1
|
Song Q, Qi Z, Liang N, Hou N, Zhang C, Pei C, Zhao X, Li D. Cross-protection and cross-feeding mediated by signaling molecules enhanced the viability of P. fluorescens S01 and R. erythropolis S02 under the dual stresses of polycyclic aromatic hydrocarbons (PAHs) and low temperature. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138689. [PMID: 40403373 DOI: 10.1016/j.jhazmat.2025.138689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/18/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
In harsh environments, microbes employ varieties of strategies, including cross-feeding and biofilm formation, to enhance their survival. Signaling molecules played a regulatory role in these processes. However, it remains unclear whether cross-feeding and biofilm formation can offer protection to others and precise regulatory mechanisms of signaling molecules in facilitating cross-protection. Herein, we constructed a synthetic microbial community (SynCom) using two bacteria isolated from PAHs-contaminated soil and analyzed the cross-protection patterns. Cross-protection within SynCom composed of P. fluorescens S01 and R. erythropolis S02 was facilitated through cross-feeding and biofilm formation. Cross-feeding of intermediate metabolites not only promoted PAHs degradation but also indirectly protected R. erythropolis S02. Biofilm formation of SynCom was regulated by signaling molecules, with P. fluorescens S01 and R. erythropolis S02 operating in a relay mode. Specifically, under regulation of c-di-GMP, R. erythropolis S02 produced sugar nucleotides, which were precursors for biofilm. P. fluorescens S01 absorbed sugar nucleotides under the influence of PQS and RhlI, accelerated biofilm synthesis, thereby protected both P. fluorescens S01 and R. erythropolis S02 from environmental stress. Our study deciphered a novel mechanism by which SynCom employed relayed signaling molecules to coordinately regulate biofilm formation in response to combined cold-pollutant stress. The findings provided both theoretical foundations for targeted SynCom construction and technical pathways for their application in contaminated environment remediation.
Collapse
Affiliation(s)
- Qiuying Song
- Northeast Agricultural University, Harbin 150030, China
| | - Zihui Qi
- Northeast Agricultural University, Harbin 150030, China
| | - Ning Liang
- Northeast Agricultural University, Harbin 150030, China
| | - Ning Hou
- Northeast Agricultural University, Harbin 150030, China.
| | - Chi Zhang
- Northeast Agricultural University, Harbin 150030, China
| | - Chenghao Pei
- Northeast Agricultural University, Harbin 150030, China
| | - Xinyue Zhao
- Northeast Agricultural University, Harbin 150030, China
| | - Dapeng Li
- Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Makarani N, Kaushal RS. Advances in actinobacteria-based bioremediation: mechanistic insights, genetic regulation, and emerging technologies. Biodegradation 2025; 36:24. [PMID: 40085365 DOI: 10.1007/s10532-025-10118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Untreated wastewater from sewage, industries, and agriculture contaminates ecosystems due to rapid population growth and industrialization. It introduces hazardous pollutants, including pesticides, polycyclic aromatic hydrocarbons (PAHs), and heavy metals, which pose serious health risks such as cancer, lung disorders, and kidney damage, threatening both environmental and human well-being. Using microorganisms for bioremediation is thought to be safer and more effective. Compared to other approaches, bioremediation is the most effective way to absorb heavy metals. Due to the high cost and unreliability of traditional remediation techniques, such as chemical and physical treatments, interest in bioremediation as an environmentally benign substitute has grown. Through the use of microorganisms, bioremediation successfully removes heavy metals and breaks down organic contaminants from contaminated circumstances. Actinobacteria are unique among these microbes because of their flexibility in metabolism and capacity to endure severe environments. They create secondary metabolites, such as enzymes, that help break down a variety of pollutants. Actinobacteria also produce siderophores and extracellular polymeric substances (EPS), which aid in trapping organic contaminants and immobilizing heavy metals. This review explores the diverse applications of actinobacteria in bioremediation, with a focus on their mechanisms for breaking down and neutralizing pollutants. We highlighted the advancements in bioremediation strategies, including the use of mixed microbial cultures, biosurfactants, nanoparticles and immobilized cell technologies which enhance the efficiency and sustainability of pollutant removal. The integration of omics technologies such as metagenomics, meta-transcriptomics, and meta-proteomics provides deeper insights into the genetic and metabolic pathways involved in bioremediation, suggesting the way for the development of genetically optimized strains with enhanced degradation capabilities. By leveraging these emerging technologies and microbial strategies, actinobacteria-mediated bioremediation presents a highly promising approach for mitigating environmental pollution. Ongoing research and technological advancements in this field can further enhance the scalability and applicability of bioremediation techniques, offering sustainable solutions for restoring contaminated ecosystems and protecting human health.
Collapse
Affiliation(s)
- Naureenbanu Makarani
- Biophysics & Structural Biology Laboratory, Research & Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Radhey Shyam Kaushal
- Biophysics & Structural Biology Laboratory, Research & Development Cell, Parul University, Vadodara, Gujarat, 391760, India.
- Department of Life Sciences, Parul Institute of Applied Sciences and Research & Development Cell, Parul University, Vadodara, Gujarat, 391760, India.
| |
Collapse
|
3
|
Jeong HJ, Mohan H, Lim JM, Lee SW, Park JH, Muthukumar Sathya P, Lee GM, Seralathan KK, Oh BT. Enhanced degradation of dibutyl phthalate using a synthetic mixed bacterial system and its impact on environmental toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178796. [PMID: 39961156 DOI: 10.1016/j.scitotenv.2025.178796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
Dibutyl phthalate (DBP) is widely used in plastic manufacturing to enhance the flexibility and durability of products. However, DBP is a toxic, persistent environmental pollutant that poses significant risks to ecosystems and human health. This study investigates the DBP degradation efficiency of a mixed bacterial system (MBS) consisting of Serratia sp. G9, Bacillus sp. J7, and Serratia sp. J14, isolated from animal feces and oil-contaminated soil, and evaluates its environmental toxicity for potential practical application. The results show that the MBS exhibited significantly higher DBP removal efficiency and degradation rate compared to a single bacterial system (SBS), achieving near-complete removal of DBP (500 mg/L) within 7 days under optimal conditions. These conditions were determined to be an inoculum dose of 0.8 % (v/v), pH 7, temperature of 35 °C, and shaking speed of 120 rpm. Gas chromatography-mass spectrometry (GC-MS) analysis revealed the breakdown of DBP into non-toxic intermediates, and the degradation pathway was elucidated. Furthermore, aquatic toxicity and neurotoxicity assessments showed a significant reduction in toxicity after treatment, confirming the effectiveness of the MBS in mitigating the environmental impact of DBP pollution. Unlike previous studies that have focused solely on the biological treatability of DBP, this research emphasizes that the MBS offers an effective biological treatment strategy for DBP contamination and provides an environmentally friendly solution by significantly reducing environmental toxicity.
Collapse
Affiliation(s)
- Hyeon-Jin Jeong
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Jeong-Muk Lim
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Se-Won Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Gwang-Min Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea.
| |
Collapse
|
4
|
Morshead ML, Truong L, Simonich MT, Moran JE, Anderson KA, Tanguay RL. Developmental toxicity of alkylated PAHs and substituted phenanthrenes: Structural nuances drive diverse toxicity and AHR activation. CHEMOSPHERE 2025; 370:143894. [PMID: 39643011 PMCID: PMC11732715 DOI: 10.1016/j.chemosphere.2024.143894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a diverse class of chemicals that occur in complex mixtures including parent and substituted PAHs. To understand the hazard posed by complex environmental PAH mixtures, we must first understand the structural drivers of activity and mode of action of individual PAHs. Understanding the toxicity of alkylated PAHs is important as they often occur in higher abundance in environmental matrices and can be more biologically active than their parent compounds. 104 alkylated PAHs were screened from 11 different parent compounds with emphasis on substituted phenanthrenes and their structurally dependent toxicity differences. Using a high-throughput early life stage zebrafish assay, embryos were exposed to concentrations between 0.1 and 100 μM and assessed for morphological and behavioral outcomes. The aryl hydrocarbon receptor (AHR) is often implicated in the toxicity of PAHs and the induction of cytochrome P4501A (cyp1a) is an excellent biomarker of Ahr activation. Embryos were evaluated for cyp1a induction using a fluorescence reporter line. Alkyl and polar phenanthrene derivatives were further assessed for spatial cyp1a expression and Ahr dependence of morphological effects. In the alkyl PAH screen 35 (33.7%) elicited a morphological or behavioral response and of those 23 (65%) also induced cyp1a. 31 (29.8%) of the chemicals only induced cyp1a. Toxicity varied substantially in response to substitution location, the amount of ring substitutions and alkyl chain length. Cyp1a induction varied by parent compound group and was a poor indicator of morphological or behavioral outcomes. Polar phenanthrenes were more biologically active than alkylated phenanthrene derivatives and their toxicity was not dependent upon the Ahr2, Ahr1a or Ahr1b when tested individually, despite cyp1a induction by 50% of polar phenanthrenes. Our results demonstrated that induction of cyp1a did not always correlate with PAH toxicity or Ahr dependence and that the type and location of phenanthrene substitution determined potency.
Collapse
Affiliation(s)
- Mackenzie L Morshead
- Department of Environmental and Molecular Toxicology and the Oregon State University Superfund Center, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology and the Oregon State University Superfund Center, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA
| | - Michael T Simonich
- Department of Environmental and Molecular Toxicology and the Oregon State University Superfund Center, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA
| | - Jessica E Moran
- Department of Environmental and Molecular Toxicology and the Oregon State University Superfund Center, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology and the Oregon State University Superfund Center, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology and the Oregon State University Superfund Center, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA.
| |
Collapse
|
5
|
Liu ZS, Wang KH, Han Q, Jiang CY, Liu SJ, Li DF. Sphingobium sp. SJ10-10 encodes a not-yet-reported chromate reductase and the classical Rieske dioxygenases to simultaneously degrade PAH and reduce chromate. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134889. [PMID: 38878436 DOI: 10.1016/j.jhazmat.2024.134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Both polycyclic aromatic hydrocarbons (PAHs) and heavy metals persist in the environment and are toxic to organisms. Their co-occurrence makes any of them difficult to remove during bioremediation and poses challenges to environmental management and public health. Microorganisms capable of effectively degrading PAHs and detoxifying heavy metals concurrently are required to improve the bioremediation process. In this study, we isolated a new strain, Sphingobium sp. SJ10-10, from an abandoned coking plant and demonstrated its capability to simultaneously degrade 92.6 % of 75 mg/L phenanthrene and reduce 90 % of 3.5 mg/L hexavalent chromium [Cr(VI)] within 1.5 days. Strain SJ10-10 encodes Rieske non-heme iron ring-hydroxylating oxygenases (RHOs) to initiate PAH degradation. Additionally, a not-yet-reported protein referred to as Sphingobium chromate reductase (SchR), with low sequence identity to known chromate reductases, was identified to reduce Cr(VI). SchR is distributed across different genera and can be classified into two classes: one from Sphingobium members and the other from non-Sphingobium species. The widespread presence of SchR in those RHO-containing Sphingobium members suggests that they are excellent candidates for bioremediation. In summary, our study demonstrates the simultaneous removal of PAHs and Cr(VI) by strain SJ10-10 and provides valuable insights into microbial strategies for managing complex pollutant mixtures.
Collapse
Affiliation(s)
- Ze-Shen Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke-Huan Wang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qun Han
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - De-Feng Li
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Zhou X, Luo X, Liu K, Zheng T, Ling P, Huang J, Chen W, Huang Q. Importance of soil ecoenzyme stoichiometry for efficient polycyclic aromatic hydrocarbon biodegradation. CHEMOSPHERE 2024; 359:142348. [PMID: 38759803 DOI: 10.1016/j.chemosphere.2024.142348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Efficient remediation of soil contaminated by polycyclic aromatic hydrocarbons (PAHs) is challenging. To determine whether soil ecoenzyme stoichiometry influences PAH degradation under biostimulation and bioaugmentation, this study initially characterized soil ecoenzyme stoichiometry via a PAH degradation experiment and subsequently designed a validation experiment to answer this question. The results showed that inoculation of PAH degradation consortia ZY-PHE plus vanillate efficiently degraded phenanthrene with a K value of 0.471 (depending on first-order kinetics), followed by treatment with ZY-PHE and control. Ecoenzyme stoichiometry data revealed that the EEAC:N, vector length and angle increased before day five and decreased during the degradation process. In contrast, EEAN:P decreased and then increased. These results indicated that the rapid PAH degradation period induced more C limitation and organic P mineralization. Correlation analysis indicated that the degradation rate K was negatively correlated with vector length, EEAC:P, and EEAN:P, suggesting that C limitation and relatively less efficient P mineralization could inhibit biodegradation. Therefore, incorporating liable carbon and acid phosphatase or soluble P promoted PAH degradation in soils with ZY-PHE. This study provides novel insights into the relationship between soil ecoenzyme stoichiometry and PAH degradation. It is suggested that soil ecoenzyme stoichiometry be evaluated before designing bioremeiation stragtegies for PAH contanminated soils.
Collapse
Affiliation(s)
- Xing Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuesong Luo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kangzhi Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianao Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Ling
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Hou J, Cai Y, Wang J, Zan S, Li Z, Zhu T. Enhanced bioremediation of cyclohexaneacetic acid in offshore sediments with green synthetic iron oxide and Pseudoalteromonas sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38770-38780. [PMID: 36481851 DOI: 10.1007/s11356-022-24629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Naphthenic acids (NAs) have been found to exert serious threats on offshore sediment ecosystems and human health in recent years, which entails us the urgent need for NAs remediation. Bioremediation is considered an ideal method for sediment remediation due to ecological sustainability and economic feasibility. However, current bioremediation efficiency of offshore sediments suffers from relatively slow and there has never any attempts to bioremediate offshore sediment NAs contamination hitherto. In this study, the green synthetic iron oxides (gFeOx) based on Laminaria extracts was employed to enhance the biodegradation of NAs (Cyclohexylacetic acid, CHAA) in offshore sediments by Pseudoalteromonas sp. JSTW (an indigenous microorganism). The results showed that CHAA (20 mg·kg-1) in offshore sediments was removed almost 100% within 7 days at 30 mg·kg-1 gFeOx and 0.6 mg·kg-1 Strain JSTW. High-throughput sequencing results revealed that the structure and function of sediment microbial community were essentially restored to uncontaminated levels after bioremediation, highlighting the joint remediation approach is an efficient and eco-friendly method. Overall, this work has firstly provided insights into the application for NAs in situ bioremediation in offshore sediments.
Collapse
Affiliation(s)
- Jiaxiang Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China
| | - Yingxue Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China.
| | - Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China
| | - Tongxian Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China
| |
Collapse
|
8
|
Huizenga JM, Schindler J, Simonich MT, Truong L, Garcia-Jaramillo M, Tanguay RL, Semprini L. PAH bioremediation with Rhodococcus rhodochrous ATCC 21198: Impact of cell immobilization and surfactant use on PAH treatment and post-remediation toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134109. [PMID: 38547751 PMCID: PMC11042972 DOI: 10.1016/j.jhazmat.2024.134109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are prevalent environmental contaminants that are harmful to ecological and human health. Bioremediation is a promising technique for remediating PAHs in the environment, however bioremediation often results in the accumulation of toxic PAH metabolites. The objectives of this research were to demonstrate the cometabolic treatment of a mixture of PAHs by a pure bacterial culture, Rhodococcus rhodochrous ATCC 21198, and investigate PAH metabolites and toxicity. Additionally, the surfactant Tween ® 80 and cell immobilization techniques were used to enhance bioremediation. Total PAH removal ranged from 70-95% for fluorene, 44-89% for phenanthrene, 86-97% for anthracene, and 6.5-78% for pyrene. Maximum removal was achieved with immobilized cells in the presence of Tween ® 80. Investigation of PAH metabolites produced by 21198 revealed a complex mixture of hydroxylated compounds, quinones, and ring-fission products. Toxicity appeared to increase after bioremediation, manifesting as mortality and developmental effects in embryonic zebrafish. 21198's ability to rapidly transform PAHs of a variety of molecular structures and sizes suggests that 21198 can be a valuable microorganism for catalyzing PAH remediation. However, implementing further treatment processes to address toxic PAH metabolites should be pursued to help lower post-remediation toxicity in future studies.
Collapse
Affiliation(s)
- Juliana M Huizenga
- Oregon State University, School of Chemical, Biological, and Environmental Engineering, 105 SW 26th St, Corvallis, OR 97331, USA.
| | - Jason Schindler
- Oregon State University, Department of Environmental and Molecular Toxicology, 28645 East Hwy 34, Corvallis, OR 97333, USA.
| | - Michael T Simonich
- Oregon State University, Department of Environmental and Molecular Toxicology, 28645 East Hwy 34, Corvallis, OR 97333, USA.
| | - Lisa Truong
- Oregon State University, Department of Environmental and Molecular Toxicology, 28645 East Hwy 34, Corvallis, OR 97333, USA.
| | - Manuel Garcia-Jaramillo
- Oregon State University, Department of Environmental and Molecular Toxicology, 28645 East Hwy 34, Corvallis, OR 97333, USA.
| | - Robyn L Tanguay
- Oregon State University, Department of Environmental and Molecular Toxicology, 28645 East Hwy 34, Corvallis, OR 97333, USA.
| | - Lewis Semprini
- Oregon State University, School of Chemical, Biological, and Environmental Engineering, 105 SW 26th St, Corvallis, OR 97331, USA.
| |
Collapse
|
9
|
Ge H, Liu X, Lu D, Yang Z, Li H. Degradation of pyrene by Xanthobacteraceae bacterium strain S3 isolated from the rhizosphere sediment of Vallisneria natans: active conditions, metabolite identification, and proposed pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25659-25670. [PMID: 38483714 DOI: 10.1007/s11356-024-32724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were typical environmental contaminants that accumulated continuously in sediment. Microbial degradation is the main way of PAH degradation in the natural environment. Therefore, expanding the available pool of microbial resources and investigating the molecular degrading mechanisms of PAHs are critical to the efficient control of PAH-polluted sites. Here, a strain (identified as Xanthobacteraceae bacterium) with the ability to degrade pyrene was screened from the rhizosphere sediment of Vallisneria natans. Response surface analysis showed that the strain could degrade pyrene at pH 5-7, NaCl addition 0-1.5%, and temperature 25-40 °C, and the maximum pyrene degradation (~ 95.4%) was obtained under the optimum conditions (pH 7.0, temperature 28.5 °C, and NaCl-free addition) after 72 h. Also, it was observed that the effect of temperature on the degradation ratio was the most significant. Furthermore, eighteen metabolites were identified by mass spectrometry, among which (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid, 7-(carboxymethyl)-8-formyl-1-naphthyl acetic acid, phthalic acid, naphthalene-1,2-diol, and phenol were the main metabolites. And the degradation pathway of pyrene was proposed, suggesting that pyrene undergoes initial ortho-cleavage under the catalysis of metapyrocatechase to form (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid. Subsequently, this intermediate was progressively oxidized and degraded to phthalic acid or phenol, which could enter the tricarboxylic acid cycle. Furthermore, the pyrene biodegradation by the strain followed the first-order kinetic model and the degradation rate changed from fast to slow, with the rate remaining mostly slow in the later stages. The slow biodegradation rate was probably caused by a significant amount of phenol accumulation in the initial stage of degradation, which resulted in a decrease in bacterial activity or death.
Collapse
Affiliation(s)
- Huanying Ge
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Xinghao Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Denglong Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China.
| |
Collapse
|
10
|
Li J, Peng W, Yin X, Wang X, Liu Z, Liu Q, Deng Z, Lin S, Liang R. Identification of an efficient phenanthrene-degrading Pseudarthrobacter sp. L1SW and characterization of its metabolites and catabolic pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133138. [PMID: 38086304 DOI: 10.1016/j.jhazmat.2023.133138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
Phenanthrene, a typical chemical of polycyclic aromatic hydrocarbons (PAHs) pollutants, severely threatens health of wild life and human being. Microbial degradation is effective and environment-friendly for PAH removal, while the phenanthrene-degrading mechanism in Gram-positive bacteria is unclear. In this work, one Gram-positive strain of plant growth-promoting rhizobacteria (PGPR), Pseudarthrobacter sp. L1SW, was isolated and identified with high phenanthrene-degrading efficiency and great stress tolerance. It degraded 96.3% of 500 mg/L phenanthrene in 72 h and kept stable degradation performance with heavy metals (65 mg/L of Zn2+, 5.56 mg/L of Ni2+, and 5.20 mg/L of Cr3+) and surfactant (10 CMC of Tween 80). Strain L1SW degraded phenanthrene mainly through phthalic acid pathway, generating intermediate metabolites including cis-3,4-dihydrophenanthrene-3,4-diol, 1-hydroxy-2-naphthoic acid, and phthalic acid. A novel metabolite (m/z 419.0939) was successfully separated and identified as an end-product of phenanthrene, suggesting a unique metabolic pathway. With the whole genome sequence alignment and comparative genomic analysis, 19 putative genes associated with phenanthrene metabolism in strain L1SW were identified to be distributed in three gene clusters and induced by phenanthrene and its metabolites. These findings advance the phenanthrene-degrading study in Gram-positive bacteria and promote the practical use of PGPR strains in the bioremediation of PAH-contaminated environments.
Collapse
Affiliation(s)
- Junlan Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanli Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xianqi Yin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhixiang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qinchen Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
11
|
Poddar K, Sarkar D, Behera S, Sarkar A. Mitigation of hydrocarbon toxicity using bacterial consortium in microcosm environment for agrarian fecundity. ENVIRONMENTAL RESEARCH 2023; 237:117077. [PMID: 37678505 DOI: 10.1016/j.envres.2023.117077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Petroleum contamination in the soil has been well emphasized as a toxic and hazardous soil pollution contributing to a significant portion of soil infertility worldwide. In the present study, bacterial consortium CHM1 composed of 5 strains belonging to genera Klebsiella, Pantoea, and Enterobacter was evaluated for hydrocarbon degradation ability in the soil environment, as well as their performance in remediating ecotoxicity and phytotoxicity. Initially, the degradation efficiency (1.98%/day) in the soil environment was evaluated. Scanning Electron Microscopy combined with Energy Dispersive X-ray spectroscopy revealed an increase in nitrogen content by 24.98% and a decrease in carbon content by 22.76% implying an improvement in soil fertility. The Fourier Transform InfraRed spectroscopy and Gas Chromatographic analysis revealed significant depletion of aromatic, cyclic, long aliphatic, and complex acid and ester content of the test soil. Moreover, the quantitative PCR analysis exhibited the non-competitive coexistence of each component of the CHM1 consortium. Different enzymatic assays revealed elevated dehydrogenase and superoxide dismutase activity in the degradation system due to the introduction of CHM1 in the soil microcosm. Vibrio fischeri-assisted ecotoxicity analysis had established the potential of CHM1 to efficiently minimize the ecotoxicity of hydrocarbon contamination. The phytotoxicity analysis was performed using four different plant models viz. Chickpeas (Cicer arientinum), Coriander (Coriandrum sativum), Fenugreek (Trigonella foenum-graecum), and Spinach (Spinacia oleracea) exhibiting CHM1 amendment helped to restore plant germination and growth in hydrocarbon-contaminated soil system efficiently. The promising results from this study indicated the possible application of the bacterial consortium in hydrocarbon-contaminated land management and soil restoration for cultivation or other plantation purposes.
Collapse
Affiliation(s)
- Kasturi Poddar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Debapriya Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Surendra Behera
- Department of Botany, Fakir Mohan University, Balasore, Odisha, 756020, India.
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
12
|
Jin J, Wang C, Liu R, Gong J, Wang J, Niu X, Zheng R, Tang Z, Malik K, Li C. Soil microbial community compositions and metabolite profiles of Achnatherum inebrians affect phytoremediation potential in Cd contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132280. [PMID: 37591168 DOI: 10.1016/j.jhazmat.2023.132280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
Cadmium (Cd) contamination poses serious risks to soil ecosystems and human health. Herein, the effect of two drunken horse grasses (Achnatherum inebrians) including endophytes Epichloë gansuensis infected (E+ ) and uninfected (E-) on the phytoremediation of Cd-contaminated soils were analyzed by coupling high-throughput sequencing and soil metabolomics. The results showed that the high-risk soil Cd decreased and the medium- and low-risk Cd fraction increased to varying degrees after planting E+ and E- plants in the soil. Meanwhile, total Cd content decreased by 19.7 % and 35.1 % in E+ and E- A. inebrians-planted soils, respectively. Principal coordinate analysis revealed a significant impact of E+ and E- plants on the soil microbial community. Most stress-tolerant and gram-positive functional bacterial taxa were enriched to stabilize Cd(II) in E+ planted soil. Several beneficial fungal groups related to saprotroph and symbiotroph were enriched to absorb Cd(II) in E- soil. Soil metabolomic analysis showed that the introduction of A. inebrians could weaken the threat of CdCl2 to soil microbe metabolism and improve soil quality, which in turn promoted plant growth and improved phytoremediation efficiency in Cd-contaminated soil. In conclusion, A. inebrians plants alleviate soil Cd pollution by regulating soil microbial metabolism and microbial community structure. These results provide valuable information for an in-depth understanding of the phytoremediation mechanisms of A. inebrians.
Collapse
Affiliation(s)
- Jie Jin
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| | - Chao Wang
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| | - Ronggui Liu
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| | - Jiyi Gong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Jianfeng Wang
- State Key Laboratory of Grassland Agro-ecosystems, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China.
| | - Xueli Niu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Rong Zheng
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| | - Zhonglong Tang
- Linxia Academy of Agricultural Sciences, Linxia 731100, China
| | - Kamran Malik
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| | - ChunJie Li
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Ma J, Zhuang Y, Wang Y, Zhu N, Wang T, Xiao H, Chen J. Update on new trend and progress of the mechanism of polycyclic aromatic hydrocarbon biodegradation by Rhodococcus, based on the new understanding of relevant theories: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93345-93362. [PMID: 37548784 DOI: 10.1007/s11356-023-28894-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Rapid industrial and societal developments have led to substantial increases in the use and exploitation of petroleum, and petroleum hydrocarbon pollution has become a serious threat to human health and the environment. Polycyclic aromatic hydrocarbons (PAHs) are primary components of petroleum hydrocarbons. In recent years, microbial remediation of PAHs pollution has been regarded as the most promising and cost-effective treatment measure because of its low cost, robust efficacy, and lack of secondary pollution. Rhodococcus bacteria are regarded as one of main microorganisms that can effectively degrade PAHs because of their wide distribution, broad degradation spectrum, and network-like evolution of degradation gene clusters. In this review, we focus on the biological characteristics of Rhodococcus; current trends in PAHs degradation based on knowledge maps; and the cellular structural, biochemical, and enzymatic basis of degradation mechanisms, along with whole genome and transcriptional regulation. These research advances provide clues for the prospects of Rhodococcus-based applications in environmental protection.
Collapse
Affiliation(s)
- Jinglin Ma
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yan Zhuang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ning Zhu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ting Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Hongbin Xiao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
14
|
Zhang L, Cui H, Liu M, Wang W, Li X, Huang H. The role of multi-low molecular weight organic acids on phenanthrene biodegradation: Insight from cellular characteristics and proteomics. CHEMOSPHERE 2023; 326:138406. [PMID: 36925006 DOI: 10.1016/j.chemosphere.2023.138406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/15/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and ubiquitous pollutants that need to be solved. The low-molecular-weight organic acid (LMWOA) holds the promise to accelerate the capacity of microbes to degrade PAHs. However, the degradation mechanism(s) with multi-LMWOAs has not been understood yet, which is closer to the complex environmental biodegradation in nature. Here, we demonstrated a comprehensive cellular and proteomic response pattern by investigating the relationship between a model PAH degrading strain, B. subtilis ZL09-26, and the mixture LMWOAs (citric acid, glutaric acid, and oxalic acid). As a result, multi-LMWOAs introduced a highly enhanced phenanthrene (PHE) degradation efficiency with up to 3.1-fold improvement at 72 h, which is accompanied by the enhancement of strain growth and activity, but the releasement of membrane damages and oxidative stresses. Moreover, a detailed proteomic analysis revealed that the synergistic perturbation of various metabolic pathways jointly governed the change of cellular behaviors and improved PHE degradation in a network manner. The obtained knowledge provides a foundation for designing the artificial LMWOAs mixtures and guides the rational remediation of contaminated soils using bio-stimulation techniques.
Collapse
Affiliation(s)
- Lei Zhang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China; College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Haiyang Cui
- RWTH Aachen University, Templergraben 55, Aachen, 52062, Germany
| | - Mina Liu
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, China
| | - Weidong Wang
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying, 257067, China
| | - Xiujuan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, China.
| | - He Huang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Zhao L, Han Z, Zhou M, Lyu C, Li Y. Field measures of strengthen plant-microbial remediation of PAHs-FQs compound pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27618-6. [PMID: 37202637 DOI: 10.1007/s11356-023-27618-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
In this study, five PAHs (benzo [b] fluoranthene (BbF), phenanthrene (Phe), fluoranthene (Flu), fluorene (Fl), benzo [A] pyrene (Bap)), and five FQs (ofloxacin (OFL), enrofloxacin (ENR), ciprofloxacin (CIP), norfloxacin (NOR), lomefloxacin (LOM)) were selected as ligands; peroxidase (1NML) was selected as receptor degrading protein. In the plant-microbial degradation, the factors with significant inhibitory effects are NOR, Bap, CIP, ENR, OFL, Flu, LOM, Phe, Fl, and BbF by the fractional factorial design experiment and molecular docking-assisted molecular dynamics methods. Using Taguchi experiment and molecular dynamics simulation methods, the main external field measures were designed and screened to effectively promote the degradation of PAHs-FQs under the combined pollution scenarios of Bap-CIP and BbF-NOR, respectively. The peroxidase mutation design plans with enhanced substrate affinity were then designed and screened using the DS software by predicting the virtual key amino acid of peroxidase. The novel biodegradable enzymes 2YCD-1, 2YCD-4, 2YCD-5, 2YCD-7, and 2YCD-9 had better structures and showed excellent degradability for PAHs and FQs. This study explored the degradation rules of the composite pollutants in the coexistence systems of multiple PAHs and FQs, providing the best external field measures for the control and treatment of the combined pollution effects of different PAHs and FQs. Overall, the current study has important practical significance for promoting the plant-microbial joint remediation of PAHs-FQs pollution and for reducing the combined pollution of PAHs and FQs in farmland systems.
Collapse
Affiliation(s)
- Lei Zhao
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Zhenzhen Han
- Key Laboratory of Resource and Environmental System Optimization, Ministry of Education, North China Electric Power University, Beijing, 102206, China
| | - Mengying Zhou
- Key Laboratory of Resource and Environmental System Optimization, Ministry of Education, North China Electric Power University, Beijing, 102206, China
| | - Cong Lyu
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Yu Li
- Key Laboratory of Resource and Environmental System Optimization, Ministry of Education, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
16
|
Yang L, Han D, Jin D, Zhang J, Shan Y, Wan M, Hu Y, Jiao W. Soil physiochemical properties and bacterial community changes under long-term polycyclic aromatic hydrocarbon stress in situ steel plant soils. CHEMOSPHERE 2023; 334:138926. [PMID: 37182712 DOI: 10.1016/j.chemosphere.2023.138926] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
In situ soils were collected at two depths in Jinan and Hangzhou steel plants, which both have a long history of operation and polycyclic aromatic hydrocarbons (PAHs) contamination. The richness of 16 S rRNA gene and bacterial community of the soil were determined by real-time PCR and high-throughput sequencing. Soil physicochemical properties, PAHs contamination characteristics, and their interrelationships were also analyzed. In general, the PAHs contamination decreased with increasing soil depths. The physicochemical properties and PAH concentration of soil had synergistic impacts on the composition of the bacterial community. The long-term higher PAHs stress in Hangzhou contaminated soil (982 mg kg-1) increased the bacterial abundance and diversity, while that of Jinan contaminated soil (63 mg kg-1) decreased bacterial abundance and diversity. The pH value, sand content of the soil were positively correlated (P < 0.05) with the bacterial diversity including Simpson, Shannon, Observed_species and Chao1 indexes., and the other soil properties exhibited negative correlations with different strengths. The abundances of Curvibacter, Pseudomonas, Thiobacillus, Lysobacter, and Limnobacter were positively correlated with the PAHs concentration (P < 0.01). Additionally, the network structure of the PAHs-contaminated soils was more complex compared to that of uncontaminated soils, with stronger linkages and correlations between the different bacteria. These findings provide a theoretical basis for microbial remediation of PAHs-polluted soil.
Collapse
Affiliation(s)
- Liuqing Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Dongfei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jingran Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongping Shan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Mengxue Wan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongfei Hu
- College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Wentao Jiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
17
|
Lara-Moreno A, Merchán F, Morillo E, Zampolli J, Di Gennaro P, Villaverde J. Genome analysis for the identification of genes involved in phenanthrene biodegradation pathway in Stenotrophomonas indicatrix CPHE1. Phenanthrene mineralization in soils assisted by integrated approaches. Front Bioeng Biotechnol 2023; 11:1158177. [PMID: 37214282 PMCID: PMC10192627 DOI: 10.3389/fbioe.2023.1158177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Phenanthrene (PHE) is a highly toxic compound, widely present in soils. For this reason, it is essential to remove PHE from the environment. Stenotrophomonas indicatrix CPHE1 was isolated from an industrial soil contaminated by polycyclic aromatic hydrocarbons (PAHs) and was sequenced to identify the PHE degrading genes. Dioxygenase, monooxygenase, and dehydrogenase gene products annotated in S. indicatrix CPHE1 genome were clustered into different trees with reference proteins. Moreover, S. indicatrix CPHE1 whole-genome sequences were compared to genes of PAHs-degrading bacteria retrieved from databases and literature. On these basis, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis pointed out that cysteine dioxygenase (cysDO), biphenyl-2,3-diol 1,2-dioxygenase (bphC), and aldolase hydratase (phdG) were expressed only in the presence of PHE. Therefore, different techniques have been designed to improve the PHE mineralization process in five PHE artificially contaminated soils (50 mg kg-1), including biostimulation, adding a nutrient solution (NS), bioaugmentation, inoculating S. indicatrix CPHE1 which was selected for its PHE-degrading genes, and the use of 2-hydroxypropyl-β-cyclodextrin (HPBCD) as a bioavailability enhancer. High percentages of PHE mineralization were achieved for the studied soils. Depending on the soil, different treatments resulted to be successful; in the case of a clay loam soil, the best strategy was the inoculation of S. indicatrix CPHE1 and NS (59.9% mineralized after 120 days). In sandy soils (CR and R soils) the highest percentage of mineralization was achieved in presence of HPBCD and NS (87.3% and 61.3%, respectively). However, the combination of CPHE1 strain, HPBCD, and NS showed to be the most efficient strategy for sandy and sandy loam soils (LL and ALC soils showed 35% and 74.6%, respectively). The results indicated a high degree of correlation between gene expression and the rates of mineralization.
Collapse
Affiliation(s)
- Alba Lara-Moreno
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Francisco Merchán
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Esmeralda Morillo
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| | - Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Jaime Villaverde
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| |
Collapse
|
18
|
Behera S, Das S. Potential and prospects of Actinobacteria in the bioremediation of environmental pollutants: Cellular mechanisms and genetic regulations. Microbiol Res 2023; 273:127399. [PMID: 37150049 DOI: 10.1016/j.micres.2023.127399] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
Increasing industrialization and anthropogenic activities have resulted in the release of a wide variety of pollutants into the environment including pesticides, polycyclic aromatic hydrocarbons (PAHs), and heavy metals. These pollutants pose a serious threat to human health as well as to the ecosystem. Thus, the removal of these compounds from the environment is highly important. Mitigation of the environmental pollution caused by these pollutants via bioremediation has become a promising approach nowadays. Actinobacteria are a group of eubacteria mostly known for their ability to produce secondary metabolites. The morphological features such as spore formation, filamentous growth, higher surface area to volume ratio, and cellular mechanisms like EPS secretion, and siderophore production in Actinobacteria render higher resistance and biodegradation ability. In addition, these bacteria possess several oxidoreductase systems (oxyR, catR, furA, etc.) which help in bioremediation. Actinobacteria genera including Arthrobacter, Rhodococcus, Streptomyces, Nocardia, Microbacterium, etc. have shown great potential for the bioremediation of various pollutants. In this review, the bioremediation ability of these bacteria has been discussed in detail. The utilization of various genera of Actinobacteria for the biodegradation of organic pollutants, including pesticides and PAHs, and inorganic pollutants like heavy metals has been described. In addition, the cellular mechanisms in these microbes which help to withstand oxidative stress have been discussed. Finally, this review explores the Actinobacteria mediated strategies and recent technologies such as the utilization of mixed cultures, cell immobilization, plant-microbe interaction, utilization of biosurfactants and nanoparticles, etc., to enhance the bioremediation of various environmental pollutants.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
19
|
Gu H, Yan J, Liu Y, Yu X, Feng Y, Yang X, Lam SS, Naushad M, Li C, Sonne C. Autochthonous bioaugmentation accelerates phenanthrene degradation in acclimated soil. ENVIRONMENTAL RESEARCH 2023; 224:115543. [PMID: 36822540 DOI: 10.1016/j.envres.2023.115543] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Bioaugmentation helps to obtain a microbiome capable of remediating polycyclic aromatic hydrocarbons (PAHs). In this study, acclimation of microorganisms to soil supplemented with phenanthrene (PHE) led to enrichment with PAH-degraders, including those in Actinobacteriota and in the genera Streptomyces, Rhodococcus, Nocardioides, Sphingomonas, and Mycobacterium. Aqueous (28 °C, pH 6.5) and soil cultures inoculated with PHE-acclimated soil showed a high PHE (ca. 50 mg L-1) degradation efficiency. The PHE degradation kinetics in aqueous and soil incubations fitted to the Gompertz equation and the first-order kinetic equation, respectively. Indigenous microorganisms adapted to PHE in their environment, and this increased their capacity to degrade PHE. The effect of co-contaminants and pathway intermediates on PHE degradation showed that the degradation of PHE improved in the presence of diesel while being hindered by lubricant oil, catechol, salicylic and phthalic acid. Our findings provide theoretical and practical support for bioremediationof PAHs in the environment.
Collapse
Affiliation(s)
- Haiping Gu
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jie Yan
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Xuewei Yu
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yan Feng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuanyi Yang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Cheng Li
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde DK-4000, Denmark.
| |
Collapse
|
20
|
Lv Y, Wang L, Liu X, Chen B, Zhang M. Construction and function of a high-efficient synthetic bacterial consortium to degrade aromatic VOCs. Bioprocess Biosyst Eng 2023; 46:851-865. [PMID: 37032387 DOI: 10.1007/s00449-023-02869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/23/2023] [Indexed: 04/11/2023]
Abstract
Aromatic volatile organic compounds (VOCs) are a type of common pollution form in chemical contaminated sites. In this study, seven aromatic VOCs such as benzene, toluene, ethylbenzene, chlorobenzene, m-xylene, p-chlorotoluene and p-chlorotrifluorotoluene were used as the only carbon source, and four strains of highly efficient degrading bacteria were screened from the soil of chemical contaminated sites, then the synthetic bacterial consortium was constructed after mixing with an existing functional strain (Bacillus benzoevorans) preserved in the laboratory. After that, the synthetic bacterial consortium was used to explore the degradation effect of simulated aromatic VOCs polluted wastewater. The results showed that the functional bacterium could metabolize with aromatic VOCs as the only carbon source and energy. Meanwhile, the growth of the synthetic bacterial consortium increased with the additional carbon resources and the alternative of organic nitrogen source. Ultimately, the applicability of the synthetic bacterial consortium in organic contaminated sites was explored through the study of broad-spectrum activity.
Collapse
Affiliation(s)
- Ying Lv
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Liangshi Wang
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Xingyu Liu
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China.
- General Research Institute for Nonferrous Metals, Beijing, 100088, China.
- Institute of Earth Science, China University of Geosciences, Beijing, 100083, China.
- Shenzhen Green-Tech Institute of Applied Environmental Technology Co., Ltd., Shenzhen, 518001, China.
| | - Bowei Chen
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Mingjiang Zhang
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| |
Collapse
|
21
|
Castilla-Alcantara JC, Posada-Baquero R, Balseiro-Romero M, Fernández-López C, García JL, Fernandez-Vazquez A, Parsons JR, Cantos M, Ortega-Calvo JJ. Risk reductions during pyrene biotransformation and mobilization in a model plant-bacteria-biochar system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161600. [PMID: 36681341 DOI: 10.1016/j.scitotenv.2023.161600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The productive application of motile microorganisms for degrading hydrophobic contaminants in soil is one of the most promising processes in modern remediation due to its sustainability and low cost. However, the incomplete biodegradation of the contaminants and the formation of the intermediary metabolites in the process may increase the toxicity in soil during bioremediation, and motile inoculants may mobilize the pollutants through biosorption. Therefore, controlling these factors should be a fundamental part of soil remediation approaches. The aim of this study was to evaluate the sources of risk associated with the cometabolism-based transformation of 14C-labeled pyrene by inoculated Pseudomonas putida G7 and identify ways to minimize risk. Our model scenario examined the increase in bioaccessibility to a distant source of contamination facilitated by sunflower (Helianthus annuus L.) roots. A biochar trap for mobilized pollutant metabolites and bacteria has also been employed. The experimental design consisted of pots filled with a layer of sand with 14C-labeled pyrene (88 mg kg-1) as a contamination focus located several centimeters from the inoculation point. Half of the pots included a biochar layer at the bottom. The pots were incubated in a greenhouse with sunflower plants and P. putida G7 bacteria. Pots with sunflower plants showed a higher biodegradation of pyrene, its mobilization as metabolites through the percolate and the roots, and bacterial mobilization toward the source of contamination, also resulting in increased pyrene transformation. In addition, the biochar layer efficiently reduced the concentrations of pyrene metabolites collected in the leachates. Therefore, the combination of plants, motile bacteria and biochar safely reduced the risk caused by the biological transformation of pyrene.
Collapse
Affiliation(s)
| | - Rosa Posada-Baquero
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - Maria Balseiro-Romero
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - Carmen Fernández-López
- Centro Universitario de la Defensa, Universidad Politécnica de Cartagena, Santiago de la Ribera, Murcia, Spain
| | - José Luis García
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | | | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Manuel Cantos
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | | |
Collapse
|
22
|
Yin Q, Nie H, Nie M, Guo Y, Zhang B, Wang L, Wang Y, Bai X. Rapid effective treatment of waxy oily sludge using a method of dispersion combined with biodegradation in a semi-fluid state. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120971. [PMID: 36603759 DOI: 10.1016/j.envpol.2022.120971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Waxy oily sludge (WOS) from petrochemical enterprises has complex components and difficult treatment. Long-term large-scale stacking has seriously threatened human health and the ecological environment. In this paper, a new rapid and effective treatment method combining dispersion and biodegradation in a semi-fluid state was developed for the WOS. The degradation mechanism of the WOS in the bioreactor was preliminarily discussed. The component analysis results showed that the compounds with large molecular weight (M ≥ 282) in the WOS accounted for more than 50%. Among all microbial consortiums, the treatment effect of the consortium FF: NY3 = 9: 1 was the best for treating the crude oil in WOS, which was significantly different from that of a single strain (p < 0.05). Under the optimal nitrogen source NH4NO3 and the concentration of rhamnolipid, the developed high-efficiency microbial consortium (FF: NY3 = 9:1) could remove 85% of the total hydrocarbon pollutants in the 20 L semi-fluid bioreactor within 9 days. The degradation characteristics of WOS components in the bioreactor showed that the developed consortium has good degradation ability for n-alkanes (about 90%), middle- (77.35%)/long-chain (72.66%) isomeric alkanes, alkenes (79.12%), alicyclic hydrocarbons (78.9%) and aromatic hydrocarbons (62.78%). The kinetic analysis results indicated that, in comparison, the middle-chain n-alkanes, middle-chain isomeric saturated alkanes, alkenes, and alicyclic hydrocarbons were most easily removed. The removal rates of long-chain n-alkanes, long-chain isomeric saturated alkanes, and aromatic hydrocarbons were relatively low. The biological toxicity test showed that the germination rate of wheat seeds in treated waxy sludge was Significantly higher than that in untreated waxy sludge (p < 0.01). These results suggest that the new method developed in this paper can treat refractory WOS quickly and effectively. This method lays the foundation for the pilot-scale treatment of the semi-fluid bioreactor.
Collapse
Affiliation(s)
- Qiuyue Yin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hongyun Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Research Institute of Membrane Separation of Shaanxi Province, Xi'an, 710055, China
| | - Maiqian Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Research Institute of Membrane Separation of Shaanxi Province, Xi'an, 710055, China.
| | - Yonghua Guo
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Bo Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Research Institute of Membrane Separation of Shaanxi Province, Xi'an, 710055, China
| | - Yan Wang
- Microbiology Institute of Shaanxi Province, Xi'an, 710043, China
| | - Xuerui Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
23
|
Fu Q, Hu T, Yang Y, Zhao M. Transcriptome analysis reveals phenanthrene degradation strategy of Pseudomonas stutzeri LH-42. 3 Biotech 2023; 13:65. [PMID: 36718409 PMCID: PMC9883372 DOI: 10.1007/s13205-023-03473-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/02/2023] [Indexed: 01/28/2023] Open
Abstract
Toxic polycyclic aromatic hydrocarbons (PAHs) are often released into the environment during the combustion and processing of fossil fuels and are capable of causing significant pollution to people and the environment. One of the representative substances of PAHs is phenanthrene, which is often studied as a model compound for PAHs treatment. In this study, we compared the results of transcriptome analysis of Pseudomonas stutzeri LH-42 in two different culture conditions under phenanthrene-induced culture (test group) and glucose-induced culture (control group), and analysed the key enzymatic mechanisms of Pseudomonas stutzeri LH-42 in the biodegradation of phenanthrene. In our experiments, the transcriptome results showed that a total of 380 genes were more than twofold differentially expressed in the test group, of which 187 genes were significantly up-regulated in expression under Phenanthrene induction. Among the 380 differentially expressed genes, 90 genes were involved in Phenanthrene biodegradation, mainly including genes involved in biometabolism, cellular chemotaxis, substrate transport, signal induction and other related processes. Based on the transcriptome sequence analysis of Pseudomonas stutzeri LH-42 at the time of phenanthrene induction, a total of 25 dioxygenase genes were identified, and the related genes were mainly concentrated in two relatively concentrated clusters of PAHs biodegradation genes. The transcriptome analysis resulted in a complete set of enzyme genes related to the phenanthrene biodegradation pathway. The analysis of key enzymes led to the inference of a possible phenanthrene biodegradation pathway: the salicylic acid degradation pathway. The results of this study provide a theoretical basis for in situ remediation of PAHs-contaminated environments using Pseudomonas stutzeri LH-42. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03473-7.
Collapse
Affiliation(s)
- Qiang Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Tingting Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Yu Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Mengshi Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| |
Collapse
|
24
|
Feng H, Xu L, Chen R, Ma X, Qiao H, Zhao N, Ding Y, Wu D. Detoxification mechanisms of electroactive microorganisms under toxicity stress: A review. Front Microbiol 2022; 13:1084530. [DOI: 10.3389/fmicb.2022.1084530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Remediation of environmental toxic pollutants has attracted extensive attention in recent years. Microbial bioremediation has been an important technology for removing toxic pollutants. However, microbial activity is also susceptible to toxicity stress in the process of intracellular detoxification, which significantly reduces microbial activity. Electroactive microorganisms (EAMs) can detoxify toxic pollutants extracellularly to a certain extent, which is related to their unique extracellular electron transfer (EET) function. In this review, the extracellular and intracellular aspects of the EAMs’ detoxification mechanisms are explored separately. Additionally, various strategies for enhancing the effect of extracellular detoxification are discussed. Finally, future research directions are proposed based on the bottlenecks encountered in the current studies. This review can contribute to the development of toxic pollutants remediation technologies based on EAMs, and provide theoretical and technical support for future practical engineering applications.
Collapse
|
25
|
Chen X, Wang P, Peng F, Zhou Z, Waigi MG, Ling W. Ce(Ⅲ) activates peroxymonosulfate for the degradation of substituted PAHs. CHEMOSPHERE 2022; 306:135525. [PMID: 35779682 DOI: 10.1016/j.chemosphere.2022.135525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Substituted polycyclic aromatic hydrocarbons (SPAHs) are being intensively investigated, considering their high toxicity. Additionally, the mechanism of the effect of substituents on the removal of SPAHs and the activation of Ce(III) ions on peroxymonosulfate (PMS) have not been explored. Here we evaluated the removal efficiency of SPAHs in the oxidation system constructed by Ce(Ⅲ) ions and PMS, with emphasized the effect of substituents on SPAHs degradation. Ce(Ⅲ) has high catalytic performance for PMS, and the degradation percentage of all pollutants was higher than 92%. The significantly negative correlation between the reaction rate constants of SPAHs and the highest occupied molecular orbital-the lowest unoccupied molecular orbital gap, confirms that substituents lead to the differences in the degradation of SPAHs. The generation of reactive oxygen species (SO4•-, •OH, and 1O2) is based on the electron transfer between Ce(Ⅲ) and PMS, and the contribution of ROS to substituted naphthalene varies due to the role of substituents. The Ce(Ⅳ)/Ce(Ⅲ) cycle accelerates the activation of PMS. Based on the transformation products and condensed Fukui function, the possible degradation pathways are inferred. In addition, inorganic anions and organic matter have little effect on the Ce(Ⅲ)/PMS system, which is a prerequisite for applying this system to real-world waste-water for SPAHs removal. This work demonstrates a new model of the degradation mechanism of SPAHs in the Ce(Ⅲ)/PMS system.
Collapse
Affiliation(s)
- Xuwen Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peixin Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Peng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhou Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Jiang W, Chen R, Zhao L, Qin L, Fan H, Chen X, Wang Y, Yin C, Mao Z. Chemical fumigants control apple replant disease: Microbial community structure-mediated inhibition of Fusarium and degradation of phenolic acids. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129786. [PMID: 36007363 DOI: 10.1016/j.jhazmat.2022.129786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/31/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Fusarium and phenolic acids in apple replant soil have deleterious effects on soil, which affects the growth of young replanted apple trees. Here, we studied the effects of different chemical fumigants (metham sodium, dazomet, calcium cyanamide, 1,3-dichloropropene, and methyl bromide) on Fusarium and phenolic acids in soil. The chemical fumigants disturbed the apple replant soil microbial community to different degrees in the order from highest to the lowest as methyl bromide > 1,3-dichloropropene > dazomet > metham sodium > calcium cyanamide. Compared with the control, the total numbers of Operational Taxonomic Unit (OTU) were 104.63 % and 9.38 % lower in the methyl bromide and calcium cyanamide treatments, respectively while the average contents of Fusarium were 88.04 % and 59.18% lower in these treatments, respectively. Higher disturbance degrees resulted in a slower recovery rate of the soil microbial community, which facilitated the transformation of the soil into a disease-suppressing state. During the recovery process, the roots recruited Streptomyces OTU2796 and Bacillus OTU2243, which alleviated Fusarium-induced stress via the synthesis of polyketones and macrolides. The roots also recruited Sphingomonas OTU3488, OTU5572, and OTU8147, which alleviated phenolic acid-induced stress through the degradation of benzoate and polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Weitao Jiang
- State Key Laboratory of Crop Biology College of Horticulture Science and Engineering Shandong Agricultural University Tai'an, Shandong 271018, PR China
| | - Ran Chen
- State Key Laboratory of Crop Biology College of Horticulture Science and Engineering Shandong Agricultural University Tai'an, Shandong 271018, PR China
| | - Lei Zhao
- State Key Laboratory of Crop Biology College of Horticulture Science and Engineering Shandong Agricultural University Tai'an, Shandong 271018, PR China
| | - Lei Qin
- State Key Laboratory of Crop Biology College of Horticulture Science and Engineering Shandong Agricultural University Tai'an, Shandong 271018, PR China
| | - Hai Fan
- College of Chemistry and Material Science Shandong Agricultural University Tai'an, Shandong 271018, PR China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology College of Horticulture Science and Engineering Shandong Agricultural University Tai'an, Shandong 271018, PR China
| | - Yanfang Wang
- College of Chemistry and Material Science Shandong Agricultural University Tai'an, Shandong 271018, PR China
| | - Chengmiao Yin
- State Key Laboratory of Crop Biology College of Horticulture Science and Engineering Shandong Agricultural University Tai'an, Shandong 271018, PR China
| | - Zhiquan Mao
- State Key Laboratory of Crop Biology College of Horticulture Science and Engineering Shandong Agricultural University Tai'an, Shandong 271018, PR China.
| |
Collapse
|
27
|
Lin H, Shi J, Dong Y, Li B, Yin T. Construction of bifunctional bacterial community for co-contamination remediation: Pyrene biodegradation and cadmium biomineralization. CHEMOSPHERE 2022; 304:135319. [PMID: 35700808 DOI: 10.1016/j.chemosphere.2022.135319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons and heavy metals are typical pollutants in the non-ferrous metal smelting industry. The combination of biodegradation and biomineralization has great development potential for co-contamination removal as an environmentally friendly method. Pyrene (Pyr) and cadmium (Cd) were regarded as model pollutants of co-contamination in this study. A bifunctional bacterial community named Ycp was screened from a non-ferrous smelting slag field soil. The 16S rRNA gene high throughput sequencing analysis showed that Enterobacter was the dominant genus (99.1%). Ycp had adaptability under a wide range of environmental conditions (pH 3-9, salinity 0-10 g L-1 NaCl, Pyr concentration 0-50 mg L-1, Cd concentration 0-100 mg L-1), and the removal rate of Pyr and Cd reached 41.8%-76.9%, 82.8%-98.8%, respectively. It was found that compound carbon sources had promoting effect on the removal of Pyr and Cd, with the maximum removal rate of 88.3% and 98.0%. According to the degradation products of Pyr by LC-MS analysis and the mineralized products of Cd2+ by XRD and SEM-EDS analysis, the mechanism of Ycp for co-contamination remediation was: Ycp biodegraded Pyr through salicylic acid and phthalic acid metabolic pathways, and biomineralized Cd2+ into CdCO3 through microbially induced carbonate precipitation. This study provided a basis for microbial remediation of co-contamination.
Collapse
Affiliation(s)
- Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Jingyun Shi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; State Key Laboratory of Mineral Processing, Beijing, 102628, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Tingting Yin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
28
|
Qian F, Huang X, Su X, Bao Y. Responses of microbial communities and metabolic profiles to the rhizosphere of Tamarix ramosissima in soils contaminated by multiple heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129469. [PMID: 35820335 DOI: 10.1016/j.jhazmat.2022.129469] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) contamination around smelters poses serious stress to soil microbiome. However, the co-effect of multiple HMs and native vegetation rhizosphere on the soil ecosystem remains unclear. Herein, effects of high HMs level and the rhizosphere (Tamarix ramosissima) on soil bacterial community structure and metabolic profiles in sierozem were analyzed by coupling high-throughput sequencing and soil metabolomics. Plant roots alleviated the threat of HMs by absorbing and stabilizing them in soil. High HMs level decreased the richness and diversity of soil bacterial community and increased numbers of special bacteria. Plant roots changed the contribution of HMs species shaping the bacterial community. Cd and Zn were the main contributors to bacterial distribution in non-rhizosphere soil, however, Pb and Cu became the most important HMs in rhizosphere soil. HMs induced more dominant metal-tolerant bacteria in non-rhizosphere than rhizosphere soil. Meanwhile, critical metabolites varied by rhizosphere in co-occurrence networks. Moreover, the same HMs-tolerant bacteria were regulated by different metabolites, e.g. unclassified family AKYG1722 was promoted by Dodecanoic acid in non-rhizosphere soil, while promoted by Octadecane, 2-methyl- in rhizosphere soil. The study illustrated that high HMs level and rhizosphere affected soil properties and metabolites, by which soil microbial community structure was reshaped.
Collapse
Affiliation(s)
- Fanghan Qian
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinjian Huang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangmiao Su
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
29
|
Sharma P, Dutta D, Udayan A, Nadda AK, Lam SS, Kumar S. Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119248. [PMID: 35395353 DOI: 10.1016/j.envpol.2022.119248] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The presence of heavy metals in municipal solid waste (MSW) is considered as prevalent global pollutants that cause serious risks to the environment and living organisms. Due to industrial and anthropogenic activities, the accumulation of heavy metals in the environmental matrices is increasing alarmingly. MSW causes several adverse environmental impacts, including greenhouse gas (GHG) emissions, river plastic accumulation, and other environmental pollution. Indigenous microorganisms (Pseudomonas, Flavobacterium, Bacillus, Nitrosomonas, etc.) with the help of new pathways and metabolic channels can offer the potential approaches for the treatment of pollutants. Microorganisms, that exhibit the ability of bioaccumulation and sequestration of metal ions in their intracellular spaces, can be utilized further for the cellular processes like enzyme signaling, catalysis, stabilizing charges on biomolecules, etc. Microbiological techniques for the treatment and remediation of heavy metals provide a new prospects for MSW management. This review provides the key insights on profiling of heavy metals in MSW, tolerance of microorganisms, and application of indigenous microorganisms in bioremediation. The literatures revealed that indigenous microbes can be exploited as potential agents for bioremediation.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Deblina Dutta
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Aswathy Udayan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| |
Collapse
|
30
|
Shahabivand S, Mortazavi SS, Mahdavinia GR, Darvishi F. Phenol biodegradation by immobilized Rhodococcus qingshengii isolated from coking effluent on Na-alginate and magnetic chitosan-alginate nanocomposite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114586. [PMID: 35085972 DOI: 10.1016/j.jenvman.2022.114586] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/02/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Phenol is a hazardous organic solvent to living organisms, even in its small amounts. In order to bioremediation of phenol from aqueous solution, a novel bacterial strain was isolated from coking wastewater, identified as Rhodococcus qingshengii based on 16S rRNA sequence analysis and named as strain Sahand110. The phenol-biodegrading capabilities of the free and immobilized cells of Sahand110 on the beads of Na-alginate (NA) and magnetic chitosan-alginate (MCA) nanocomposite were evaluated under different initial phenol concentrations (200, 400, 600, 800 and 1000 mg/L). Results illustrated that Sahand110 was able to grow and complete degrade phenol up to 600 mg/L, as the sole carbon and energy source. Immobilized cells of Sahand110 on NA and MCA were more competent than its free cells in degradation of high phenol concentrations, 100% of 1000 mg/L phenol within 96 h, indicating the improved tolerance and performance of the immobilized cells against phenol toxicity. Therefore, the immobilized Sahand110 on the studied beads, especially MCA bead regarding its suitable properties, has significant potential to enhanced bioremediation of phenol-rich wastewaters.
Collapse
Affiliation(s)
- Saleh Shahabivand
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran.
| | | | | | - Farshad Darvishi
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran; Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
31
|
Bai X, Nie M, Diwu Z, Wang L, Nie H, Wang Y, Yin Q, Zhang B. Simultaneous biodegradation of phenolics and petroleum hydrocarbons from semi-coking wastewater: Construction of bacterial consortium and their metabolic division of labor. BIORESOURCE TECHNOLOGY 2022; 347:126377. [PMID: 34801719 DOI: 10.1016/j.biortech.2021.126377] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Phenols and petroleum hydrocarbons were the main contributors to COD in semi-coking wastewater, and their removal was urgent and worthwhile. The microbial strains were selected to construct microbial community for the wastewater treatment. The concentration of phenols was decreased from 2450 ± 1.2 mg/L to 200 ± 0.9 mg/L, and the removal rate of petroleum hydrocarbons was up to 97.08 ± 0.09 % by microorganisms. After phenolic compounds with high toxicity were removed by bioaugmentation, the treated semi-coking wastewater was more biodegradable, and its water quality has been significantly improved. Through GC-MS and high-through sequencing technology, the metabolic division of labor in degradation of phenols, ring-cleavage of aromatic compounds, mineralization of metabolites was further revealed. The microbial community consisting of Pseudomonas stutzeri N2 and Rhodococcus qingshengii FF could effectively and simultaneously remove phenols and petroleum hydrocarbons, and these two strains possess great potential of being applied in aerobic biological treatment process of large-scale semi-coking wastewater.
Collapse
Affiliation(s)
- Xuerui Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Maiqian Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Research Institute of Membrane Separation of Shaanxi Province, Xi'an 710055, China.
| | - Zhenjun Diwu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Research Institute of Membrane Separation of Shaanxi Province, Xi'an 710055, China
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Research Institute of Membrane Separation of Shaanxi Province, Xi'an 710055, China
| | - Hongyun Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yan Wang
- Microbiology Institute of Shaanxi Province, Xi'an 710043, China
| | - Qiuyue Yin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Bo Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|