1
|
Qiu L, Yuan R, Chen H, Zhang Z, Zhou B, Luo S. Insight into the enhanced removal of dimethoate by ferrate(Ⅵ)/biochar system: Contributions of adsorption and active oxidants. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136980. [PMID: 39731889 DOI: 10.1016/j.jhazmat.2024.136980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Dimethoate is a toxic organophosphorus insecticide and its contamination of water poses a threat to the surrounding ecosystem. In order to enhance the removal effect of ferrate (Fe(VI)) on dimethoate, modified graphene-like biochar (SIZBC) with reduction and adsorption properties was prepared in this study. Compared with Fe(VI) alone, the removal of dimethoate by Fe(VI)/SIZBC increased from 26 % to more than 97 %, and the reaction rate was accelerated by 34 times. The oxidizing property of Fe(VI) was enhanced by the reducing groups loaded on SIZBC, and more active species were produced with the contributions ranked as SO4•¯ > ∙OH > Fe(V). And the contributions of adsorption and active oxidants in the reaction process accounted for 25 % and 75 %, respectively. Enlarging the sulfite solution concentration of modified biochar, the transformation from ∙OH/Fe(V) to SO4•¯ was promoted in the system. As the concentration of Fe(Ⅵ) increased, the contributions of ∙OH and SO4•¯ gradually decreased and Fe(V) became the main active oxidant. Fe(VI)-induced core/shell nanoparticles exhibited in situ adsorption of phosphate which was a mineralization product of dimethoate, thus total phosphorus (TP) removal was increased by 27 %. Through the three degradation pathways, dimethoate and its toxic intermediates were further mineralized to inorganic substances. Finally, the Fe(VI)/SIZBC system was proven to be feasible for actual water treatment and was able to reduce water toxicity.
Collapse
Affiliation(s)
- Lijia Qiu
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Haidian District, Beijing 100083, China; Beijing City University, Shunyi District, Beijing 101309, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Haidian District, Beijing 100083, China.
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Haidian District, Beijing 100083, China
| | - Zongyu Zhang
- Beijing City University, Shunyi District, Beijing 101309, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Haidian District, Beijing 100083, China
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Haidian District, Beijing 100083, China
| |
Collapse
|
2
|
Mei Y, Zhuang S, Wang J. Adsorption of heavy metals by biochar in aqueous solution: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178898. [PMID: 39986038 DOI: 10.1016/j.scitotenv.2025.178898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Heavy metal pollution (e.g., Cd, Hg, Pb, Cu, Ni, Zn, As and Cr) has become a crucial issue worldwide. Among various remediation strategies, adsorption is widely recognized for its environmental sustainability, cost-effectiveness, and operational simplicity. In this context, biochar has gained significant attention due to its promising adsorption performance. To systematically support adsorption studies, this review compiled essential models for adsorption experiments, including commonly used adsorption kinetics models, isotherm models, and thermodynamic analysis methods. Moreover, we systematically analyzed key factors affecting heavy metal adsorption by biochar, such as its physicochemical properties, environmental pH, temperature, initial concentration, dosage, and the presence of coexisting ions, to identify the conditions that govern adsorption capacity. In addition, the adsorption performance of biochar toward eight significant heavy metals is reviewed in detail, with a focus on elucidating the underlying mechanisms, including complexation, ion exchange, cation-π bonding, electrostatic interactions, and precipitation. Finally, based on identified research gaps and critical challenges, we discuss emerging research tools, including machine learning and advanced surface modifications, to guide the targeted design of biochar materials for enhanced adsorption capacity.
Collapse
Affiliation(s)
- Yichuan Mei
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Shuting Zhuang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Wang Y, Liu Y, Zhang H, Duan X, Ma J, Sun H, Tian W, Wang S. Carbonaceous materials in structural dimensions for advanced oxidation processes. Chem Soc Rev 2025; 54:2436-2482. [PMID: 39895415 DOI: 10.1039/d4cs00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Carbonaceous materials have attracted extensive research and application interests in water treatment owing to their advantageous structural and physicochemical properties. Despite the significant interest and ongoing debates on the mechanisms through which carbonaceous materials facilitate advanced oxidation processes (AOPs), a systematic summary of carbon materials across all dimensions (0D-3D nanocarbon to bulk carbon) in various AOP systems remains absent. Addressing this gap, the current review presents a comprehensive analysis of various carbon/oxidant systems, exploring carbon quantum dots (0D), nanodiamonds (0D), carbon nanotubes (1D), graphene derivatives (2D), nanoporous carbon (3D), and biochar (bulk 3D), across different oxidant systems: persulfates (peroxymonosulfate/peroxydisulfate), ozone, hydrogen peroxide, and high-valent metals (Mn(VII)/Fe(VI)). Our discussion is anchored on the identification of active sites and elucidation of catalytic mechanisms, spanning both radical and nonradical pathways. By dissecting catalysis-related factors such as sp2/sp3 C, defects, and surface functional groups that include heteroatoms and oxygen groups in different carbon configurations, this review aims to provide a holistic understanding of the catalytic nature of different dimensional carbonaceous materials in AOPs. Furthermore, we address current challenges and underscore the potential for optimizing and innovating water treatment methodologies through the strategic application of carbon-based catalysts. Finally, prospects for future investigations and the associated bottlenecks are proposed.
Collapse
Affiliation(s)
- Yunpeng Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Ya Liu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
4
|
Li M, Xie Q, Xu F, Zhang Y, Zhuang Z, Xu J, Xiang H, Li Y, Cai Y, Chen Z, Yu B. Screening of metal-modified biochars for practical phosphorus recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177342. [PMID: 39500445 DOI: 10.1016/j.scitotenv.2024.177342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/10/2024]
Abstract
The utilization of metal-modified biochars (MBCs) for practical phosphorus recovery has attracted significant research interest recently. However, the optimal choice of metals and modification methods for MBCs remains unclear. This study addresses this gap by comparing the phosphate adsorption capabilities of various MBCs using real municipal wastewater. The results show that zinc-modified biochar exhibits superior phosphate adsorption compared to biochars modified with calcium, magnesium, aluminum, and iron. Specifically, zinc-modified biochar prepared through metal-mediated biomass pyrolysis with alkaline soaking (ZnBC-OH) demonstrates the highest adsorption capacity, achieving 36.6 mg P/g in wastewater with a phosphate concentration of 5 mg P/L. This performance surpasses that of previously reported non-lanthanide modified biochars and is comparable to lanthanide-modified biochars. Mechanistic investigations reveal that the exceptional performance of ZnBC-OH is due to the presence of highly dispersed ZnO sites, which facilitate the formation of Zn3(PO4)2·4H2O precipitation, effectively retaining phosphate. Furthermore, a techno-economic analysis indicates that using ZnBC-OH in a fixed-bed column system can reduce phosphate levels from 6 mg L-1 to below 0.5 mg L-1 at a cost of 1.834 USD per ton of secondary treated wastewater, underscoring its promising application potential.
Collapse
Affiliation(s)
- Man Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Qian Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Fangxi Xu
- Zhejiang Taizhou Ecological and Environmental Monitoring Center, Taizhou 318000, China
| | - Yan Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiawei Xu
- Jiangsu Key Laboratory of Numerical Simulation of Large Scale Complex Systems and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hai Xiang
- Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Yongfu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, Fujian Province, China.
| | - Bing Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
5
|
Ge H, Chen C, Li S, Guo X, Zhang J, Yang P, Xu H, Zhang J, Wu Z. Photo-induced protonation assisted nano primary battery for highly efficient immobilization of diverse heavy metal ions. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135066. [PMID: 38943880 DOI: 10.1016/j.jhazmat.2024.135066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Highly-stable heavy metal ions (HMIs) appear long-term damage, while the existing remediation strategies struggle to effectively remove a variety of oppositely charged HMIs without releasing toxic substances. Here we construct an iron-copper primary battery-based nanocomposite, with photo-induced protonation effect, for effectively consolidating broad-spectrum HMIs. In FCPBN, Fe/Cu cell acts as the reaction impetus, and functional graphene oxide modified by carboxyl and UV-induced protonated 2-nitrobenzaldehyde serves as an auxiliary platform. Due to the groups and built-in electric fields under UV stimuli, FCPBN exhibits excellent affinity for ions, with a maximum adsorption rate constant of 974.26 g∙mg-1∙min-1 and facilitated electrons transfer, assisting to reduce 9 HMIs including Cr2O72-, AsO2-, Cd2+ in water from 0.03 to 3.89 ppb. The cost-efficiency, stability and collectability of the FCPBN during remediation, and the beneficial effects on polluted soil and the beings further demonstrate the splendid remediation performance without secondary pollution. This work is expected to remove multi-HMIs thoroughly and sustainably, which tackles an environmental application challenge.
Collapse
Affiliation(s)
- Hongjian Ge
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Chaowen Chen
- University of Science and Technology of China, Hefei 230026, People's Republic of China.
| | - Sijia Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xinyue Guo
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jing Zhang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
| | - Pengqi Yang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031
| | - Huan Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031
| | - Jia Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031.
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031.
| |
Collapse
|
6
|
Song H, Chen SF, Si G, Bhatt K, Chen SH, Chen WJ. Removal of environmental pollutants using biochar: current status and emerging opportunities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:384. [PMID: 39167116 DOI: 10.1007/s10653-024-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
In recent times, biochar has emerged as a novel approach for environmental remediation due to its exceptional adsorption capacity, attributed to its porous structure formed by the pyrolysis of biomass at elevated temperatures in oxygen-restricted conditions. This characteristic has driven its widespread use in environmental remediation to remove pollutants. When biochar is introduced into ecosystems, it usually changes the makeup of microbial communities by offering a favorable habitat. Its porous structure creates a protective environment that shields them from external pressures. Consequently, microorganisms adhering to biochar surfaces exhibit increased resilience to environmental conditions, thereby enhancing their capacity to degrade pollutants. During this process, pollutants are broken down into smaller molecules through the collaborative efforts of biochar surface groups and microorganisms. Biochar is also often used in conjunction with composting techniques to enhance compost quality by improving aeration and serving as a carrier for slow-release fertilizers. The utilization of biochar to support sustainable agricultural practices and combat environmental contamination is a prominent area of current research. This study aims to examine the beneficial impacts of biochar application on the absorption and breakdown of contaminants in environmental and agricultural settings, offering insights into its optimization for enhanced efficacy.
Collapse
Affiliation(s)
- Haoran Song
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Guiling Si
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Kalpana Bhatt
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Hua Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Liu X, Han Z, Lin N, Hao Y, Qu J, Gao P, He X, Liu B, Duan X. Immature persimmon residue as a novel biosorbent for efficient removal of Pb(II) and Cr(VI) from wastewater: Performance and mechanisms. Int J Biol Macromol 2024; 266:131083. [PMID: 38531519 DOI: 10.1016/j.ijbiomac.2024.131083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Owing to the powerful affinity of tannin toward heavy metal ions, it is frequently immobilized on adsorbents to enhance their adsorption properties. However, natural adsorbents containing tannin have been overlooked owing to its water solubility. Herein, a novel natural adsorbent based on the immature persimmon residue (IPR) with soluble tannin removed was fabricated to eliminate Pb(II) and Cr(VI) in aquatic environments. The insoluble tannin in IPR endowed it with prosperous properties for eliminating Pb(II) and Cr(VI), and the IPR achieved maximum Pb(II) and Cr(VI) adsorption quantities of 68.79 mg/g and 139.40 mg/g, respectively. Kinetics and isothermal adsorption analysis demonstrated that the removal behavior was controlled by monolayer chemical adsorption. Moreover, the IPR exhibited satisfactory Pb(II) and Cr(VI) removal efficiencies even in the presence of multiple coexisting ions and showed promising regeneration potential after undergoing five consecutive cycles. Additionally, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) analysis unveiled that the elimination mechanisms were primarily electrostatic attraction, chelation and reduction. Overall, the IPR, as a tannin-containing biosorbent, was verified to possess substantial potential for heavy metal removal, which can provide new insights into the development of novel natural adsorbents from the perspective of waste resource utilization.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zixuan Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nan Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuexin Hao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jialin Qu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengcheng Gao
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaohua He
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xuchang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Wang Y, Wang K, Wang X, Zhao Q, Jiang J, Jiang M. Effect of different production methods on physicochemical properties and adsorption capacities of biochar from sewage sludge and kitchen waste: Mechanism and correlation analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132690. [PMID: 37801977 DOI: 10.1016/j.jhazmat.2023.132690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Different pyrolysis methods, parameters and feedstocks result in biochars with different properties, structures and removal capacities for heavy metals. However, the role of each property on adsorption capacity and corresponding causal relationships remain unclear. Here, we investigated various physicochemical properties of biochar produced via three different methods and two different feedstocks to clarify influences of biomass sources and pyrolysis processes on biochar properties and its heavy metal adsorption performance. Experimental results showed biochars were more aromatic and contained more functional groups after hydrothermal carbonization, while they had developed pores and higher surface areas produced by anaerobic pyrolysis. The inclusion of oxygen resulted in more complete carbonization and higher CEC biochar. Different biochar properties resulted in different adsorption capacities. Biochar produced by aerobic calcination showed higher adsorption efficiency for Cu and Pb. Correlation analysis proved that pH, cation exchange capacity and degree of carbonization positively affected adsorption, while organic matter content and aromaticity were unfavorable for adsorption. Microstructure and components determined biochar macroscopic properties and ultimate adsorption efficiency for metal ions. This study identifies the degree of correlation and pathways of each property on adsorption, which provides guidance for targeted modification of biochar to enhance its performance in heavy metal removal.
Collapse
Affiliation(s)
- Yipeng Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuchan Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Miao Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
9
|
Zhang X, Xue J, Han H, Wang Y. Study on improvement of copper sulfide acid soil properties and mechanism of metal ion fixation based on Fe-biochar composite. Sci Rep 2024; 14:247. [PMID: 38167927 PMCID: PMC10762084 DOI: 10.1038/s41598-023-46913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024] Open
Abstract
In this study, Fe modification of bamboo biochar (BC) with ferrate was used to construct a composite soil amendment based on K2FeO4-biochar (Fe-BC) system. Based on soil culture experiments, Fe-BC combined with organic-inorganic materials at the application levels of 3%, 5% and 10% to copper sulfide contaminated acid soil was studied. Adsorption kinetics experiment was used to investigate the adsorption capacity of Fe-modified biochar to heavy metal Cu. The results showed that the pH value of bamboo biochar could be increased by 1.12 units after K2FeO4 modification. Compared with the BC, the adsorption capacity of Cu2+ increased from 190.48 to 276.12 mg/g, which was mainly reflected in single-layer surface adsorption and chemisorption. Pore diffusion, electrostatic interaction and surface interaction are the possible mechanisms of Fe-BC interaction with Cu2+ ions. And the contents of Pb, Cu and Zn in soil leaching state decreased by 59.20%, 65.88% and 57.88%, respectively, at the 10% application level of Fe-BC. In general, the composite modifier based on ferrate and biochar has a positive effect on improving the characteristics of acidic soil in copper mining area.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Jinchun Xue
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China.
| | - Huaqin Han
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Yu Wang
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| |
Collapse
|
10
|
Zhang C, Yang D, Liu W, Dong Y, Zhang L, Lin H. Insight into the impacts of pyrolysis time on adsorption behavior of Pb 2+ and Cd 2+ by Mg modified biochar: Performance and modification mechanism. ENVIRONMENTAL RESEARCH 2023; 239:117215. [PMID: 37813135 DOI: 10.1016/j.envres.2023.117215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Co-pyrolysis biomass and alkaline metals can effectively improve the adsorption performance of heavy metals (HM). Nevertheless, the researchers have ignored the relationship between the change of alkaline metal morphology and adsorption during pyrolysis. In this article, according to control the pyrolysis time (30, 60, and 180 min) synthesized Magnesium (Mg) modified biochar (MBCX) by using MgCl2·6H2O and soybean straw under 400 °C. The sorption capacities of MBC60 and MBC180 for Pb2+/Cd2+ increased by 38.65%/213.29%, 44.57%/230.36%, and the selectivity coefficient of Pb2+/Cd2+ increased by 113.28%/209.49%, 213.58%/253.62%, respectively, compared with MBC30. Additionally, the characterization results demonstrated that MgO dominated the surface phases of MBC60 and MBC180, whereas MgCl2 dominated the surface phases of MBC30. Moreover, according to the results of DFT calculation, the adsorption energy (Eads) of MgO for Pb2+ (-0.537 eV) and Cd2+ (-0.347 eV) was lower than that of MgCl2 (Pb2+: 0.37 eV, Cd2+: -0.185 eV), so that, MBC60 and MBC180 had higher sorption capacities for Pb2+ and Cd2+ than MBC30. Therefore, this work provides a new sight to clear the mechanism for modified biochar by alkali metal oxide and practical and theoretical guidance for adsorbent preparation with high adsorption ability for HMs.
Collapse
Affiliation(s)
- Conghui Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongsheng Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Liping Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
11
|
Zhang L, Hu J, Li C, Chen Y, Zheng L, Ding D, Shan S. Synergistic mechanism of iron manganese supported biochar for arsenic remediation and enzyme activity in contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119127. [PMID: 37797510 DOI: 10.1016/j.jenvman.2023.119127] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
This study prepared and characterized bamboo-derived biochar loaded with different ratios of iron and manganese; evaluated its remediation performance in arsenic-contaminated soil by studying the changes in various environmental factors, arsenic speciation, and arsenic leaching amount in the soil after adding different materials; proposed the optimal ratio and mechanism of iron-manganese removal of arsenic; and explained the multivariate relationship between enzyme activity and soil environmental factors based on biological information. Treatment with Fe-Mn-modified biochar increased the organic matter, cation exchange capacity, and N, P, K, and other nutrient contents. During the remediation process, O-containing functional groups such as Mn-O/As and Fe-O/As were formed on the surface of the biochar, promoting the transformation of As from the mobile fraction to the residual fraction and reducing the phytotoxicity of As, and the remediation ability for As was superior to that of Fe-modified biochar. Mn is indispensable in the FeMn-BC synergistic remediation of As, as it can increase the adsorption sites and the number of functional groups for trace metals on the surface of biochar. In addition to electrostatic attraction, the synergistic mechanism of ferromanganese-modified biochar for arsenic mainly involves redox and complexation. Mn oxidizes As(Ⅲ) to more inert As(V). In this reaction process, Mn(Ⅳ) is reduced to Mn(Ⅲ) and Mn(II), promoting the formation of Fe(Ⅲ) and the conversion of As into Fe-As complexes, while As is fixed due to the formation of ternary surface complexes. Moreover, the effect of adding Fe-Mn-modified biochar on soil enzyme activity was correlated with changes in soil environmental factors; catalase was correlated with soil pH; neutral phosphatase was correlated with soil organic matter; urease was correlated with ammonia nitrogen, and sucrase activity was not significant. This study highlights the potential value of FM1:3-BC as a remediation agent in arsenic-contaminated neutral soils.
Collapse
Affiliation(s)
- Liqun Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| | - Jie Hu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| | - Chang Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| | - Yeyu Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China.
| | - Dan Ding
- Anhui General Industrial Solid Waste Disposal and Resource Utilization Engineering Research Center, Tongling 244000, China
| | - Shifeng Shan
- Anhui General Industrial Solid Waste Disposal and Resource Utilization Engineering Research Center, Tongling 244000, China
| |
Collapse
|
12
|
Zhang H, Zhong W, Qiu R, Han L. Kinetics and modeling of Pb (II) adsorption in pellet biochar based on micro-computed tomography characterization. BIORESOURCE TECHNOLOGY 2023; 387:129645. [PMID: 37558105 DOI: 10.1016/j.biortech.2023.129645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Biochar, a cost-effective adsorbent for the removal of heavy metals from aqueous solutions, has gained increasing attention. In this study, an advanced micro-computed tomography (micro-CT) system was used to investigate the adsorption kinetics by direct localization and visualization of Pb (II) on wheat straw pellet biochar. The normalized digital images indicating the dynamic changes of Pb (II) adsorption on biochar samples at different initial Pb (II) concentrations of 100, 200, 300, and 400 mg/L and adsorption times were obtained. It was found that image grayscale (GS) changes over adsorption time (t) followed the power function, GSe/GSt=2.45∗t-0.27. Based on this finding, modified pseudo-first-order (PFO) and pseudo-second-order (PSO) models incorporated with time-dependent kinetic constants kPFOt=KPFO∗GSe/GSt and kPSOt=KPSO∗GSe/GSt were proposed, resulting in a better interpretation of the adsorption mechanism. The micro-CT-guided novel approach demonstrated visual evidence-based superiority and should prove valuable to the existing body of research in related fields.
Collapse
Affiliation(s)
- Hehu Zhang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Weizheng Zhong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Rongbin Qiu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing 100083, China.
| |
Collapse
|
13
|
Tian B, Wu N, Liu M, Wang Z, Qu R. Promoting Effect of Silver Oxide Nanoparticles on the Oxidation of Bisphenol B by Ferrate(VI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15715-15724. [PMID: 37807513 DOI: 10.1021/acs.est.3c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Bisphenol B (BPB, 2,2-bis(4-hydroxyphenyl) butane), as a substitute for bisphenol A, has been widely detected in the environment and become a potential threat to environmental health. This work found that silver oxide nanoparticles (Ag2O) could greatly promote the removal of BPB by ferrate (Fe(VI)). With the presence of 463 mg/L Ag2O, the amount of Fe(VI) required for the complete removal of 10 μM BPB will be reduced by 70%. Meanwhile, the recyclability and stability of Ag2O have been verified by recycling experiments. The characterization results and in situ electrochemical analyses showed that Ag(II) was produced from Ag(I) in the Fe(VI)-Ag2O system, which has a higher electrode potential to oxidize BPB to enhance its removal. A total of 13 intermediates were identified by high-resolution mass spectrometry, and three main reaction pathways were proposed, including oxygen transfer, bond breaking, and polymerization. Based on the toxicity assessment through the ECOSAR program, it is considered that the presence of Ag2O reduced the toxicity of BPB oxidation intermediates to aquatic organisms. These results would deepen our understanding of the interaction between Fe(VI) and Ag2O, which may provide an efficient and environmentally friendly method for water and wastewater treatment.
Collapse
Affiliation(s)
- Bingru Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Mingzhu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
14
|
Wang Y, Xiao Z, Liu Y, Tian W, Huang Z, Zhao X, Wang L, Wang S, Ma J. Enhanced ferrate(VI) oxidation of organic pollutants through direct electron transfer. WATER RESEARCH 2023; 244:120506. [PMID: 37651863 DOI: 10.1016/j.watres.2023.120506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Fe(VI) is a versatile agent for water purification, and various strategies have been developed to improve its pollutant removal efficiency. Herein, it was found that in addition to intermediate iron species [Fe(IV)/Fe(V)], direct electron transfer (DET) played a significant role in the abatement of organic pollutants in Fe(VI)/carbon quantum dots (CQDs) system. Around 86, 83, 73, 64, 52, 45 and 17% of BPA, DCF, SMX, 4-CP, phenol, p-HBA, and IBP (6 μM) could be oxidized by 30 μM of Fe(VI), whereas with the addition of CQDs (4 mg/L), the oxidation ratio of these pollutants increased to 98, 99, 80, 88, 87, 66 and 57%, respectively. The negative impact induced by solution pH and background constituents on Fe(VI) abatement of pollutants could be alleviated by CQDs, and CQDs acted as catalysts for mediating DET from organic pollutants to Fe(VI). Theoretical calculation revealed that iron species [Fe(VI)/Fe(V)/Fe(IV)] was responsible for the oxidation of 36% of phenol, while DET contributed to the oxidation of 64% of phenol in the Fe(VI)/CQDs system. Compared with iron species oxidation, the CQDs mediated DET from pollutants to Fe(VI) was more efficient for utilizing the oxidation capacity of Fe(VI). The DET mechanism presented in the study provides a prospective strategy for improving the pollution control potential of Fe(VI).
Collapse
Affiliation(s)
- Yunpeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zijun Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yulei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zhuangsong Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaona Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
15
|
Wang H, Duan R, Ding L, Tian L, Liu Y, Zhang Y, Xu R. Magnetic hydrochar derived from waste lignin for thallium removal from wastewater: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2023; 374:128736. [PMID: 36791975 DOI: 10.1016/j.biortech.2023.128736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Waste lignin, such as black liquor (BL) from paper and pulping industries, is an agro-industrial biowaste while its reuse raised global concerns. In this work, a hydrothermal carbonization procedure was employed to convert BL into magnetic lignin-based hydrochar (MLHC) for thallium elimination from wastewater. The results exhibited water purification potential due to a wider working pH window (2-9) with the magnetization intensity of 11.12 emu/g. The maximum adsorption capacity for Tl(III) was 278.9 mg/g, while the contribution of various mechanisms was elucidated with the order: surface precipitation (31.3 %), complexation (20.6 %), physical adsorption (18.2 %), chemical reduction (15.0 %), and ion exchange (14.9 %). This study revealed that hydrothermal treatment could be a potential and promising method to convert waste lignin into magnetic bio-adsorbent to recycle pulping black liquor and apply it for thallium pollution control.
Collapse
Affiliation(s)
- Huabin Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Ran Duan
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Lin Ding
- National-Local Joint Engineering Research Center for Heavy Metal Pollutant Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Lin Tian
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Ying Liu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Yong Zhang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Rui Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China.
| |
Collapse
|
16
|
He H, Wang L, Liu Y, Qiu W, Liu Z, Ma J. Improvement of Fe(VI) oxidation by NaClO on degrading phenolic substances and reducing DBPs formation potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161080. [PMID: 36574852 DOI: 10.1016/j.scitotenv.2022.161080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Ferrate(VI) is a green oxidant and can effectively oxidize micropollutants. However, the instability of Fe(VI), i.e., self-decomposition, in the aqueous solution limited its application. Herein, it was found that the degradation of phenolic substances had been substantially improved through the combination of Fe(VI) with NaClO. At the condition of pH 8.0, 50 μM of Fe(VI) degraded 18.66 % of BPA (bisphenol A) at 0.5 min or 21.67 % of phenol at 2 min. By contrast, Fe(VI)/NaClO (50/10 μM) oxidized 38.21 % of BPA at 0.5 min or 38.08 % of phenol at 2 min with a synergistic effect. At the end of the reaction, the concentration of Fe(VI) in Fe(VI)/NaClO (50/10 μM) was 28.97 μM for BPA degradation, higher than the 25.62 μM of Fe(VI) group. By active species analysis, intermediate iron species [i.e., Fe(V) and Fe(IV)] played a vital role in the synergistic effect in Fe(VI)/NaClO system, which would react with the applied NaClO to regenerate Fe(VI). In natural water, the Fe(VI)/NaClO could also degrade phenolic substances of natural organic matter (NOM). Although the NaClO reagent was applied, disinfection by-products (DBPs) formation potential decreased by 22.75 % of the raw sample after Fe(VI)/NaClO treatment. Significantly, THMs, mainly caused by phenolic substances of NOM, even declined by 29.18 % of raw sample. Based on that, this study explored a novel ferrate(VI) oxidation system using the cheap NaClO reagent, which would present a new insight on ferrate(VI) application.
Collapse
Affiliation(s)
- Haiyang He
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Lu Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Yulei Liu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| | - Zhicen Liu
- School of Geosciences, The University of Edinburgh, Edinburgh EH8 9JU, United Kingdom of Great Britain and Northern Ireland
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| |
Collapse
|
17
|
Wang FP, Zeng YN, Wang YT, Li JG, Zhang X, Ji AM, Kang LL, Ji R, Yu Q, Gao D, Wang XM, Fang Z. Highly efficient removal of hexavalent chromium by magnetic Fe-C composite from reed straw and electric furnace dust waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33737-33755. [PMID: 36495434 DOI: 10.1007/s11356-022-24491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Reed straw and electric furnace dust (EFD) waste were used to prepare magnetic Fe-C composite (EFD&C) by co-precipitation and high-temperature activation method to remove Cr(VI) from water. The magnetic EFD&C owned a large specific surface (536.61 m2/g) and a porous structure (micropores and mesopores), and had an efficient removal capacity for Cr(VI). Under conditions of pH (2), the addition amount of EFD&C (1 g/L), the adsorption time (760 min), and the temperature (45 °C), the maximum adsorption capacity reached 111.94 mg/g. The adsorption mechanism mainly attributed to chemical adsorption (redox), Cr(VI) reduced to Cr(III) by Fe(II) and Fe(0) (from Fe3O4 and Fe components in EFD) and surface functional groups of -OH, C = C, C-C and O-C = O (from biochar), and secondary attributed to physical adsorption, Cr(VI) and Cr(III) (from reduced Cr(VI)) adsorbed into the porous structure of EFD&C. This study provided a feasible solution for the preparation of adsorbents for adsorbing heavy metals from iron-containing metallurgical solid waste and biomass waste, which contributed to reducing the environmental pollution and lowering the cost of adsorbent preparation.
Collapse
Affiliation(s)
- Fu-Ping Wang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Ya-Nan Zeng
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Yi-Tong Wang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China.
| | - Jun-Guo Li
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Xi Zhang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Ai-Min Ji
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Le-Le Kang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Rui Ji
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Qing Yu
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Di Gao
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Xiao-Man Wang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan, 063210, China
| | - Zhen Fang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, 210031, China
| |
Collapse
|
18
|
He H, Liu Y, Wang L, Qiu W, Liu Z, Ma J. Novel activated system of ferrate oxidation on organic substances degradation: Fe(VI) regeneration or Fe(VI) reduction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Dai M, Luo Z, Luo Y. Indirect spectrophotometric determination of aqueous ferrate(VI) based on its reaction with iodide in acidic media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121301. [PMID: 35512526 DOI: 10.1016/j.saa.2022.121301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Ferrate(VI) (Fe(VI)) is utilized as an efficient and environmentally friendly water treatment agent that can be widely used for degradation of (in)organic pollutants in practical applications. However, only a few spectrophotometric methods for Fe(VI) determination were reported. In this study, a novel method for determining trace levels of aqueous Fe(VI) was developed based on the fact that Fe(VI) reacts with iodide at acidic pH to form iodine, which subsequently is treated with starch to yield the blue starch-iodine complex measured spectrophotometrically at 590 nm. The key measurement parameters, including acidic medium, starch dosages, temperature, time, and addition order were optimized to improve the sensitivity of detection. The increase in absorbance at 590 nm was linear with respect to Fe(VI) added (0.022-50 µM). Its sensitivity was determined as (4.61 ± 0.05) × 104 M-1 cm-1, which was higher than that of existing spectrophotometric methods. The principle for Fe(VI) determination was studied by investigating stoichiometry, kinetics, and mechanism of Fe(VI) reaction with iodide. The molar stoichiometry of Fe(VI) with I3- species was determined to be 1:2. The reaction of Fe(VI) with iodide followed a second-order rate law with first order in each reactant and displayed apparent anti-Arrhenius kinetics, then its reaction pathway was proposed as well. Furthermore, the established method was successfully applied to measure Fe(VI) in various environmental water samples. The results show that the proposed approach is simple, convenient, highly reproducible and extremely sensitive, and is also expected to be of use for kinetic studies of Fe(VI) reaction with (in)organic compounds under acidic conditions.
Collapse
Affiliation(s)
- Mei Dai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Zhiyong Luo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; National-Local Joint Engineering Laboratory of Chemical Process Strengthening and Reaction, Chongqing University, Chongqing 401331, China.
| | - Yiwen Luo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
20
|
Wang H, Chen Q, Liu R, Zhang Y, Zhang Y. Synthesis and application of starch-stablized Fe-Mn/biochar composites for the removal of lead from water and soil. CHEMOSPHERE 2022; 305:135494. [PMID: 35764108 DOI: 10.1016/j.chemosphere.2022.135494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Starch-stablized and Fe/Mn bimetals modified biochar derived from corn straw (SFM@CBC and SFM@CBC-350) were firstly prepared, characterized (FTIR, XRD, SEM, EDS, BET and XPS), and applied in Pb removal from water and soil. SFM@CBC and SFM@CBC-350 displayed highly effective adsorption performance of Pb2+ from wastewater with the maximum adsorption capacity of 170.91 mg g-1 and 190.17 mg g-1, respectively, which were much greater than that of FM@CBC (149.25 mg g-1) and CBC (101.10 mg g-1). Studies of adsorption kinetics, isotherms and thermodynamics indicated that the absorption of Pb2+ by SFM@CBC and SFM@CBC-350 was spontaneous and endothermic reaction, and it was controlled by monolayer chemisorption. The mechanism studies indicated that Pb2+ removal involved with multiple mechanism, including complexation (dominant process confirmed by XPS analysis), physical adsorption, electrostatic attraction, and cation exchange. The reusability test demonstrated that SFM@CBC and SFM@CBC-350 had very good stability and reusability. In addition, in order to further explore Pb removal performance of the modified biochar, SFM@CBC-350 was used in soil-ryegrass pot systems. Compared with the controls, the addition of SFM@CBC-350 reduced Pb content in soil and ryegrass, increased the biomass and total chlorophyll content, reduced the activity of antioxidant enzymes (CAT, SOD, MDA and POD) and ROS fluorescence intensity of ryegrass, thus alleviating Pb stress of ryegrass. Besides, the addition of SFM@CBC-350 could increase the richness and diversity of soil microorganisms, which was beneficial to the growth of ryegrass. Hence, SFM@CBC-350 has the potential of being used as a green, efficient and promising adsorbent in Pb removal from wastewater and soil.
Collapse
Affiliation(s)
- Hai Wang
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China; Jianhu Provincial Wetland Park Management Committee, Shaoxing, 312000, Zhejiang, PR China.
| | - Qian Chen
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China
| | - Renrong Liu
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China
| | - Yichan Zhang
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, PR China
| | - Yaohong Zhang
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China.
| |
Collapse
|
21
|
Yu D, Niu J, Zhong L, Chen K, Wang G, Yan M, Li D, Yao Z. Biochar raw material selection and application in the food chain: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155571. [PMID: 35490824 DOI: 10.1016/j.scitotenv.2022.155571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
As one of the largest carbon emitters, China promises to achieve carbon emissions neutrality by 2060. Various industries are developing businesses to reduce carbon emissions. As an important greenhouse gas emissions scenario, the reduction of carbon emissions in the food chain can be achieved by preparing the wastes into biochar. The food chain, as one of the sources of biochar, consists of production, processing and consumption, in which many wastes can be transferred into biochar. However, few studies use the food chain as the system to sort out the raw materials of biochar. A systematic review of the food chain application in serving as raw materials for biochar is helpful for further application of such technique, providing supportive information for the development of biochar preparation and wastes treating. In addition, there are many pollution sources in the food production process, such as agricultural contaminated soil and wastewater from livestock and aquatic, that can be treated on-site to achieve the goal of treating wastes with wastes within the food chain. This study focuses on waste resource utilization and pollution remediation in the food chain, summarizing the sources of biochar in the food chain and analyzing the feasibility of using waste in food chain to treat contaminated sites in the food chain and discussing the impacts of the greenhouse gas emissions. This review provides a reference for the resource utilization of waste and pollution reduction in the food chain.
Collapse
Affiliation(s)
- Dayang Yu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Jinjia Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Longchun Zhong
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Kaiyu Chen
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Guanyi Wang
- State Grid UHV Engineering Construction Company, Beijing 100052, China
| | - Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
22
|
Removal of Phosphate from Aqueous Solution by Zeolite-Biochar Composite: Adsorption Performance and Regulation Mechanism. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Recently, rampant eutrophication induced by phosphorus enrichment in water has been attracting attention worldwide. However, the mechanisms by which phosphate can be eliminated from the aqueous environment remain unclear. This study was aimed at investigating the adsorption performance and regulation mechanisms of the zeolite-biochar composite for removing phosphate from an aqueous environment. To do this, physicochemical properties of the zeolite-biochar composite were assessed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) specific surface area (SSA) analyzer, and transmission electron microscopy (TEM). Adsorption tests were performed to evaluate the adsorption ability of the composite material for mitigating excess phosphorus in the aqueous environment. The findings evinced that the phosphorus removed by PZC 7:3 (pyrolyzed zeolite and corn straw at a mass ratio of 7:3) can reach 90% of that removed by biochar. The maximum adsorption capacities of zeolite, biochar, and PZC 7:3 were 0.69, 3.60, and 2.41 mg/g, respectively. The main mechanism of phosphate removal by PZC 7:3 was the formation of thin-film amorphous calcium-magnesium phosphate compounds through ligand exchange. This study suggests that PZC 7:3 is a viable adsorbent for the removal of phosphate from aquatic systems.
Collapse
|
23
|
Majid D, Kim IK, Laksono FB, Prabowo AR. Oxidative Degradation of Hazardous Benzene Derivatives by Ferrate(VI): Effect of Initial pH, Molar Ratio and Temperature. TOXICS 2021; 9:toxics9120327. [PMID: 34941761 PMCID: PMC8703300 DOI: 10.3390/toxics9120327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022]
Abstract
Two of the most hazardous benzene derivatives (HBD) that have polluted the aquatic environment are bromobenzene and chlorobenzene. Ferrate can degrade various pollutants quickly and efficiently without producing harmful byproducts. This study aims to determine the ability of ferrate to degrade harmful contaminants such as bromobenzene and chlorobenzene. A series of batch experiments were carried out, including for the molar ratio, initial pH solution, and temperature. The study was conducted at an initial pH of 3.6 to 9.6, a molar ratio of 2 to 8 and a temperature of 15 to 55 °C. The study will also examine the differences in functional groups in these pollutants. As a result of the experiments, the optimum conditions to oxidize HBD in a batch reactor was found to have an initial pH of 7.0, a molar ratio of 8, and a temperature of 45 °C, with a 10 min reaction time. Ferrate has a degradation ability against chlorobenzene greater than bromobenzene. The functional cluster in pollutants also significantly affects the degradation ability of ferrate. The results of the degradation experiment showed that ferrate(VI) could effectively oxidize hazardous benzene derivatives in a solution.
Collapse
Affiliation(s)
- Dian Majid
- Department of Environmental Engineering, Universitas PGRI Adi Buana Surabaya, Surabaya 60234, Indonesia;
| | - Il-Kyu Kim
- Department of Environmental Engineering, Pukyong National University, Busan 48513, Korea;
| | | | - Aditya Rio Prabowo
- Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia
- Correspondence:
| |
Collapse
|