1
|
Luo K, Zhang L, Wang Q, Xin Q, Lei Z, Hu E, Li L, Liang F, Wang H. Efficient and stable adsorption uranium from wastewater by P-ZBCT composite adsorbent at low dosage. Int J Biol Macromol 2025; 306:141405. [PMID: 39993685 DOI: 10.1016/j.ijbiomac.2025.141405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/07/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
In this research, a new synthesis approach was developed for an adsorbent, namely the phosphorylated ZIF-8/bamboo charcoal/chitosan/tannic acid (P-ZBCT) composite, for the efficient adsorption of uranyl ions from wastewater at low dosages. Impressively, the uranium adsorption rate of P-ZBCT reaches up to 98 % at a low dosage of 0.056 g/L in a 10-mg/L uranium solution, outperforming most reported uranium adsorption materials. The theoretical maximum adsorption capacity of P-ZBCT for uranium at 308 K and pH 6.0 is 2357.69 mg/g, with uranium adsorption being a spontaneous endothermic chemical reaction. Mechanistic analysis reveals that surface functional groups such as PO, amino group, and CN play a pivotal role in uranium adsorption. A competitive adsorption experiment shows that zinc is the most competitive with uranium adsorption; however, the partition coefficient of U is 11 times that of zinc, indicating that the absorption of uranium is more selective than that of other metal ions, such as zinc. Adsorption treatment using P-ZBCT successfully reduces the uranium content in real uranium tailings-containing pond wastewater to 34 μg/L. P-ZBCT demonstrates exceptional recycling performance, maintaining an adsorption rate of 85 % even after 10 sorption-desorption cycles. Therefore, P-ZBCT exhibits significant potential for efficiently extracting uranium from low-concentration uranium-containing wastewater.
Collapse
Affiliation(s)
- Kaiwen Luo
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Lieyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qingliang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qi Xin
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhiwu Lei
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Eming Hu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Le Li
- School of Public Health, University of South China, Hengyang 421001, China
| | - Feng Liang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Hongqiang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Yu R, He Y, An M, Chen S, Ye Y, Li L. Superhydrophilic Amidoxime-Modified Poly(vinyl alcohol) Fibers for Enhanced Uranium Extraction from Seawater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10516-10525. [PMID: 40243384 DOI: 10.1021/acs.langmuir.5c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The efficient extraction of uranium from seawater is an important step in the sustainable development of nuclear energy. Polymer-based absorbents are considered to be ideal materials due to their high adsorption properties and industrialization feasibility. Their adsorption performance could be further improved by enlarging the specific surface area and enhancing hydrophilicity. Here, an amidoxime-modified poly(vinyl alcohol) fiber (PVA-g-PAO) with a high specific surface area and superhydrophilicity was prepared by a one-step grafting method. The hydrophilicity was conducive to the infiltration of ions into the adsorbent, and the pore structure constructed by grafting an adsorption functional layer on the surface of fibers increased the specific surface area. The adsorption capacity of PVA-g-PAO can be arrived at 11.3 mg/g in simulated seawater (uranium concentration: 330 ppb) with a high adsorption selectivity of uranium. Furthermore, more than 95% of uranium in a 5 ppm uranium solution can be adsorbed within 6 days, indicating the fast adsorption ability of PVA-g-PAO, which is further confirmed by the fast adsorption capacity in natural seawater (3.37 mg/g for 30 days). Such PVA-g-PAO gel fiber adsorbents with superhydrophilicity and high specific surface area are promising adsorbents for uranium extraction from natural seawater.
Collapse
Affiliation(s)
- Rui Yu
- Moganshan Research Institute, Zhejiang University of Technology, Huzhou 313200, China
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu He
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Minfang An
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shusen Chen
- Key Laboratory on Uranium Extraction From Seawater, Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing 101149, China
| | - Yanan Ye
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liangbin Li
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Zhao T, Wang X, Li J, Wang C, Bakhtiyarovich Ibragimov A, Gao J, Yang X. Uranium Extraction from Seawater: A Novel Approach Using Aluminum Fumarate-Based Metal-Organic Framework Aerogels. Chem Asian J 2025; 20:e202401385. [PMID: 39932360 DOI: 10.1002/asia.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Efficient extraction of uranyl ions from seawater is crucial for the commercialization of nuclear technology. Metal-organic frameworks (MOFs), with their superior uranium extraction properties, face challenges in large-scale applications due to their powdery nature and the difficulty of assembling them into mechanically stable macroscopic composites. To address this, successfully synthesized 90 wt % nanoMOF (aluminum fumarate) loaded directional aerogels (AlFA-3-10) using polyvinyl alcohol (PVA) as an adhesive, which demonstrates robust strength longitudinally and transversely. Our uranium adsorption experiments reveal that at a pH of 8 (akin to that of seawater), the AlFA-3-10 achieves a maximum adsorption capacity of 1146.25 mg g-1, maintaining this exceptional performance over five cycles. Notably, in simulated seawater, AlFA-3-10 exhibits high selectivity for uranyl ions with minimal interference from other ions. The directional pores within AlFA-3-10 facilitate fluid transmission and exchange, ensuring optimal contact between the MOF and uranyl ions, thereby enhancing electrostatic attraction and electron transport for improved capture efficiency. This streamlined approach maximizes the intrinsic potential of nano-MOFs and heralds a new era for their integration into macroscopic composite materials.
Collapse
Affiliation(s)
- Tao Zhao
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xue Wang
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiacheng Li
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chunqi Wang
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Aziz Bakhtiyarovich Ibragimov
- Institute of General and Inorganic Chemistry, Uzbekistan Academy of Sciences, M.Ulugbek Str., 77a, Tashkent, 100170, Uzbekistan
| | - Junkuo Gao
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaogang Yang
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
4
|
Wang T, Tao B, Zuo B, Yan G, Liu S, Wang R, Zhao Z, Chu F, Li Z, Yamauchi Y, Xu X. Challenges and Opportunities of Uranium Extraction From Seawater: a Systematic Roadmap From Laboratory to Industry. SMALL METHODS 2025; 9:e2401598. [PMID: 39663693 DOI: 10.1002/smtd.202401598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 12/13/2024]
Abstract
Uranium extraction from seawater (UES) is crucial for ensuring the sustainable development of nuclear power and has seen significant advancements in recent years. However, natural seawater is a highly complex biogeochemical system, characterized by an extremely low uranium (U) concentration (≈3.3 µg L-1), abundant competitive ions, and significant marine biological pollution, making UES a formidable challenge. This review addresses the challenges encountered in UES and explores potential methods for enhancing the industrial UES system, including membrane separation, electrochemistry, photocatalysis, and biosorption. Additionally, several representative marine tests are summarized and restrictive factors of large-scale UES are analyzed. Finally, the further development of UES from laboratory to industry applications is promoted, with a focus on technological innovation. The goal is to stimulate innovative ideas and provide fresh insights for the future development of the UES system, bridging the gap between laboratory research and industrial implementation.
Collapse
Affiliation(s)
- Tao Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Binbin Tao
- College of Innovation and Industrial Engineering, Wanjiang University of Technology, Maanshan, 243011, China
| | - Bin Zuo
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
- Key Laboratory of Xinjiang Coal Resources Green Mining, Ministry of Education, Xinjiang Institute of Engineering, Urumqi, 830023, China
| | - Guoze Yan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Shaoqing Liu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ruoyu Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhongzhou Zhao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Feifei Chu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhengtong Li
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
- Key Laboratory of Xinjiang Coal Resources Green Mining, Ministry of Education, Xinjiang Institute of Engineering, Urumqi, 830023, China
| |
Collapse
|
5
|
Li D, Chen Z, Zhang F, Zhang Z, Chen C, Zhang D, Xu X. Nano-tentacled interconnected channels organic gel for rapid uranium extraction from seawater. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135784. [PMID: 39265394 DOI: 10.1016/j.jhazmat.2024.135784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/24/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Due to dwindling terrestrial uranium resources and escalating ecological pressures, the long-term viability of uranium supply has become a critical concern. The immense uranium reserves in seawater present a potential solution, yet extraction technology faces dual challenges of efficiency and adaptability to complex marine environments. Current interconnected porous adsorbents, despite their high flux properties, are limited by low specific surface area and weak mechanical strength, which constrain their effectiveness. Here, inspired by the unique hierarchical structures of marine organisms, we describe an organic gel adsorbent with supermacroporous and interconnected channels (10 ∼ 100 µm) adorned with "nano-tentacle" structures. This design significantly enhances the specific surface area by 18 times, increasing adsorption sites and imparting antibacterial properties. Notably, this adsorbent maintains structural integrity and superior mechanical strength (1.32 MPa tensile and 2.44 MPa compressive strength) even when fully saturated. During a 23-day trial in natural seawater, a uranium adsorption rate of 0.332 mg g⁻¹ day⁻¹ was achieved. This work offers a pioneering approach for the design and fabrication of hierarchical structured adsorbents, highlighting the immense potential of extracting uranium from seawater for sustainable energy production.
Collapse
Affiliation(s)
- Dagang Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Zheng Chen
- School of New Materials and Shoes and Clothing Engineering, Liming Vocational University, Quanzhou, Fujian 362000, China; Applied Technology Engineering Center of Fujian Provincial Higher Education for Practical Chemical Material, Quanzhou, Fujian 362000, China
| | - Fengqi Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Zilei Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Chongcheng Chen
- School of New Materials and Shoes and Clothing Engineering, Liming Vocational University, Quanzhou, Fujian 362000, China; Applied Technology Engineering Center of Fujian Provincial Higher Education for Practical Chemical Material, Quanzhou, Fujian 362000, China
| | - Dongxiang Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; Department of Chemistry, Shenzhen MSU-BIT University, Shenzhen 517182, China.
| | - Xiyan Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| |
Collapse
|
6
|
Zhu R, Zhang C, Zhu L, Liu L, Bai J, Wang Y, Ma F, Dong H. Bis-substituted amino acid functionalized chitosan aerogels: High uranium adsorption capacity and antibacterial properties. Int J Biol Macromol 2024; 276:133890. [PMID: 39019371 DOI: 10.1016/j.ijbiomac.2024.133890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Based on the goal of "carbon neutralization and carbon peaking", it is still challenging to develop a high adsorption performance and environmentally friendly material for uranium extraction. We proposed a new idea of "Three-Dimensional Environmental-Friendly". A series of amino acid bis-substituted chitosan aerogels (C-1, C-2, C-3, C-4 and C-5) were prepared by ice template method and selective substitution reaction in water environment. Among them, C-3 adsorbent has the antibacterial properties of gram-positive bacteria, gram-negative bacteria and marine bacteria, which is more suitable for uranium adsorption in complex environments. Also, C-3 adsorbent solves the shortcomings of poor adsorption property and easy to cause secondary pollution during modification of traditional chitosan materials. The selectivity and adsorption capacity of uranium are further improved by the unique functional groups of serine residues. At pH = 7, the maximum adsorption capacity reaches 606.32 mg/g. In addition, C-3 adsorbent have excellent selectivity and stability. The synergistic effect of coordination, electrostatic interaction and intraparticle diffusion between C-3 adsorbent and uranium may be the key to its high adsorption performance. The high performance of chitosan adsorbent provides a new idea for the design and application of green and efficient uranium adsorption materials.
Collapse
Affiliation(s)
- Ruiqi Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China; Yantai Research Institute of Harbin Engineering University, Yantai 264006, PR China.
| | - Lien Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Lijia Liu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China; Yantai Research Institute of Harbin Engineering University, Yantai 264006, PR China
| | - Jianwei Bai
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Yudan Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Fuqiu Ma
- Yantai Research Institute of Harbin Engineering University, Yantai 264006, PR China; College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, PR China
| | - Hongxing Dong
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| |
Collapse
|
7
|
Wang M, Zhang S, Li Q, Li Y, Duan E, Wen C, Yu S, Wang X. Insights into enhanced immobilization of uranyl carbonate from seawater by Fe-doped MXene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170850. [PMID: 38342456 DOI: 10.1016/j.scitotenv.2024.170850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Extracting uranium from seawater not only reduces radioactive contamination in seawater but also provides a source of uranium energy. However, due to the low concentration of uranium in seawater and the high salinity of seawater, extraction of uranium from seawater is challenging. In this work, we demonstrated a simple strategy to synthesize Fe-doped MXene (Fe@Ti3C2Tx) via a hydrothermal method and applied for uranium enrichment in seawater. The Fe@Ti3C2Tx exhibited excellent adsorption performance in high salinity environments. The removal capacity of Fe@Ti3C2Tx was determined to be 526.6 mg/g for UO2(CO3)22- at 328 K with quick reaction equilibrium (∼ 30 min). Kinetic and thermodynamic analyses of UO2(CO3)22- elimination process on Fe@Ti3C2Tx surface revealed it to be a spontaneous and endothermic single-phase elimination process. FT-IR and XPS analyses further indicated that the removal mechanism of UO2(CO3)22- by Fe@Ti3C2Tx was surface complexation. Our study suggests that Fe@Ti3C2Tx can provide a feasible solution for uranium enrichment in seawater.
Collapse
Affiliation(s)
- Min Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Shu Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Qi Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Yuanpeng Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Enzhe Duan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Caimei Wen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Shujun Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China.
| |
Collapse
|
8
|
Wang B, Hu H, Huang D, Tao Y. Study on uranium ion adsorption property of porous glass modified with amidoxime group. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26204-26216. [PMID: 38498136 DOI: 10.1007/s11356-024-32943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
In this paper, we prepared three types of porous glasses (PGs) with specific surface areas of 311.60 m2/g, 277.60 m2/g, and 231.38 m2/g, respectively, via borosilicate glass phase separation. These glasses were further modified with amidoxime groups (AO) using the hydroxylamine method, yielding adsorbents named 1.5-PG-AO, 2-PG-AO, and 3-PG-AO. The adsorption performance of these adsorbents under various conditions was investigated, including sorption kinetics and adsorption mechanisms. The results reveal that the number of micropores and specific surface area of PG are significantly reduced after AO modification. All three adsorbents exhibit similar adsorption capabilities. Particularly, pH has a pronounced effect on U (VI) adsorption of PG-AO, with a maximum value at pH = 4.5. Equilibrium adsorption is achieved within 2 h, with a maximum adsorption capacity of 129 mg/g. Notably, a uranium removal rate of 99.94% is attained. Furthermore, the adsorbents show high selectivity in uranium solutions containing Na+ or K+. Moreover, the adsorbents demonstrate exceptional regeneration ability, with the removal rate remaining above 80% even after undergoing five adsorption-desorption cycles. The adsorption reaction of uranium on PG-AO involves a combination of multiple processes, with monolayer chemisorption being the dominant mechanism. Both the complex adsorption of AO and the ion exchange and physical adsorption of PG contribute to the adsorption of uranyl ions on the PG-AO adsorbents.
Collapse
Affiliation(s)
- Bingxin Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Hongyuan Hu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Difei Huang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Yuqiang Tao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, People's Republic of China.
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
9
|
Yu K, Li Y, Cao X, Wang R, Zhou L, Wu L, He N, Lei J, Fu D, Chen T, He R, Zhu W. In-situ constructing amidoxime groups on metal-free g-C 3N 4 to enhance chemisorption, light absorption, and carrier separation for efficient photo-assisted uranium(VI) extraction. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132356. [PMID: 37633015 DOI: 10.1016/j.jhazmat.2023.132356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
The development of inexpensive and efficient semiconductor catalysts for photo-assisted uranium extraction from seawater remains a huge challenge. Herein, we have successfully synthesized amidoxime-rich g-C3N4 (AO-C3N4) by simply amidoximing a cyano-rich precursor for photo-assisted uranium extraction from seawater. The amidoxime groups not only served as the U(VI) binding sites for efficient uranium adsorption, but also significantly improved the visible light absorption capacity and carrier separation efficiency via introducing defect energy level, resulting in the excellent photocatalytic activity for AO-C3N4 towards photo-assisted uranium extraction. In the process of photo-assisted uranium extraction, U(VI) was first adsorbed by the amidoxime groups on the AO-C3N4 and then reduced to U(IV), while (UO2)O2·2H2O and (UO2)O2·4H2O were further formed by the oxidation of U(IV) by superoxide radicals (·O2-). Moreover, the generated reactive oxygen species (ROS) under light endowed AO-C3N4 with outstanding antibacterial properties, preventing the limitation of uranium extraction capacity from marine biofouling.
Collapse
Affiliation(s)
- Kaifu Yu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China; College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Yi Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Xin Cao
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Ruixiang Wang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Li Zhou
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Linzhen Wu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Ningning He
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Jia Lei
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdiscipli-nary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Dengjiang Fu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Tao Chen
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|
10
|
Liu P, An M, He T, Li P, Ma F. Recent Advances in Antibiofouling Materials for Seawater-Uranium Extraction: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6451. [PMID: 37834588 PMCID: PMC10573904 DOI: 10.3390/ma16196451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Nuclear power has experienced rapid development as a green energy source due to the increasing global demand for energy. Uranium, as the primary fuel for nuclear reactions, plays a crucial role in nuclear energy production, and seawater-uranium extraction has gained significant attention. However, the extraction of uranium is usually susceptible to contamination by microorganisms, such as bacteria, which can negatively affect the adsorption performance of uranium adsorption materials. Therefore, an important challenge lies in the development of new antibacterial and antiadhesion materials to inhibit the attachment of marine microorganisms. These advancements aim to reduce the impact on the adsorption capability of the adsorbent materials. This paper reviews the antibiofouling materials used for extracting seawater uranium, and corresponding mechanisms are discussed.
Collapse
Affiliation(s)
- Peng Liu
- Yantai Research Institute and Graduate School, Harbin Engineering University, Yantai 264000, China; (P.L.); (M.A.); (T.H.)
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
| | - Minyan An
- Yantai Research Institute and Graduate School, Harbin Engineering University, Yantai 264000, China; (P.L.); (M.A.); (T.H.)
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Teng He
- Yantai Research Institute and Graduate School, Harbin Engineering University, Yantai 264000, China; (P.L.); (M.A.); (T.H.)
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Ping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Fuqiu Ma
- Yantai Research Institute and Graduate School, Harbin Engineering University, Yantai 264000, China; (P.L.); (M.A.); (T.H.)
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
11
|
Zhang D, Fang L, Liu L, Zhao B, Hu B, Yu S, Wang X. Uranium extraction from seawater by novel materials: A review. Sep Purif Technol 2023; 320:124204. [DOI: doi.org/10.1016/j.seppur.2023.124204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
12
|
Shan T, Ma X, Li H, Liu C, Shen C, Yang P, Li S, Wang Z, Liu Z, Sun H. Plant-derived hybrid coatings as adsorption layers for uranium adsorption from seawater with high performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
13
|
Li R, Wang H, Yan J, Fu R, Wang B, Jiang C, Wang Y, Xu T. A cascade electro-dehydration process for simultaneous extraction and enrichment of uranium from simulated seawater. WATER RESEARCH 2023; 240:120079. [PMID: 37224666 DOI: 10.1016/j.watres.2023.120079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
Uranium extraction from seawater has become a crucial issue that has raised tremendous attention. The transport of water molecules along with salt ions through an ion-exchange membrane is a common phenomenon for typical electro-membrane processes such as selective electrodialysis (SED). In this study, a cascade electro-dehydration process was proposed for the simultaneous extraction and enrichment of uranium from simulated seawater by taking advantage of water transport through ion-exchange membranes and the high permselectivity of membranes for monovalent ions against uranate ions. The results indicated that the electro-dehydration effect in SED allowed 1.8 times the concentration of uranium with a loose structure CJMC-5 cation-exchange membrane at a current density of 4 mA/cm2. Thereafter, a cascade electro-dehydration by a combination of SED with conventional electrodialysis (CED) enabled approximately 7.5 times uranium concentration with the extraction yield rate reaching over 80% and simultaneously desalting the majority of salts. Overall, a cascade electro-dehydration is a viable approach, creating a novel route for highly effective uranium extraction and enrichment from seawater.
Collapse
Affiliation(s)
- Ruirui Li
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Huangying Wang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Junying Yan
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Rong Fu
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Baoying Wang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chenxiao Jiang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yaoming Wang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| | - Tongwen Xu
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| |
Collapse
|
14
|
Xie Y, Liu Z, Geng Y, Li H, Wang N, Song Y, Wang X, Chen J, Wang J, Ma S, Ye G. Uranium extraction from seawater: material design, emerging technologies and marine engineering. Chem Soc Rev 2023; 52:97-162. [PMID: 36448270 DOI: 10.1039/d2cs00595f] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Uranium extraction from seawater (UES), a potential approach to securing the long-term uranium supply and sustainability of nuclear energy, has experienced significant progress in the past decade. Promising adsorbents with record-high capacities have been developed by diverse innovative synthetic strategies, and scale-up marine field tests have been put forward by several countries. However, significant challenges remain in terms of the adsorbents' properties in complex marine environments, deployment methods, and the economic viability of current UES systems. This review presents an up-to-date overview of the latest advancements in the UES field, highlighting new insights into the mechanistic basis of UES and the methodologies towards the function-oriented development of uranium adsorbents with high adsorption capacity, selectivity, biofouling resistance, and durability. A distinctive emphasis is placed on emerging electrochemical and photochemical strategies that have been employed to develop efficient UES systems. The most recent achievements in marine tests by the major countries are summarized. Challenges and perspectives related to the fundamental, technical, and engineering aspects of UES are discussed. This review is envisaged to inspire innovative ideas and bring technical solutions towards the development of technically and economically viable UES systems.
Collapse
Affiliation(s)
- Yi Xie
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Zeyu Liu
- AVIC Manufacturing Technology Institute, Beijing 100024, China
| | - Yiyun Geng
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Hao Li
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China. .,China Academy of Engineering Physics, Mianyang 621900, China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yanpei Song
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Xiaolin Wang
- China Academy of Engineering Physics, Mianyang 621900, China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Jianchen Wang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Jiao GJ, Ma J, Zhang J, Zhai S, Sun R. Efficient extraction of uranium from seawater by reticular polyamidoxime-functionalized oriented holocellulose bundles. Carbohydr Polym 2023; 300:120244. [DOI: 10.1016/j.carbpol.2022.120244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
16
|
Li L, Li H, Lin M, Wen J, Hu S. Effects of chain conformation on uranium adsorption performance of amidoxime adsorbents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Said SM, Wang T, Feng YN, Ren Y, Zhao ZP. Recent Progress in Membrane Technologies Based on Metal–Phenolic Networks: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Seleman Mahamoud Said
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing, 102488, P. R. China
- University of Dar es Salaam, College of Engineering and Technology, Department of Chemical and Process Engineering, P.O. Box 35131, Dar es Salaam, 16103, United Republic of Tanzania
| | - Tao Wang
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing, 102488, P. R. China
| | - Ying-Nan Feng
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing, 102488, P. R. China
| | - Yongsheng Ren
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Department of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Zhi-Ping Zhao
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing, 102488, P. R. China
| |
Collapse
|
18
|
Gong D, Han Y, Zhang Q, Xu B, Zhang C, Li K, Tan L. Development of Leather Fiber/Polyurethane Composite with Antibacterial, Wet Management, and Temperature-Adaptive Flexibility for Foot Care. ACS Biomater Sci Eng 2022; 8:4557-4565. [DOI: 10.1021/acsbiomaterials.2c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dakai Gong
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yanting Han
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610065, China
| | - Qiang Zhang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Bo Xu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chunxiao Zhang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610065, China
| | - Lin Tan
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Shi S, Wu R, Meng S, Xiao G, Ma C, Yang G, Wang N. High-strength and anti-biofouling nanofiber membranes for enhanced uranium recovery from seawater and wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:128983. [PMID: 35525216 DOI: 10.1016/j.jhazmat.2022.128983] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Ultrathin fibers can increase the contact area between adsorbents and seawater during the uranium extraction process; however, their construction usually aggravates the complex spinning technology and lowers their mechanical strength. Meanwhile, high strength and antifouling ability are essential for ocean adsorbents to withstand the complex natural environment and microbial systems. Herein, we design high-strength and anti-biofouling poly(amidoxime) nanofiber membranes (HA-PAO NFMs) via a supramolecular crosslinking. Bacterial cellulose supplies the NFMs with ultrathin fiber structure, and large amounts of adsorption ligands are immobilized on the framework via the crosslinking with antibacterial ions. Thus, different from other fibers, HA-PAO NFMs achieve ultrathin diameter (20-30 nm), high BET area (51 m2 g-1), and excellent mechanical strength (13.6 MPa). The uranium adsorption capacity reaches to 409 mg-U/g-Ads in the simulated seawater, 99.2% uranium can be removed from the U-contained wastewater, and the adsorption process can be observed by the naked eye due to the significant color changes. The inhibition zones indicate their excellent anti-biofouling ability, which contributes to 1.83 times more uranium extraction amount from natural seawater than the non-antifouling adsorbents. Furthermore, they display a long service life and can be large-scale prepared, and the HA-PAO NFMs have potential in the massive uranium recovery.
Collapse
Affiliation(s)
- Se Shi
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Rui Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Shenli Meng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Guoping Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Guocheng Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
20
|
Zhao L, Wang S, Zhuang H, Lu B, Sun L, Wang G, Qiu J. Facile synthesis of low-cost MnPO 4 with hollow grape-like clusters for rapid removal uranium from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128894. [PMID: 35447534 DOI: 10.1016/j.jhazmat.2022.128894] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In order to deal with the environmental resource problems caused by nuclear pollution and uranium mine wastewater, it is particularly important to develop uranium removal adsorbent materials with low cost, high efficiency and controllable rapid preparation. In this work, the hollow grape-like manganese phosphate clusters (h-MnPO4) were synthesized in 4 h by in-situ etching without template at room temperature, which can quickly and effectively remove uranium ions from wastewater. Due to the reasonable hollow structure, more effective adsorption sites are exposed. The obtained sample h-MnPO4-200 reaches adsorption equilibrium in 1 h and can remove 97.20% uranyl ions (initial concentration is 100 mg L-1). Under the condition of 25 ℃ and pH= 4, the maximum adsorption capacity of h-MnPO4-200 for uranium was 751.88 mg g-1. The FT-IR, XPS and XRD analysis showed that -OH and PO43- groups played a key role in the adsorption process. Thanks to the synergistic adsorption mechanism of surface complexation and dissolution-precipitation, h-MnPO4-200 maintained a high removal rate in the presence of competitive anions and cations. In a word, h-MnPO4-200 can be rapidly synthesized through a facile and low-cost method and has a great application prospect in the practical emergency treatment of uranium-containing wastewater.
Collapse
Affiliation(s)
- Lin Zhao
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China; College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shiyong Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China.
| | - Haohong Zhuang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China.
| | - Bing Lu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China.
| | - Lingna Sun
- College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Gang Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China.
| | - Jieshan Qiu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
21
|
Ma D, Xu X, Li Z, Peng H, Cai D, Wang D, Yue Q. Nanoemulsion assembly toward vaterite mesoporous CaCO 3 for high-efficient uranium extraction from seawater. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128695. [PMID: 35303667 DOI: 10.1016/j.jhazmat.2022.128695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/27/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Uranium extraction from seawater is particularly significant and regarded as an indispensable strategy for satisfying the increasing demand for nuclear fuel owing to the high uranium reserves (about 4.5 billion tons) in seawater, while remains great challenges due to the low concentration, the interference of various cations and the complexity of the marine environment. Thus, developing a highly efficient adsorbent with high adsorption capacity, excellent selectivity, low cost, and facile synthesis method is significant and urgently required. Inorganic materials show many advantages in adsorption such as low cost, fast response, high stability, etc, while conventionally, have poor capacity and selectivity especially in real seawater. Herein, mesoporous CaCO3 (mCaCO3) with vaterite phase is synthesized by a facile nanoemulsion strategy and "ready-to-use" for uranium adsorption without functionalization and post treatment. Surfactant Pluronic F127 not only assembles into reverse micelles to form mesopores, but also stabilizes the active vaterite phase. The obtained mCaCO3 with high surface area (48.2 m2/g), interconnected mesopores (11 nm), and unique vaterite phase achieves highly efficient uranium adsorption with a maximum adsorption capacity of 850 ± 20 mg-U/g in uranium-spiked seawater and 6.5 ± 0.5 mg-U/g in 700 L of natural seawater for one week, as well as excellent selectivity, matching the state-of-the-art U adsorbents. After adsorption, mCaCO3-U is dissolved with a simple acid elution to obtain concentrated uranyl solution for purification, avoiding the disposal of adsorbents. To the best of our knowledge, this is the first case to report mesoporous CaCO3 for uranium adsorption from seawater with such a good performance. The facile synthesis, abundant raw materials and eco-friendly adsorption-desorption processes endow the mCaCO3 as a promising candidate for large-scale uranium extraction from seawater.
Collapse
Affiliation(s)
- Dongsheng Ma
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xin Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Zhenwen Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hong Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dong Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Dong Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Biomedical Engineering, Hainan University, Haikou 570228, China.
| | - Qin Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
22
|
Jiao GJ, Ma J, Zhang J, Li Y, Liu K, Sun R. Porous and biofouling-resistant amidoxime-based hybrid hydrogel with excellent interfacial compatibility for high-performance recovery of uranium from seawater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Yu K, Jiang P, Wei J, Yuan H, Xin Y, He R, Wang L, Zhu W. Enhanced uranium photoreduction on Ti 3C 2T x MXene by modulation of surface functional groups and deposition of plasmonic metal nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127823. [PMID: 34823956 DOI: 10.1016/j.jhazmat.2021.127823] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic reduction of soluble hexavalent uranium (U(VI)) is a novel and efficient avenue to enriching U(VI), where the free U(VI) is firstly bound on the surface of photocatalysts and then reduced to insoluble tetravalent uranium (U(IV)) by photoelectrons. Therefore, constructing the efficient U(VI) binding sites on photocatalysts is an efficient strategy to boost catalytic activity toward U(VI) photoreduction. Herein, we successfully constructed an efficient catalyst for U(VI) photoreduction by depositing Ag nanoparticles on Ti3C2Tx MXene with abundant U(VI) binding sites (Ag/Ti3C2Tx-O). Impressively, the U(VI) extracting mass over Ag/Ti3C2Tx-O under light reached up to 1257.6 mg/g in 120 min, which was almost 11 times as high as that without light. Further mechanistic studies indicated that the U(VI) binding sites on Ti3C2Tx MXene in Ag/Ti3C2Tx-O were beneficial to the reduction of U(VI) by significantly decreasing its reduction potential. More importantly, hot electrons generated by Ag nanoparticles were transferred into the binding sites to easily reduce the bound U(VI), resulting in the remarkable performance of Ag/Ti3C2Tx-O during U(VI) enrichment.
Collapse
Affiliation(s)
- Kaifu Yu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China; State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Pengyan Jiang
- State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Jiacheng Wei
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Haibo Yuan
- State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Yue Xin
- State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Liangbing Wang
- State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|
24
|
Zhang H, Zhu S, Yang J, Ma A. Advancing Strategies of Biofouling Control in Water-Treated Polymeric Membranes. Polymers (Basel) 2022; 14:1167. [PMID: 35335498 PMCID: PMC8951698 DOI: 10.3390/polym14061167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes, such as polyamide thin film composite membranes, have gained increasing popularity in wastewater treatment, seawater desalination, as well as the purification and concentration of chemicals for their high salt-rejection and water flux properties. Membrane biofouling originates from the attachment or deposition of organic macromolecules/microorganisms and leads to an increased operating pressure and shortened service life and has greatly limited the application of polymeric membranes. Over the past few years, numerous strategies and materials were developed with the aim to control membrane biofouling. In this review, the formation process, influence factors, and consequences of membrane biofouling are systematically summarized. Additionally, the specific strategies for mitigating membrane biofouling including anchoring of hydrophilic monomers, the incorporation of inorganic antimicrobial nanoparticles, coating/grafting of cationic bactericidal polymers, and the design of multifunctional material integrated multiple anti-biofouling mechanisms, are highlighted. Finally, perspectives on the challenges and opportunities in anti-biofouling polymeric membranes are shared, shedding light on the development of even better anti-biofouling materials in near future.
Collapse
Affiliation(s)
- Hongli Zhang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Shilin Zhu
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Jie Yang
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China;
| | - Aijie Ma
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| |
Collapse
|
25
|
He Y, Hou G, Lu X, Chang P, Shao D. Application of poly(vinylphosphonic acid) modified poly(amidoxime) in uptake of uranium from seawater. RSC Adv 2022; 12:4054-4060. [PMID: 35425411 PMCID: PMC8981067 DOI: 10.1039/d1ra09118b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022] Open
Abstract
To enhance the anti-biofouling properties and adsorption capability of poly(amidoxime) (PAO), vinylphosphonic acid (VPA, CH2[double bond, length as m-dash]CH-PO3H2) was polymerized on poly(acrylonitrile) (PAN) surface by plasma technique, followed by amidoximation treatment to convert the cyano group (-C[triple bond, length as m-dash]N) into an amidoxime group (AO, -C(NH2)[double bond, length as m-dash]N-OH). The obtained poly(vinylphosphonic acid)/PAO (PVPA/PAO) was used as an adsorbent in the uptake of U(vi) from seawater. The effect of environmental conditions on the anti-biofouling property and adsorption capability of PVPA/PAO for U(vi) were studied. Results show that the modified PVPA enhances the anti-biofouling properties and adsorption capability of PAO for U(vi). The adsorption process is well described by the pseudo-second-order kinetic model and reached equilibrium in 24 h. Adsorption isotherms of U(vi) on PVPA/PAO can be well fitted by the Langmuir model, and the maximum adsorption capability was calculated to be 145 mg g-1 at pH 8.2 and 298 K. Experimental results highlight the application of PVPA/PAO in the extraction of U(vi) from seawater.
Collapse
Affiliation(s)
- Yangchun He
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Guangshun Hou
- Institute of Resources and Environment, Henan Polytechnic University Jiaozuo 454000 P. R. China
| | - Xirui Lu
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology Mianyang 621010 P. R. China
| | - Pengpeng Chang
- CNNP Jiangsu Nuclear Power Co. Ltd. Lianyungang 222042 P. R. China
| | - Dadong Shao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 P. R. China
| |
Collapse
|
26
|
Mi Z, Zhang D, Wang J, Bi S, Liu J, Gao X, Zhang D, Jiang Y, Li Z, Zhu Y, Liu Z. Polyamidoxime grafting on ultrahigh-strength cellulose-based jute fabrics for effectively extracting uranium from seawater. NEW J CHEM 2022. [DOI: 10.1039/d1nj06072d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrahigh-strength cellulose-based jute fabric (jute–TMC–PAO) for the highly effective extraction of uranium from seawater.
Collapse
Affiliation(s)
- Zhiming Mi
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Dexing Zhang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Junman Wang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Shiman Bi
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Xiyu Gao
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Dawei Zhang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute Chemical Technology, Jilin City 132022, China
| | - Yuanping Jiang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Zuojia Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Yean Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Zhixiao Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| |
Collapse
|
27
|
Yi Z, Junwen L, Sijin W, Haiming C. Ion-imprinted guanidine-functionalized zeolite molecular sieves enhance the adsorption selectivity and antibacterial properties for uranium extraction. RSC Adv 2022; 12:15470-15478. [PMID: 35693237 PMCID: PMC9121788 DOI: 10.1039/d2ra01651f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022] Open
Abstract
The important properties in the development of adsorbents for uranium extraction from seawater include specific selectivity to uranium ions and anti-biofouling ability in the ocean environment. In this paper, we report a novel strategy for efficient selective extraction of uranium from aqueous solutions and good anti-bacterial properties by surface ion-imprinted zeolite molecular sieves. Guanidine-modified zeolite molecular sieves 13X (ZMS-G) were synthesized and used as the support for the preparation of uranium(vi) ion-imprinted adsorbents (IIZMS-G) by ligands with phosphonic groups. The prepared IIZMS-G adsorbent was characterized via Fourier transform infrared spectroscopy (FT-IR), scanning electronic microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). The results showed that guanidine groups have been successfully introduced onto the support while its morphology structure was maintained. The adsorption performance and selectivity to U(vi) ions, antibacterial property, and reusability of IIZMS-G were evaluated. The results showed that the maximum adsorption capacity reached 141.09 mg g−1 when the initial concentration of metal ions was 50 mg L−1 at pH 6 and 20 °C. The adsorption process followed the pseudo-second-order kinetic model and Langmuir adsorption isotherm model. The IIZMS-G exhibits an efficient selective adsorption of U(vi) ions from aqueous solutions with competing ions. In addition, the IIZMS-G exhibited excellent inhibitory effects on Escherichia coli and Staphylococcus aureus, and the inhibitory rate was 99.99% and 98.96% respectively. These results suggest that the prepared IIZMS-G adsorbent may promote the development strategy of novel high selectivity and antifouling adsorbents for uranium recovery from seawater. The important properties in the development of adsorbents for uranium extraction from seawater include specific selectivity to uranium ions and anti-biofouling ability in the ocean environment.![]()
Collapse
Affiliation(s)
- Zhao Yi
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, Sichuan, China
| | - Li Junwen
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Wu Sijin
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Cheng Haiming
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|