.
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India
| |
Collapse
|
10
|
Mehmood T, Mustafa B, Mackenzie K, Ali W, Sabir RI, Anum W, Gaurav GK, Riaz U, Liu X, Peng L. Recent developments in microplastic contaminated water treatment: Progress and prospects of carbon-based two-dimensional materials for membranes separation. CHEMOSPHERE 2023; 316:137704. [PMID: 36592840 DOI: 10.1016/j.chemosphere.2022.137704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Micro (nano)plastics pollution is a noxious menace not only for mankind but also for marine life, as removing microplastics (MPs) is challenging due to their physiochemical properties, composition, and response toward salinity and pH. This review provides a detailed assessment of the MPs pollution in different water types, environmental implications, and corresponding treatment strategies. With the advancement in nanotechnology, mitigation strategies for aqueous pollution are seen, especially due to the fabrication of nanosheets/membranes mostly utilized as a filtration process. Two-dimensional (2D) materials are increasingly used for membranes due to their diverse structure, affinity, cost-effectiveness, and, most importantly, removal efficiency. The popular 2D materials used for membrane-based organic and inorganic pollutants from water mainly include graphene and MXenes however their effectiveness for MPs removal is still in its infancy. Albeit, the available literature asserts a 70- 99% success rate in micro/nano plastics removal achieved through membranes fabricated via graphene oxide (GO), reduced graphene oxide (rGO) and MXene membranes. This review examined existing membrane separation strategies for MPs removal, focusing on the structural properties of 2D materials, composite, and how they adsorb pollutants and underlying physicochemical mechanisms. Since MPs and other contaminants commonly coexist in the natural environment, a brief examination of the response of 2D membranes to MPs removal was also conducted. In addition, the influencing factors regulate MPs removal performance of membranes by impacting their two main operating routes (filtration and adsorption). Finally, significant limitations, research gaps, and future prospects of 2D material-based membranes for effectively removing MPs are also proposed. The conclusion is that the success of 2D material is strongly linked to the types, size of MPs, and characteristics of aqueous media. Future perspectives talk about the problems that need to be solved to get 2D material-based membranes out of the lab and onto the market.
Collapse
Affiliation(s)
- Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany.
| | - Beenish Mustafa
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Katrin Mackenzie
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Kingdom of Saudi Arabia
| | - Raja Irfan Sabir
- Faculty of Management Sciences, University of Central Punjab, Lahore; Pakistan
| | - Wajiha Anum
- Regional Agricultural Research Institute, Bahawalpur, Pakistan
| | - Gajendra Kumar Gaurav
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic; School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China
| | - Umair Riaz
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
| | - Licheng Peng
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province, 570228, China.
| |
Collapse
|
11
|
Acetaminophen adsorption to spherical carbons hydrothermally synthesized from sucrose: experimental, molecular, and mathematical modeling studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49703-49719. [PMID: 36780080 DOI: 10.1007/s11356-023-25815-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/05/2023] [Indexed: 02/14/2023]
Abstract
Acetaminophen (AAP) is an analgesic and non-steroidal anti-inflammatory drug and a micropollutant that has been detected in waterbodies worldwide. Here, we explore the characteristics of AAP adsorption onto spherical carbons (SCs) hydrothermally synthesized from pure sucrose as a carbon source. In one-factor-at-a-time experiments, the adsorption capacity of AAP remained relatively constant between pH 2 and 10 but became negligible at pH 12. The Raman, FTIR, and XPS spectra illustrate that hydrogen bonding, π-π interactions, and n-π* interactions could contribute to the AAP adsorption onto the SCs. CHEM3D modeling was used to explore hydrogen-bond formation, π-π interactions, n-π* interactions, and electrostatic repulsion between AAP and the SCs. In view of the pHpzc of the SCs (3.1) and the pKa of AAP (10.96), electrostatic repulsion could occur between negatively charged SCs and anionic AAP above pH 10. In consideration of the average pore diameter of the SCs (1.89 nm) and the AAP molecular size (8.94 Å × 7.95 Å × 4.93 Å), a pore-filling mechanism could contribute to the adsorption. A pseudo-second-order model was best fitted to the kinetic data (equilibrium time = 6 h), whereas the Liu isotherm was most suitable for the equilibrium data (maximum adsorption capacity = 92.0 mg/g). Adsorption of AAP to the SCs was exothermic at 10-40 °C. The SCs were regenerated and reused for AAP adsorption using a methanol. Multiple-factor-at-once (MFAO) experiments (input variables: pH, temperature, adsorbent dosage, and initial AAP concentration; output: AAP adsorption capacity) were used to develop response surface methodology (RSM, quartic regression) and artificial neural network (ANN, topology 4:11:9:1) models. Analyses using additional MFAO experimental data reveal that the predictive ability of the ANN model (R2 = 0.890) was better than that of the RSM model (R2 = 0.764). Based on the weight values of the ANN model, the relative importance of the input variables on the output was quantified in the order of initial AAP concentration (100%) > adsorbent dosage (92.3%) > temperature (77.6%) > pH (43.6%).
Collapse
|
12
|
Civan Çavuşoğlu F, Özçelik G, Özbek C, Özkara-Aydınoğlu Ş, Bayazit ŞS. Fe 3O 4 supported UiO-66 (Zr) metal-organic framework for removal of drug contaminants from water: fuzzy logic modeling approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44337-44352. [PMID: 36692720 DOI: 10.1007/s11356-023-25378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
The increase in production and consumption of pharmaceuticals and personal care products causes environmental problems. In this study, naproxen and clofibric acid adsorption were studied using Fe3O4-supported UiO-66 (Zr) metal-organic framework (Mag-UiO-66). The adsorption processes were carried out in batch mode at pH value 3.0. The optimum adsorbent quantities, equilibrium periods, pseudo-first-order (PFO), pseudo-second-order (PSO), and intra-particles diffusion kinetic models were calculated. Non-linear Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Sips isotherm equations were applied to experimental data. Thermodynamic analyses of naproxen and clofibric acid adsorption were also carried out in this study. The Langmuir isotherm qm values were found as 14.15 mg/g for naproxen at 308 K and 41.87 mg/g for clofibric acid at 298 K. Both of the adsorption processes were exothermic. MISO (multi-input single-output) fuzzy logic models for removal of both naproxen and clofibric acid adsorptions were designed based on the experimental data to estimate the removal uptake values. It is noteworthy that the results obtained through designed fuzzy logic models matched well with the experimental data and the findings of this study emphasize the validity of designed fuzzy logic models.
Collapse
Affiliation(s)
- Ferda Civan Çavuşoğlu
- Department of Chemical Engineering, Faculty of Engineering & Architecture, Beykent University, Sarıyer, Istanbul, 34396, Turkey
| | - Gülsüm Özçelik
- Department of Chemical Engineering, Faculty of Engineering & Architecture, Beykent University, Sarıyer, Istanbul, 34396, Turkey
| | - Cengiz Özbek
- Department of Mechanical Engineering, Faculty of Engineering & Architecture, Beykent University, Sarıyer, Istanbul, 34396, Turkey
| | - Şeyma Özkara-Aydınoğlu
- Department of Chemical Engineering, Faculty of Engineering & Architecture, Beykent University, Sarıyer, Istanbul, 34396, Turkey
| | - Şahika Sena Bayazit
- Department of Chemical Engineering, Faculty of Engineering & Architecture, Beykent University, Sarıyer, Istanbul, 34396, Turkey.
| |
Collapse
|
13
|
Mustafa B, Mehmood T, Wang Z, Chofreh AG, Shen A, Yang B, Yuan J, Wu C, Liu Y, Lu W, Hu W, Wang L, Yu G. Next-generation graphene oxide additives composite membranes for emerging organic micropollutants removal: Separation, adsorption and degradation. CHEMOSPHERE 2022; 308:136333. [PMID: 36087726 DOI: 10.1016/j.chemosphere.2022.136333] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
In the past two decades, membrane technology has attracted considerable interest as a viable and promising method for water purification. Emerging organic micropollutants (EOMPs) in wastewater have trace, persistent, highly variable quantities and types, develop hazardous intermediates and are diffusible. These primary issues affect EOMPs polluted wastewater on an industrial scale differently than in a lab, challenging membranes-based EOMP removal. Graphene oxide (GO) promises state-of-the-art membrane synthesis technologies and use in EOMPs removal systems due to its superior physicochemical, mechanical, and electrical qualities and high oxygen content. This critical review highlights the recent advancements in the synthesis of next-generation GO membranes with diverse membrane substrates such as ceramic, polyethersulfone (PES), and polyvinylidene fluoride (PVDF). The EOMPs removal efficiencies of GO membranes in filtration, adsorption (incorporated with metal, nanomaterial in biodegradable polymer and biomimetic membranes), and degradation (in catalytic, photo-Fenton, photocatalytic and electrocatalytic membranes) and corresponding removal mechanisms of different EOMPs are also depicted. GO-assisted water treatment strategies were further assessed by various influencing factors, including applied water flow mode and membrane properties (e.g., permeability, hydrophily, mechanical stability, and fouling). GO additive membranes showed better permeability, hydrophilicity, high water flux, and fouling resistance than pristine membranes. Likewise, degradation combined with filtration is two times more effective than alone, while crossflow mode improves the photocatalytic degradation performance of the system. GO integration in polymer membranes enhances their stability, facilitates photocatalytic processes, and gravity-driven GO membranes enable filtration of pollutants at low pressure, making membrane filtration more inexpensive. However, simultaneous removal of multiple contaminants with contrasting characteristics and variable efficiencies in different systems demands further optimization in GO-mediated membranes. This review concludes with identifying future critical research directions to promote research for determining the GO-assisted OMPs removal membrane technology nexus and maximizing this technique for industrial application.
Collapse
Affiliation(s)
- Beenish Mustafa
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Zhiyuan Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Abdoulmohammad Gholamzadeh Chofreh
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Andy Shen
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Bing Yang
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Jun Yuan
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Chang Wu
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | | | - Wengang Lu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Weiwei Hu
- Jiangsu Industrial Technology Research Institute, Nanjing, 210093, China
| | - Lei Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China; Collaborative Innovation Centre of Advanced Microsctructures, Nanjing University, Nanjing, 210093, China.
| | - Geliang Yu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China; Collaborative Innovation Centre of Advanced Microsctructures, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
14
|
Kern M, Škulj S, Rožman M. Adsorption of a wide variety of antibiotics on graphene-based nanomaterials: A modelling study. CHEMOSPHERE 2022; 296:134010. [PMID: 35181425 DOI: 10.1016/j.chemosphere.2022.134010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The knowledge on the sorption behaviour of antibiotics on nanomaterials is limited, especially regarding the reaction mechanism on the surface of carbon nanomaterials, which may determine both the adsorptive capacity and regeneration efficiency of graphene adsorbers. In this work, we used molecular modelling to generate the most comprehensive (to date) adsorption dataset for pristine and functionalised graphene interacting with 8 β-lactams, 3 macrolide, 12 quinolone, 4 tetracycline, 15 sulphonamide, trimethoprim, 2 lincosamide, 2 phenicole and 4 nitroimidazole antibiotics, and their transformation products in water and n-octanol. Results show that various non-covalent interactions that operate simultaneously, including van der Waals dispersion forces, π-interactions, hydrophobic interaction and hydrogen bonding, facilitate adsorption. The molecular properties of antibiotics and graphene/graphene oxide, as well as the composition of the background solution regulate the magnitude of these interactions. Our findings demonstrate that the most efficient method for the removal of antibiotics from aquatic environments is the use of graphene at environmental pH. The subsequent regeneration of the sorbent is best achieved through washing with slightly basic (pH 8-10) non-polar solvents. The obtained theoretical insights expand and complement experimental observations and provide important information that can contribute to further exploration into the adsorbent properties of graphene-based materials, and towards the development of predictive adsorption models.
Collapse
Affiliation(s)
- Matej Kern
- Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| | - Sanja Škulj
- Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| | - Marko Rožman
- Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
15
|
Hayoun B, Escudero-Curiel S, Bourouina M, Bourouina-Bacha S, Angeles Sanromán M, Pazos M. Preparation and characterization of high performance hydrochar for efficient adsorption of drugs mixture. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Preigschadt IA, Bevilacqua RC, Netto MS, Georgin J, Franco DSP, Mallmann ES, Pinto D, Foletto EL, Dotto GL. Optimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H 2SO 4 activated Campomanesia guazumifolia bark. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2122-2135. [PMID: 34363168 DOI: 10.1007/s11356-021-15668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
This study used the bark of the forest species Campomanesia guazumifolia modified with H2SO4 to absorb the anti-inflammatory ketoprofen from aqueous solutions. FTIR spectra confirmed that the main bands remained after the chemical treatment, with the appearance of two new bands related to the elongation of the carbonyl group present in hemicellulose. Micrographs confirmed that the surface started to contain a new textural shape after acid activation, having new pores and cavities. The drug adsorption's optimum conditions were obtained by response surface methodology (RSM). The adsorption was favored at acidic pH (2). The dosage of 1 g L-1 was considered ideal, obtaining good indications of removal and capacity. The Elovich model very well represented the kinetic curves. The isotherm studies indicated that the increase in temperature negatively affected the adsorption of ketoprofen. A maximum adsorption capacity of 158.3 mg g-1 was obtained at the lower temperature of 298 K. Langmuir was the best-fit isotherm. Thermodynamic parameters confirmed the exothermic nature of the system (ΔH0 = -8.78 kJ mol-1). In treating a simulated effluent containing different drugs and salts, the removal values were 35, 50, and 80% at 15, 30, and 180 min, respectively. Therefore, the development of adsorbent from the bark of Campomanesia guazumifolia treated with H2SO4 represents a remarkable alternative for use in effluent treatment containing ketoprofen.
Collapse
Affiliation(s)
- Isadora A Preigschadt
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Raíssa C Bevilacqua
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Matias S Netto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Evandro S Mallmann
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Diana Pinto
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia.
| | - Edson L Foletto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
17
|
Isaeva VI, Vedenyapina MD, Kurmysheva AY, Weichgrebe D, Nair RR, Nguyen NPT, Kustov LM. Modern Carbon-Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater. Molecules 2021; 26:6628. [PMID: 34771037 PMCID: PMC8587771 DOI: 10.3390/molecules26216628] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/20/2022] Open
Abstract
Currently, a serious threat for living organisms and human life in particular, is water contamination with persistent organic and inorganic pollutants. To date, several techniques have been adopted to remove/treat organics and toxic contaminants. Adsorption is one of the most effective and economical methods for this purpose. Generally, porous materials are considered as appropriate adsorbents for water purification. Conventional adsorbents such as activated carbons have a limited possibility of surface modification (texture and functionality), and their adsorption capacity is difficult to control. Therefore, despite the significant progress achieved in the development of the systems for water remediation, there is still a need for novel adsorptive materials with tunable functional characteristics. This review addresses the new trends in the development of new adsorbent materials. Herein, modern carbon-based materials, such as graphene, oxidized carbon, carbon nanotubes, biomass-derived carbonaceous matrices-biochars as well as their composites with metal-organic frameworks (MOFs) and MOF-derived highly-ordered carbons are considered as advanced adsorbents for removal of hazardous organics from drinking water, process water, and leachate. The review is focused on the preparation and modification of these next-generation carbon-based adsorbents and analysis of their adsorption performance including possible adsorption mechanisms. Simultaneously, some weak points of modern carbon-based adsorbents are analyzed as well as the routes to conquer them. For instance, for removal of large quantities of pollutants, the combination of adsorption and other methods, like sedimentation may be recommended. A number of efficient strategies for further enhancing the adsorption performance of the carbon-based adsorbents, in particular, integrating approaches and further rational functionalization, including composing these adsorbents (of two or even three types) can be recommended. The cost reduction and efficient regeneration must also be in the focus of future research endeavors. The targeted optimization of the discussed carbon-based adsorbents associated with detailed studies of the adsorption process, especially, for multicomponent adsorbate solution, will pave a bright avenue for efficient water remediation.
Collapse
Affiliation(s)
- Vera I. Isaeva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Marina D. Vedenyapina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Alexandra Yu. Kurmysheva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Dirk Weichgrebe
- Institute for Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany; (D.W.); (R.R.N.); (N.P.T.N.)
| | - Rahul Ramesh Nair
- Institute for Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany; (D.W.); (R.R.N.); (N.P.T.N.)
| | - Ngoc Phuong Thanh Nguyen
- Institute for Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany; (D.W.); (R.R.N.); (N.P.T.N.)
| | - Leonid M. Kustov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
- Chemistry Department, Moscow State University, Leninskie Gory 1, Bldg. 3, 119992 Moscow, Russia
| |
Collapse
|