1
|
Xia Y, Chen X, Jiang X, Shen J. Enhanced denitrification under saline Conditions: Glycine betaine as a key osmoprotectant. BIORESOURCE TECHNOLOGY 2025; 429:132517. [PMID: 40222492 DOI: 10.1016/j.biortech.2025.132517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Biological denitrification is significantly inhibited by salinity, which adversely affects microbial activity and reduces efficiency. This study aimed to evaluate the impact of salinity on denitrification performance and assess the potential of glycine betaine (GB) as an osmotic pressure regulator and protective agent. Results indicated that under the optimal conditions, including an influent nitrate concentration of 51.03 mg L-1, C/N ratio of 5.42, pH value of 8.95, and salinity of 1.05 %, the nitrate removal efficiency was predicted to reach 100 %. However, a sharp decline (56.09 ± 4.52 %) in nitrate removal efficiency occurred when salinity increased from 0 % to 3 % within the initial 6 h. This inhibition was mitigated by adding 25 mg L-1 GB, which enhanced nitrate removal efficiency by 2.19 times. GB promoted the secretion of extracellular polymeric substances (EPS), especially polymeric protein, a critical contributor to salinity resistance. Metagenomics analysis revealed that GB improved denitrification process by upregulating key genes involved in nitrogen and carbon metabolism. Furthermore, the relative abundance of Na+ transporter genes, K+ transporter genes, and GB absorption and synthesis genes rose with GB addition, underscoring the indispensable role of GB in alleviating osmotic stress and accelerating microbial metabolism. These findings emphasize the detrimental effects of salinity on denitrification and demonstrate the potential of GB as an osmoprotectant, enabling efficient nitrogen removal under saline conditions.
Collapse
Affiliation(s)
- Yan Xia
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xinrong Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xinbai Jiang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| |
Collapse
|
2
|
Xian Y, Cao L, Lu Y, Li Q, Su C, He Y, Zhou G, Chen S, Gao S. Metagenomics and metaproteomics reveal the effects of sludge types and inoculation modes on N,N-dimethylformamide degradation pathways and the microbial community involved. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136548. [PMID: 39566459 DOI: 10.1016/j.jhazmat.2024.136548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
This study demonstrated the effects of the sludge type and inoculation method on the N,N-dimethylformamide degradation pathway and associated microbial communities. The sludge type is critical for DMF metabolism, with acclimatized aerobic sludge having a significant advantage in terms of DMF metabolism performance, whereas acclimatized anaerobic sludge has a reduced DMF metabolism capacity. Metagenomic revealed increased abundances of Methanosarcina, Pelomona and Xanthobacter in the adapted anaerobic sludge, suggesting that anaerobic sludge can utilize the methyl products produced by DMF metabolism for growth. Adapted aerobic sludge had high Mycobacterium abundance, significantly boosting DMF hydrolysis. In addition, a large number of dmfA2 genes were found in aerobic sludge, more so in acclimatized sludge, indicating stronger DMF metabolism. Conversely, acclimatized anaerobic sludge showed lower abundance of dmd-tmd and mauA/B, qhpA genes, implying long-term DMF toxicity reduced anaerobic microbial activity. Metaproteomic analysis showed that Methanosarcina and Methanomethylovorans enzymes in anaerobic sludge metabolized dimethylamine and methylamine to methane, aiding DMF degradation. In the aerobic sludge, aminohydrolase proteins, which hydrolyze DMF, were significantly upregulated. These findings provide insights into DMF wastewater treatment.
Collapse
Affiliation(s)
- Yunchuan Xian
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China
| | - Linlin Cao
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China
| | - Yuxiang Lu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China.
| | - Qiuhong Li
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China.
| | - Yuan He
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China
| | - Guangrong Zhou
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China
| | - Shenglong Chen
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China
| | - Shu Gao
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), 15 Yucai Road, 541004, PR China
| |
Collapse
|
3
|
Gao R, Jin H, Dong J, Zheng Y, Han M, Lou J. Low-intensity ultrasound combined with inert particles to improve denitrifying flocculated sludge performance and resulting granulation mechanism. BIORESOURCE TECHNOLOGY 2025; 415:131724. [PMID: 39477160 DOI: 10.1016/j.biortech.2024.131724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
To enhance the understanding of flocculated sludge granulation, this study focused on a bacterial denitrification system using low-intensity ultrasound and inert particles to stimulate cell activity and facilitate flocculated sludge granulation. After 75 days, the activated carbon, activated carbon + ultrasonication, and microplastic + ultrasonication groups showed partial pelletization. Both ultrasound and inert particles promoted extracellular polymeric substance secretion and enhanced electron transport system activity. Low-intensity ultrasound improved denitrification performance and enhanced denitrifying bacteria. The addition of inert materials facilitated denitrifying flocculated sludge granulation. Low-intensity ultrasound combined with microplastics obtained the highest activity and enrichment of denitrifying bacteria in granular sludge. This study provides new ideas for optimizing anaerobic sludge granulation.
Collapse
Affiliation(s)
- Ran Gao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hao Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Junlan Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yiru Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Mengru Han
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Juqing Lou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
4
|
Huang Z, Yi G, Wang Q, Wang S, Xu Q, Huan C, Wang Y, Zhang W, Wang A, Liu W. Improving microbial activity in high-salt wastewater: A review of innovative approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176278. [PMID: 39278494 DOI: 10.1016/j.scitotenv.2024.176278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The Zero discharge technology has become an important pathroute for sustainable development of high salt wastewater treatment. However, the cohabitation of organic and inorganic debris can cause serious problems such membrane clogging and the formation of hazardous impurity salts that further restrict the recovery of all salt varieties by evaporating and crystallizing. In highly salinized wastewater, biological treatments offer advantages in terms of cost and sustainability when used as a pre-treatment step to eliminate organic debris. On the other hand, high salinity is always a major obstacle to microbial diversity, abundance, and activity, which can result in low organic matter removal effectiveness or the failure of the microbial treatment system. Biofortification techniques can attenuate the negative effects of salt stress and other unfavourable conditions on microorganisms, while the regulation mechanisms of microbial and community collaboration by fortification methods have been an open question. Therefore, a comprehensive summary of the types, mechanisms, and effects of the major biofortification techniques is proposed. This review dialyzes the characteristics and sources of hypersaline wastewater and the main treatment methods. Then, the mechanisms of microbial salt tolerance are summarized and discussed based on microbial characteristics and the protective effects provided by the processes. Finally, the research and application of the main bioaugmentation methods are developed in detail, describing the characteristics, advantages and disadvantages of the different enhancement methods in their implementation. This review provides a more comprehensive perspective on the future engineering applications of bioaugmentation technology, and explores in depth the possibilities of applying biological methods to high-salinity wastewater treatment.
Collapse
Affiliation(s)
- Zongyi Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Genping Yi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiandi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sihui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiongying Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Changan Huan
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yuqi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenzhe Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; China Testing & Certification International Group Co.,Ltd., Beijng 100024, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
5
|
Yang G, Luo Y, Bian Y, Chen X, Chen L, Huang X. Electro-mediated cathodic oxygen drives respiration chain electron transfer of electroactive bacteria to enhance refractory organic biological oxidation. WATER RESEARCH 2024; 268:122585. [PMID: 39378747 DOI: 10.1016/j.watres.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
In electro-mediated biological system (EMBS), biological anode and cathode components were incorporated into an anaerobic bioreactor, providing a small amount of oxygen to the cathode as an electron acceptor. Oxygen diffusion also impacts the anode's anaerobic ecological environment. This study unraveled how oxygen influences the metabolism and electron transport chain during the biological oxidation of refractory organics. Under the influence of electromotive force, the straight-chain model pollutant N,N-dimethylformamide (DMF) showed rapid degradation and better ammonification, with maximum rates reaching 0.53 h-1 and 26.6 %, respectively. Elevated electromotive force promoted the enrichment of functional electroactive bacteria on the anode and enhanced the availability of electron storage sites, thereby facilitating electron transfer at the anode-biofilm interface. Conversely, the anodic micro-aerobic environment disrupted the anaerobic microbial community structure, and the competitive interactions among fermentative bacteria and electroactive bacteria inhibited DMF degradation. Metagenomic analysis confirmed that cathodic oxygen up-regulated the pyruvate metabolism and the tricarboxylic acid (TCA) cycle to generate NADH and synthesize ATP. The electromotive force induced by cathodic oxygen accelerated the electron transfer in respiratory chains of electroactive bacteria, driving the oxidation of NADH and enhancing the degradation of organics. This study improves our understanding of the regulatory mechanisms governing metabolic pathways under the influence of cathodic oxygen. It offers potential for developing more efficient EMBS in industrial wastewater pretreatment, ensuring that oxygen is prevented from diffusing to the anode during micro-aeration at the cathode.
Collapse
Affiliation(s)
- Guang Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yudong Luo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanhong Bian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xi Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lu Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Li C, Chen R, Ouyang W, Xue C, Liu M, Liu H. The response of C/N/S cycling functional microbial communities to redox conditions in shallow aquifers using in-situ sediment as bio-trap matrix. ENVIRONMENTAL TECHNOLOGY 2024; 45:3666-3678. [PMID: 37323025 DOI: 10.1080/09593330.2023.2225704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Microbial communities are fundamental components driving critical biogeochemical carbon (C), nitrogen (N) and sulfur (S) cycles in groundwater ecosystems. The reduction-oxidation (redox) potential is one important environmental factor influencing the microbial community composition. Here, we developed a bio-trap method using in-situ sediment as a matrix to collect aquifer sediment samples and evaluate the response of microbial composition and C/N/S cycling functions to redox variations created by providing sole O2, joint O2 and H2, and sole H2 to three wells. Illumina sequencing analyses showed that the microbial communities in the bio-trap sediment could respond quickly to redox changes in the wells, demonstrating that this bio-trap method is promising for detecting microbial variation in the aquifer sediment. The microbial metabolic functions related to C, N and S cyclings and organic pollutants degradation were predicted by the Kyoto Encyclopedia of Genes and Genomes (KEGG) approach. It was found that the joint O2 and H2 injection produced medium oxidation-reduction potential (ORP -346 and -614 mV) and enhanced more microbial functions than sole O2 or H2, which mainly include oxidative phosphorylation, most carbon source metabolism, various pollutants degradation, and nitrogen and sulfur metabolism. Moreover, the functional genes encoding phenol monooxygenase, dioxygenase, nitrogen fixation, nitrification, aerobic and anaerobic nitrate reductase, nitrite reductase, nitric oxide reductase, and sulfur oxidation increased. These findings tell us the contaminant bioremediation and N, S metabolism can be promoted by adjusting ORP realised by injecting joint O2 and H2.
Collapse
Affiliation(s)
- Cui Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, People's Republic of China
- Hubei Ecology Polytechnic College, Wuhan, People's Republic of China
| | - Rong Chen
- School of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, People's Republic of China
| | - Weiwei Ouyang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, People's Republic of China
| | - Chen Xue
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, People's Republic of China
| | - Minghui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, People's Republic of China
| | - Hui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, People's Republic of China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
| |
Collapse
|
7
|
Lv L, Chen J, Wei Z, Hao P, Wang P, Liu X, Gao W, Sun L, Liang J, Ren Z, Zhang G, Li W. A new strategy for accelerating recovery of anaerobic granular sludge after low-temperature shock: In situ regulation of quorum sensing microorganisms embedded in polyvinyl alcohol sodium alginate. BIORESOURCE TECHNOLOGY 2024; 401:130709. [PMID: 38636877 DOI: 10.1016/j.biortech.2024.130709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Low-temperature could inhibit the performance of anaerobic granular sludge (AnGS). Quorum sensing (QS), as a communication mode between microorganisms, can effectively regulate AnGS. In this study, a kind of embedded particles (PVA/SA@Serratia) based on signal molecule secreting bacteria was prepared by microbial immobilization technology based on polyvinyl alcohol and sodium alginate to accelerate the recovery of AnGS system after low temperature. Low-temperature shock experiment verified the positive effect of PVA/SA@Serratia on restoring the COD removal rate and methanogenesis capacity of AnGS. Further analysis by metagenomics analysis showed that PVA/SA@Serratia stimulated higher QS activity and promoted the secretion of extracellular polymeric substance (EPS) in AnGS. The rapid construction of EPS protective layer effectively accelerated the establishment of a robust microbial community structure. PVA/SA@Serratia also enhanced multiple methanogenic pathways, including direct interspecies electron transfer. In conclusion, this study demonstrated that PVA/SA@Serratia could effectively strengthen AnGS after low-temperature shock.
Collapse
Affiliation(s)
- Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jiarui Chen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Ziyin Wei
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Peng Hao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jinsong Liang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China.
| |
Collapse
|
8
|
Zhao T, Huang S, Zhang Y, Chow AT, Chen P, Wang Y, Lu Y, Xiong J. Removal of sulfur and nitrogen pollutants in a sediment microbial fuel cell coupled with Vallisneria natans: Efficiency, microbial community structure, and functional genes. CHEMOSPHERE 2024; 354:141667. [PMID: 38485002 DOI: 10.1016/j.chemosphere.2024.141667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
The rapid development of the economy has led to an increase in the sulfur and nitrogen load in surface water, which has the potential to cause river eutrophication and the emission of malodorous gases. A lab-scale sediment microbial fuel cell coupled with Vallisneria natans (P-SMFC) was designed for surface water remediation. The enhancement of pollutant removal performance of P-SMFC was evaluated in contrast to the SMFC system without plants (SMFC), the open-circuit control system with plants (C-P), and the open-circuit control system without plants (C-S), while illustrating the mechanisms of the sulfur and nitrogen transformation process. The results demonstrated that the effluent and sediment of P-SMFC had lower concentrations of sulfide compared to other systems. Furthermore, P-SMFC exhibited higher removal efficiency for COD (73.1 ± 8.7%), NH4+-N (80.5 ± 19.8%), and NO3--N (88.5 ± 11.8%) compared to other systems. The closed-circuit conditions and growth of Vallisneria natans create a favorable ecological niche for functional microorganisms involved in power generation, sulfur oxidation, and nitrogen transformation. Additionally, metagenomic analysis revealed that multifunctional bacteria possessing both denitrification and sulfur oxidation genes, such as Thiobacillus, Dechloromonas, and Bacillus, may play simultaneous roles in metabolizing sulfur and nitrogen, thus serving as integral factors in maintaining the performance of P-SMFC. In summary, these findings provide a theoretical reference for the concurrent enhancement of sulfur and nitrogen pollutants removal in P-SMFC and will facilitate its practical application in the remediation of contaminated surface water.
Collapse
Affiliation(s)
- Tianyu Zhao
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Yongqing Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Alex T Chow
- Earth and Environmental Science Program, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - Pengfei Chen
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Yanling Wang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Yao Lu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
9
|
Wang Y, Cao L, Lu Y, Liao J, Lu Y, Su C, Gao S. Impact analysis of hydraulic residence time and dissolved oxygen on performance efficiency and microbial community in N, N-dimethylformamide wastewater treated by an AnSBR-ASBR. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123326. [PMID: 38195026 DOI: 10.1016/j.envpol.2024.123326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/11/2024]
Abstract
Suitable operating parameters are one of the key factors to efficient and stable biological wastewater treatment of N, N-dimethylformamide (DMF) wastewater. In this study, an improved AnSBR-ASBR reactor (anaerobic sequencing batch reactor, AnSBR, and aerobic SBR, ASBR, run in series) was used to investigated the effects of operating conditions such as hydraulic residence time (HRT), AnSBR stirring speed and ASBR dissolved oxygen (DO) for DMF wastewater treatment. When HRT decreased from 24 h to 12 h, the average removal rates of COD by the AnSBR were 34.59% and 39.54%, respectively. Meanwhile, the removal rate of NH4+-N by ASBR decreased from 88.38% to 62.81%. The DMF removal rate reached the best at 18 h and the expression of dehydrogenase was the highest in the AnSBR. The abundance of Megasphaera, the dominant sugar-degrading bacteria in the AnSBR, continued to decline due to the decrease of HRT. The relative abundance of Methanobacterium gradually increased to 80.2% with the decrease of HRT and that hydrotrophic methanogenesis dominated the methanogenic process. The HRT decrease promoted butyrate and pyruvate metabolism in anaerobic sludge, but the proportion of glycolysis and methane metabolism decreased. The AnSBR-ASBR reactor had the best operation performance when HRT was 18 h, AnSBR speed was 220 r/min, and ASBR DO content was 3-4 mg/L. This study provided an effective reference for the reasonable selection of operating parameters in the treatment of DMF-containing wastewater by the AnSBR-ASBR.
Collapse
Affiliation(s)
- Yuchen Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Linlin Cao
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Yiying Lu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Junjie Liao
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Yuxiang Lu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China.
| | - Shu Gao
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
10
|
Qin R, Dai X, Xian Y, Zhou Y, Su C, Chen Z, Lu X, Ai C, Lu Y. Assessing the effect of sulfate on the anaerobic oxidation of methane coupled with Cr(VI) bioreduction by sludge characteristic and metagenomics analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119398. [PMID: 37897905 DOI: 10.1016/j.jenvman.2023.119398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Methane-driven hexavalent chromium (Cr(VI)) reduction in a microbial fuel cell (MFC) has attracted much attention. However, whether the presence of sulfate (SO42-) affects the reduction of Cr(VI) is still lacking in systematic studies. This study involved constructing a MFC-granular sludge (MFC-GS) coupling system with dissolved methane (CH4) was used as the electron donor to investigate the effect of SO42- on Cr(VI) bioreduction, sludge characteristic, and functional metabolic mechanisms. When the SO42- concentration was 10 mg/L, the average removal rate of Cr(VI) in the anaerobic stage decreased to the lowest value (22.25 ± 2.06%). Adding 10 mg/L SO42- obviously inhibited the electrochemical performance of the system. Increasing SO42- concentration weakened the fluorescence peaks of tryptophan and aromatic proteins in the extracellular polymeric substance of sludge. Under the influence of SO42-, Methanothrix_soehngenii decreased from 14.44% to 5.89%. The relative abundance of methane metabolic was down-regulated from 1.47% to 0.98%, while the sulfur metabolic was up-regulated from 0.09% to 0.21% when SO42- was added. These findings provided some reference for the treatment of wastewater containing Cr(VI) and SO42- complex pollutants in the MFC-GS coupling system.
Collapse
Affiliation(s)
- Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xiaoyun Dai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yunchuan Xian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yijie Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xinya Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chenbing Ai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| |
Collapse
|
11
|
Li C, Zhang Y, Ling Y, Wang H, Wang H, Yan G, Duan L, Dong W, Chang Y. Novel slow-release carbon source improves anodic denitrification and electricity generation efficiency in microbial fuel cells. ENVIRONMENTAL RESEARCH 2023; 236:116644. [PMID: 37454797 DOI: 10.1016/j.envres.2023.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
MFC anodic denitrification is more suitable for the coexistence of organic matter and nitrate in actual sewage, but the traditional carbon source has some problems such as high cost and difficulty of dosage control in MFC. Herein, corncob and polycaprolactone (PCL) were mechanically pulverized and mixed in the system of polyvinyl alcohol and sodium alginate, and cross-linked to prepare slow-release carbon source fillers (CPSP), which were added to the MFC anolyte to realize the coupling of solid-phase denitrification and anodic denitrification. Results showed the start-up period of MFC experimental group (MFC-C) with CPSP was slightly longer than the control group (MFC-0), but MFC-C's maximum output voltage (648.4 mV) and power density (2738 mW/m3) could be increased by 5% and 15% higher than that of MFC-0 (P < 0.05). The degradation process of MFC substrate in unit cycle was mainly divided into nitrogen removal stage (0-8 h) and electricity generation stage (8-48 h). The NO3--N and COD degradation and power generation kinetic processes of MFC conformed to the Han-Levenspiel model. Kinetics experiments showed CPSP can improve the affinity and tolerance of MFC to NO3--N, also it can alleviate the pressure of electron competition in anolyte and improve coulombic efficiency. In addition, microbial communities were significantly changed under the effect of CPSP (P < 0.001). Meanwhile, CPSP can promote the synthesis of denitrification functional genes. This study provides a new strategy to improve the performance of MFC by the addition of novel denitrification carbon source.
Collapse
Affiliation(s)
- Congyu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yanjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Huan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| |
Collapse
|
12
|
Chai F, Li L, Wang W, Xue S, Liu J. Electro-stimulated anaerobic oxidation of methane with synergistic denitrification by adding AQS: Electron transfer mode and mechanism. ENVIRONMENTAL RESEARCH 2023; 229:115997. [PMID: 37105293 DOI: 10.1016/j.envres.2023.115997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
Denitrifying anaerobic methane-oxidizing (DAMO) processes, which link anaerobic methane oxidation (AMO) and denitrification, have a promising prospect in anaerobic wastewater treatment. In bioelectrochemical systems (BES), DAMO consortium presented potent metabolic activity. However, the extracellular electron transfer (EET) in BES was poorly understood. This study investigated the EET mechanisms and modes of electron transport in BES dominated by anaerobic methanotrophic bacteria. In the bioreactors with the auxiliary voltage of 0.5 and 1.1 V, named EMN-0.5 and EMN-1.1, respectively, biological voltages of 0.198 and 0.329 V were generated with power densities of 0.6 and 1.20 mW/m2, after removing the voltage. High throughput and metagenome analyses demonstrated that main methanotrophs were DAMO bacteria and Methylocystis sp. The electroactive bacteria detected were Pseudomonas sp., Hypomicrobium sp., Thiobacillus sp, and Rhodococcus sp. The pil, cytochrome c, hdr, and he/fp genes related to EET were present on the electrode surfaces. Carbon 13 isotope tracing and chemicals analysis by GC-MS exhibited that methanol was an intermediate product released to extracellular environment and acted as the electronic carrier to drive the EET in methane oxidation. Extracellular electron transfer was achieved through the collaboration of DAMO bacteria, Methylocystis sp., and Pseudomonas sp. Anthraquinone 2-sulfonic acid ester (AQS) could improve the rate of electron transfer to the extracellular space, especially in the EMN-0.5 reaction system. This study provides a new understanding of AMO consortium metabolism in BES and may provide a scientific basis for developing methane control technology.
Collapse
Affiliation(s)
- Fengguang Chai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Wenwen Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Song Xue
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Junxin Liu
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
13
|
Zeng B, Jiang Y, Pan Z, Shen L, Lin H. Feasibility and optimization of a novel upflow denitrification reactor using denitrifying granular sludge for nitric acid pickling wastewater treatment. BIORESOURCE TECHNOLOGY 2023:129271. [PMID: 37290711 DOI: 10.1016/j.biortech.2023.129271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Stainless steel is highly valued for its superior resistance to corrosion. However, the pickling process involved in stainless steel production generates abundant NO3--N, causing health and environmental risks. To address this issue, this study proposed a novel solution utilizing an up-flow denitrification reactor and denitrifying granular sludge for treating NO3--N pickling wastewater under high NO3--N loading. It was found that, the denitrifying granular sludge exhibited stable denitrification performance with the highest denitrification rate of 2.79 gN/(gVSS·d) and average removal rates of NO3--N and TN of 99.94% and 99.31%, respectively, under optimal operating conditions of pH 6-9, temperature 35 °C, C/N ratio 3.5, hydraulic retention time (HRT) 11.1 h and ascending flow rate 2.75 m/h. This process reduced carbon source usage by 12.5-41.7% as compared to traditional denitrification methods. These findings demonstrate the efficacy of combining granular sludge and an up-flow denitrification reactor for treating nitric acid pickling wastewater.
Collapse
Affiliation(s)
- Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Yanhong Jiang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
14
|
Su C, Xian Y, Qin R, Zhou Y, Lu M, Wan X, Chen Z, Chen M. Fe(III) enhances Cr(VI) bioreduction in a MFC-granular sludge coupling system: Experimental evidence and metagenomics analysis. WATER RESEARCH 2023; 235:119863. [PMID: 36933314 DOI: 10.1016/j.watres.2023.119863] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The influence of Fe(III) on the bioreduction efficiency of Cr(VI) in a microbial fuel cell (MFC)-granular sludge coupling system using dissolved methane as an electron donor and carbon source was explored, and the mechanism of Fe(III) mediating enhancement in the bioreduction process of Cr(VI) in the coupling system was also investigated. Results showed that the presence of Fe(III) enhanced the ability of the coupling system to reduce Cr(VI). The average removal efficiencies of Cr(VI) in the anaerobic zone in response to 0, 5, and 20 mg/L of Fe(III) were 16.53±2.12%, 24.17±2.10%, and 46.33±4.41%, respectively. Fe(III) improved the reducing ability and output power of the system. In addition, Fe(III) enhanced the electron transport systems activity of the sludge, the polysaccharide and protein content in the anaerobic sludge. Meanwhile, X-ray photoelectron spectrometer (XPS) spectra demonstrated that Cr(VI) was reduced to Cr(III), while Fe2p participated in reducing Cr(VI) in the form of Fe(III) and Fe(II). Proteobacteria, Chloroflexi, and Bacteroidetes were the dominant phylum in the Fe(III)-enhanced MFC-granular sludge coupling system, accounting for 49.7%-81.83% of the microbial community. The relative abundance of Syntrophobacter and Geobacter increased after adding Fe(III), indicating that Fe(III) contributed to the microbial mediated anaerobic oxidation of methane (AOM) and bioreduction of Cr(VI). The genes mcr, hdr, and mtr were highly expressed in the coupling system after the Fe(III) concentration increased. Meanwhile, the relative abundances of coo and aacs genes were up-regulated by 0.014% and 0.075%, respectively. Overall, these findings deepen understanding of the mechanism of the Cr(VI) bioreduction in the MFC-granular sludge coupling system driven by methane under the influence of Fe(III).
Collapse
Affiliation(s)
- Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Yunchuan Xian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yijie Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Meixiu Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xingling Wan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
15
|
Ma XC, Wang K, Gao XL, Li XK, Liu GG, Chen HY, Piao CY, You SJ. Deciphering the fate of osmotic stress priming on enhanced microorganism acclimation for purified terephthalic acid wastewater treatment with high salinity and organic load. BIORESOURCE TECHNOLOGY 2023; 374:128656. [PMID: 36690216 DOI: 10.1016/j.biortech.2023.128656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Osmotic stress priming (OSP) was an effective management strategy for improving microbial acclimation to salt stress. In this study, the interaction between pollutants and microbiota, and microbial osmoregulation were investigated triggered by OSP (alternately increasing salinity and organic loading). Results showed that OSP significantly improved COD removal from 31.53 % to 67.99 % and mitigated the terephthalate inhibition produced by toluate, decreasing from 1908.08 mg/L to 837.16 mg/L compared with direct priming. Due to an increase in salinity, Pelotomaculum and Mesotoga were enriched to facilitate terephthalate degradation and syntrophic acetate oxidation (SAO). And organic load promoted acetate formation through syntrophic metabolism of Syntrophorhabdus/Pelotomaculum and SAO-dependent hydrogenotrophic methanogenesis. K+ absorbing, proline and trehalose synthesis participated in osmoregulation at 0.5 % salinity, while only ectoine alleviated intracellular osmolarity under 1.0 % salinity with OLR of 0.44 kg COD /m3. This study provided in-depth insight for microbial acclimation process of anaerobic priming of saline wastewater.
Collapse
Affiliation(s)
- Xiao-Chen Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin 150090, China; Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Guangdong Yuehai Water Investment Co., Ltd, Harbin 150090, China
| | - Xin-Lei Gao
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Guangdong Yuehai Water Investment Co., Ltd, Harbin 150090, China
| | - Xiang-Kun Li
- School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China.
| | - Gai-Ge Liu
- School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China
| | - Hong-Ying Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chen-Yu Piao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shi-Jie You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
16
|
Tang L, Su C, Wang Q, Cao L, Xian Y, Wen S, Zhou Y, Gao S. Use of iron-loaded biochar to alleviate anammox performance inhibition under PFOA stress conditions: Integrated analysis of sludge characteristics and metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161178. [PMID: 36581267 DOI: 10.1016/j.scitotenv.2022.161178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The negative effects of perfluorooctanoic acid (PFOA) on biological nitrogen removal performance in wastewater treatment plants, are receiving increasing attention due to the widespread reporting of this issue. In this study, pomelo peel iron-loaded biochar (Fe-PBC) was added to an anammox bioreactor to alleviate the negative effects of PFOA. Results showed that the addition of Fe-PBC increased the ammonia and nitrite removal efficiencies from 77.7 ± 9.6 % and 79.5 ± 5.6 % to 94.45 ± 5.1 % and 95.9 ± 5.0 %, respectively. In addition, Fe-PBC promoted the removal of PFOA from wastewater, increasing the PFOA removal efficiency from 5.2 % to 29.2 ± 4.3 % from 100 to 200 days. The introduction of iron-loaded biochar into the anammox bioreactor increased the CO ratio by 13.64 % by 150 days. In addition, a CO fitting peak was detected in the Fe-PBC, indicating that the Fe-PBC was loaded with microorganisms. Microbial community analysis showed a decrease in the relative abundances of Proteobacteria and Nitrospirae from 31 % and 3.4 % to 16.8 % and 0.9 %, respectively, while the relative abundance of Planctomycetes increased from 26.8 % to 44.1 %. Metagenomic analysis found that the functional genes hzsB and hdh increased from 98,666 ± 11,400 and 3190 ± 460 to 119,333 ± 15,534 and 138,650 ± 11,233 copy numbers/MLSS. The increase in anammox biomass may be attributed to the presence of iron, an essential element for the synthesis of key anammox enzyme. Furthermore, iron was also associated with the enhanced extracellular electron transfer in the anammox system induced by Fe-PBC.
Collapse
Affiliation(s)
- Linqin Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Qing Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Linlin Cao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yunchuan Xian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shitong Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yijie Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shu Gao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
17
|
Tang L, Su C, Fan C, Cao L, Liang Z, Xu Y, Chen Z, Wang Q, Chen M. Metagenomic and extracellular polymeric substances analysis reveals the mechanism of exogenous N-hexanoyl-L-homoserine lactone in alleviating the inhibition of perfluorooctanoic acid on anammox process. BIORESOURCE TECHNOLOGY 2023; 369:128482. [PMID: 36513308 DOI: 10.1016/j.biortech.2022.128482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
To alleviate the negative effects of perfluorooctanoic acid (PFOA) on nitrogen removal via anaerobic ammonia oxidation (anammox), an exogenous signaling factor (N-hexanoyl-L-homoserine lactone, C6-HSL) was introduced into an anammox reactor. Results showed that 2 μmol/L C6-HSL promoted the nitrogen removal efficiency of the anammox reactor under PFOA stress, with the removal efficiencies of ammonia and nitrite increasing from 79.7 ± 4.8 % and 80.8 ± 3.8 %, to 94.4 ± 4.3 % and 97.1 ± 3.8 %. Exogenous C6-HSL enhanced the compactness of the extracellular proteins, and improved the sludge hydrophobicity. Meanwhile, C6-HSL resulted in a microbial shift, with the relative abundance of Planctomycetes increasing from 30.2 % to 49.5 %. Candidatus Kuenenia stuttgartiensis replaced Candidatus Brocadia sp. BL1 as the dominant species, while the available space for other nitrogen-removing bacteria was reduced. Exogenous C6-HSL promoted the expression of anammox-related genes, such as hzsB and hdh, while denitrifying genes were down-regulated. In addition, the relative abundance of HdtS, which synthesizes AHLs, increased by 0.02446%.
Collapse
Affiliation(s)
- Linqin Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China.
| | - Cuiping Fan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Linlin Cao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, PR China
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Qing Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
18
|
Yang G, Xu H, Luo Y, Hei S, Song G, Huang X. Novel electro-assisted micro-aerobic cathode biological technology induces oxidative demethylation of N, N-dimethylformamide for efficient ammonification of refractory membrane-making wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130001. [PMID: 36152543 DOI: 10.1016/j.jhazmat.2022.130001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Recalcitrant and toxicological membrane-making wastewater displays negative impacts on environment, and this is difficult to treat efficiently using conventional hydrolytic acidification. In this study, a novel electro-assisted biological reactor with micro-aerobic cathode (EABR-MAC) was developed to improve the biodegradation and ammonification of N, N-dimethylformamide (DMF) in membrane-making wastewater, and the metabolic mechanism using metagenomic sequencing as comprehensively illustrated. The results showed that EABR-MAC significantly improved the ammonification of refractory organonitrogen and promoted DMF oxidative degradation by driving the electron transferred to the cathode. Additionally, the inhibition rates of oxygen uptake rate and nitrification in EABR-MAC were both lower under different cathode aeration frequency conditions. Microbial community analysis indicated that the functional fermentation bacteria and exoelectrogens, which were correlated with COD removal, ammonification, and detoxification, were significantly enriched upon electrostimulation, and the positive biological connections increased to form highly connected communities instead of competition. The functional genes revealed that EABR-MAC forcefully intervened with the metabolic pathway, so that DMF converted to formamide and ammonia by oxidative demethylation and formamide hydrolysis. The results of this study provide a promising strategy for efficient conversion of organonitrogen into ammonia nitrogen, and offer a new insight into the effects of electrostimulation on microbial metabolism.
Collapse
Affiliation(s)
- Guang Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yudong Luo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengqiang Hei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guangqing Song
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Wu Y, Song HL, Pan Y, Zhai SQ, Shao Y, Nan J, Yang YL, Zhang LM. Insight into the role of microbial community interactions on nitrogen removal facilitated by a bioelectrochemical system in an osmotic membrane bioreactor. BIORESOURCE TECHNOLOGY 2022; 361:127696. [PMID: 35905880 DOI: 10.1016/j.biortech.2022.127696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Insufficient nitrogen removal is a key challenge for the application of an osmotic membrane bioreactor (OMBR). The integration of a bioelectrochemical system (BES) and an OMBR was constructed to enhance nitrogen removal.To optimize the operation, five aeration intensities and three draw solutes (DSs) were applied in the proposed system. The results showed that the proposed system obtained the highest nitrogen removal efficiency of 77.36 ± 3.55 % with an aeration intensity of 0.6 L/min, and it was further increased to 94.99 ± 2.83 % and 99.92 ± 0.14 %with the NaOAc DS and the glucose DS, respectively.The analysis ofmetabolic pathways implied that species interactions existed,andthe following different mechanisms of enhanced nitrogen removal for the two organic DSs were proposed. The growth of denitrifying bacteria was enhanced by using reverse-fluxed organic NaOAc DS as a carbon source;glucoseDS stimulated electron transfer system activity to accelerate denitrification.
Collapse
Affiliation(s)
- You Wu
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Yuan Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Si-Qi Zhai
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Yi Shao
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Jing Nan
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China.
| | - Li-Min Zhang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
20
|
Xia Y, Jiang X, Wang Y, Huang Q, Chen D, Hou C, Mu Y, Shen J. Enhanced anaerobic reduction of nitrobenzene at high salinity by betaine acting as osmoprotectant and regulator of metabolism. WATER RESEARCH 2022; 223:118982. [PMID: 36058098 DOI: 10.1016/j.watres.2022.118982] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/24/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic technology is extensively applied in the treatment of industrial organic wastewater, but high salinity always triggers microbial cell dehydration, causing the failure of the anaerobic process. In this work, betaine, one kind of compatible solutes which could balance the osmotic pressure of anaerobic biomass, was exogenously added for enhancing the anaerobic reduction of nitrobenzene (NB) at high salinity. Only 100 mg L-1 betaine dosing could significantly promote the removal efficiency of NB within 35 h at 9% salinity (36.92 ± 4.02% without betaine and 72.94 ± 6.57% with betaine). The relieving effects on salt stress could be observed in the promotion of more extracellular polymeric substances (EPS) secretion with betaine addition. Additionally, the oxidation-reduction potential (ORP), as well as the electron transfer system (ETS) value, was increased with betaine addition, which was reflected in the improvement of system removal efficiency and enzyme activity. Microbial community analysis demonstrated that Bacillus and Clostridiisalibacter which were positively correlated with the stability of the anaerobic process were enriched with betaine addition at high salinity. Metagenomic analysis speculated that the encoding genes for salt tolerance (kdpB/oadA/betA/opuD/epsP/epsH) and NB degradation (nfsA/wrbA/ccdA/menC) obtained higher relative abundance with betaine addition under high salt environment, which might be the key to improving salt tolerance of anaerobic biomass. The long-term assessment demonstrated that exogenous addition betaine played an important role in maintaining the stability of the anaerobic system, which would be a potential strategy to achieve a high-efficiency anaerobic process under high salinity conditions.
Collapse
Affiliation(s)
- Yan Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yuxuan Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qian Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Cheng Hou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
21
|
Zhang S, Ali A, Su J, Huang T, Li M. Performance and enhancement mechanism of redox mediator for nitrate removal in immobilized bioreactor with preponderant microbes. WATER RESEARCH 2022; 209:117899. [PMID: 34861436 DOI: 10.1016/j.watres.2021.117899] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The acceleration of nitrate removal in wastewater treatment by redox mediator (RM) is greatly weakened due to wash-out loss and mass transfer resistance (low hydrophilia) of RM during operation. In this study, an RM reactor with the fixed 1-Amino-4-hydroxyanthraquinone (AHAQ) and three core strains was established and achieved high nitrate removal efficiency (NRE) under low carbon to nitrogen ratio (C/N) and short hydraulic retention time (HRT) conditions, with the maximum efficiency of 99.41% (14.00 mg L-1 h-1) and average improvement by 11.97% (1.41 mg L-1 h-1). This acceleration led to more proportion of carbon consumption by denitrifying bacteria and improved their competitiveness against others in carbon deficiency, although resulting in nitrite accumulation (NIA) in lower C/N. The RM reactor induced the decorrelation tendencies between NRE and active extracellular organics and more sensitive denitrification toward C/N, which favored the stability of effluent organics and biological activities. The increase of oxidative phosphorylation and ubiquinone and other terpenoid-quinone biosynthesis pathway suggested electron transport activity was potentially enhanced by AHAQ. Although the lower C/N deteriorated the reactor NRE, the abundances of amino acids-, fatty acids- and carbohydrate-related metabolisms (45% of the total up-regulating pathways) were enhanced to utilize carbon source effectively. Meanwhile, the enhanced phosphotransferase system facilitated the balance between carbon and nitrogen metabolism. These indicated the changes in biological strategy to grow better and resist the adverse condition. This study highlighted the superior NRE by AHAQ in an immobilized reactor with core strains and more importantly, extended the RM application in wastewater treatment.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|