1
|
Prabhakaran N, Gupta GVM, Kumar BSK. A critical review on ocean acidification driven by disinfection by-products discharge from ships' ballast water management systems: Impacts on carbon chemistry. MARINE POLLUTION BULLETIN 2025; 217:118029. [PMID: 40328132 DOI: 10.1016/j.marpolbul.2025.118029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/08/2025]
Abstract
The world's blue economy is closely tied to maritime trade, but ballast water from ships often carries harmful aquatic organisms and pathogens, which disrupt the marine environment. To address this, the International Maritime Organization (IMO) mandated ballast water treatment to eradicate these invasive species. However, the treatment processes inherently generate numerous Disinfection by-Products (DBPs). The discharge of these DBPs exacerbates ocean acidification through various acid- and CO2-releasing reactions. The IMO's Ballast Water Working Group has listed 41 high-priority DBPs for risk assessment due to their toxicity and prevalence in treated ballast water. This review quantitatively evaluates changes in pH and carbonate ions in seawater using the PyCO2SYS software package. Results reveal that DBPs can reduce ocean pH by ∼0.057 units and carbonate ion concentrations by 24.06 μmol kg-1 during a single discharge of 1 m3 treated water. In addition, this review outlines the challenges and research gaps for marine ecosystems sustainability.
Collapse
Affiliation(s)
- N Prabhakaran
- Centre for Marine Living Resources and Ecology (CMLRE), Ministry of Earth Sciences, Kochi 682508, Kerala, India
| | - G V M Gupta
- Centre for Marine Living Resources and Ecology (CMLRE), Ministry of Earth Sciences, Kochi 682508, Kerala, India
| | - B S K Kumar
- Centre for Marine Living Resources and Ecology (CMLRE), Ministry of Earth Sciences, Kochi 682508, Kerala, India.
| |
Collapse
|
2
|
Trueba-Santiso A, Torrentó C, Soder-Walz JM, Fernández-Verdejo D, Rosell M, Marco-Urrea E. Dual C-Cl isotope fractionation offers potential to assess biodegradation of 1,2-dichloropropane and 1,2,3-trichloropropane by Dehalogenimonas cultures. CHEMOSPHERE 2024; 358:142170. [PMID: 38679177 DOI: 10.1016/j.chemosphere.2024.142170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/25/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
1,2-dichloropropane (1,2-DCP) and 1,2,3-trichloropropane (1,2,3-TCP) are hazardous chemicals frequently detected in groundwater near agricultural zones due to their historical use in chlorinated fumigant formulations. In this study, we show that the organohalide-respiring bacterium Dehalogenimonas alkenigignens strain BRE15 M can grow during the dihaloelimination of 1,2-DCP and 1,2,3-TCP to propene and allyl chloride, respectively. Our work also provides the first application of dual isotope approach to investigate the anaerobic reductive dechlorination of 1,2-DCP and 1,2,3-TCP. Stable carbon and chlorine isotope fractionation values for 1,2-DCP (ƐC = -13.6 ± 1.4 ‰ and ƐCl = -27.4 ± 5.2 ‰) and 1,2,3-TCP (ƐC = -3.8 ± 0.6 ‰ and ƐCl = -0.8 ± 0.5 ‰) were obtained resulting in distinct dual isotope slopes (Λ12DCP = 0.5 ± 0.1, Λ123TCP = 4 ± 2). However direct comparison of ΛC-Cl among different substrates is not possible and investigation of the C and Cl apparent kinetic isotope effects lead to the hypothesis that concerted dichloroelimination mechanism is more likely for both compounds. In fact, whole cell activity assays using cells suspensions of the Dehalogenimonas-containing culture grown with 1,2-DCP and methyl viologen as electron donor suggest that the same set of reductive dehalogenases was involved in the transformation of 1,2-DCP and 1,2,3-TCP. This study opens the door to the application of isotope techniques for evaluating biodegradation of 1,2-DCP and 1,2,3-TCP, which often co-occur in groundwaters near agricultural fields.
Collapse
Affiliation(s)
- Alba Trueba-Santiso
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain
| | - Clara Torrentó
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028, Barcelona, Spain
| | - Jesica M Soder-Walz
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain
| | - David Fernández-Verdejo
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain
| | - Mònica Rosell
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028, Barcelona, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain.
| |
Collapse
|
3
|
Geng A, Zhang C, Wang J, Zhang X, Qiu W, Wang L, Xi J, Yang B. Current advances of chlorinated organics degradation by bioelectrochemical systems: a review. World J Microbiol Biotechnol 2024; 40:208. [PMID: 38767676 DOI: 10.1007/s11274-024-04013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Chlorinated organic compounds (COCs) are typical refractory organic compounds, having high biological toxicity. These compounds are a type of pervasive pollutants that can be present in polluted soil, air, and various types of waterways, such as groundwater, rivers, and lakes, posing a significant threat to the ecological environment and human health. Bioelectrochemical systems (BESs) are an effective strategy for the degradation of bio-refractory compounds. BESs improve the waste treatment efficiency through the application of weak electrical stimulation. This review discusses the processes of BESs configurations and degradation performances in different environmental media including wastewater, soil, waste gas and groundwater. In addition, the degradation mechanisms and performance-enhancing additives are summarized. The future challenges and perspectives on the development of BES for COCs removal are briefly discussed.
Collapse
Affiliation(s)
- Anqi Geng
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Caiyun Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jiajie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xinyan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wei Qiu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
4
|
Lin R, Xie L, Zheng X, Patience DOD, Duan X. Advances and challenges in biocathode microbial electrolysis cells for chlorinated organic compounds degradation from electroactive perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167141. [PMID: 37739072 DOI: 10.1016/j.scitotenv.2023.167141] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Microbial electrolysis cell (MEC) is a promising in-situ strategy for chlorinated organic compound (COC) pollution remediation due to its high efficiency, low energy input, and long-term potential. Reductive dechlorination as the most critical step in COC degradation which takes place primarily in the cathode chamber of MECs is a complex biochemical process driven by the behavior of electrons. However, no information is currently available on the internal mechanism of MEC in dechlorination from the perspective of the whole electron transfer procedure and its dependent electrode materials. This review addresses the underlying mechanism of MEC on the fundamental of the generation (electron donor), transmission (transfer pathway), utilization (functional microbiota) and reception (electron acceptor) of electrons in dechlorination. In addition, the vital role of varied cathode materials involved in the entire electron transfer procedure during COC dechlorination is emphasized. Subsequently, suggestions for future research, including model construction, cathode material modification, and expanding the applicability of MECs to removal gaseous COCs have been proposed. This paper enriches the mechanism of COC degradation by MEC, and thus provides the theoretical support for the scale-up bioreactors for efficient COC removal.
Collapse
Affiliation(s)
- Rujing Lin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaomei Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dzedzemo-On Dufela Patience
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xu Duan
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
5
|
Leon‐Fernandez LF, Dominguez‐Benetton X, Villaseñor Camacho J, Fernandez‐Morales FJ. Coupling the electrocatalytic dechlorination of 2,4-D with electroactive microbial anodes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:512-529. [PMID: 37482917 PMCID: PMC10667633 DOI: 10.1111/1758-2229.13187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023]
Abstract
This work proves the feasibility of dechlorinating 2,4-D, a customary commercial herbicide, using cathodic electrocatalysis driven by the anodic microbial electrooxidation of sodium acetate. A set of microbial electrochemical systems (MES) were run under two different operating modes, namely microbial fuel cell (MFC) mode, with an external resistance of 120 Ω, or microbial electrolysis cell (MEC) mode, by supplying external voltage (0.6 V) for promoting the (bio)electrochemical reactions taking place. When operating the MES as an MFC, 32% dechlorination was obtained after 72 h of treatment, which was further enhanced by working under MEC mode and achieving a 79% dechlorination. In addition, the biodegradability (expressed as the ratio BOD/COD) of the synthetic polluted wastewater was tested prior and after the MES treatment, which was improved from negative values (corresponding to toxic effluents) up to 0.135 in the MFC and 0.453 in the MEC. Our MES approach proves to be a favourable option from the point of view of energy consumption. Running the system under MFC mode allowed to co-generate energy along the dechlorination process (-0.0120 kWh mol-1 ), even though low removal rates were attained. The energy input under MEC operation was 1.03 kWh mol-1 -a competitive value compared to previous works reported in the literature for (non-biological) electrochemical reactors for 2,4-D electrodechlorination.
Collapse
Affiliation(s)
- Luis F. Leon‐Fernandez
- Chemical Engineering Department, ITQUIMAUniversity of Castilla‐La ManchaCiudad RealSpain
- Separation and Conversion TechnologiesFlemish Institute for Technological Research (VITO)MolBelgium
| | | | | | | |
Collapse
|
6
|
Ma W, Lian J, Rene ER, Zhang P, Liu X. Enhanced thyroxine removal from micro-polluted drinking water resources in a bio-electrochemical reactor amended with TiO 2@GAC particles: Efficiency, mechanism and energy consumption. ENVIRONMENTAL RESEARCH 2023; 237:116949. [PMID: 37625538 DOI: 10.1016/j.envres.2023.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
A three-dimensional bioelectrochemical system (3D-BES) with both electrocatalytic and biodegradation functions was designed and developed to enhance iodine-containing hormone removal from micro-polluted oligotrophic drinking water sources and to reduce energy consumption. Thyroxine (T4) removal efficiency was 99.0% in the 3D-BES amendment with TiO2@GAC as the particle electrodes, which was 20.5% higher than the total efficiency of single biodegradation (28.7%) plus electrochemical decomposition (49.8%). The high T4 removal efficiency was a result of biochemical synergistic degradation, enhancement of electron transfer and utilization, enrichment of functional microorganisms, and the expression of dehalogenation functional genes. The electron transfer was increased by 1.63 times in 3D-BES compared to the 2D-BES, which contributed to: (i) ∼17.8% enhancement of dehalogenation, (ii) 2.35 times enhancement of the attenuation rate, and (iii) 60% reduction in energy consumption. Moreover, the aggregation of microorganisms and the hydrophobic T4 onto TiO2@GAC shortened the transfer distance of matter and energy, which induced the degradation steps to be shortened and the toxic decay to be accelerated from T4 and its metabolites. These comprehensive functions also enhanced the 31.8% ATPase activity, 7.3% abundance of the functional reductive dehalogenation genera, and 52.3% dehalogenation genes expression for Pseudomonas, Ancylobacter, and Dehalogenimonas, which contributed to an increase in T4 removal. This work provides an environmental-friendly biochemical synergistic method for the detoxification of T4 polluted water.
Collapse
Affiliation(s)
- Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Jiangru Lian
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Chen SH, Li ZT, Zhao HP. Bioelectrochemical system accelerates reductive dechlorination through extracellular electron transfer networks. ENVIRONMENTAL RESEARCH 2023; 235:116645. [PMID: 37442263 DOI: 10.1016/j.envres.2023.116645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Bioelectrochemical system is considered as a promising approach for enhanced bio-dechlorination. However, the mechanism of extracellular electron transfer in the dechlorinating consortium is still a controversial issue. In this study, bioelectrochemical systems were established with cathode potential settings at -0.30 V (vs. SHE) for trichloroethylene reduction. The average dechlorination rate (102.0 μM Cl·d-1) of biocathode was 1.36 times higher than that of open circuit (74.7 μM Cl·d-1). Electrochemical characterization via cyclic voltammetry illustrated that electrostimulation promoted electrochemical activity for redox reactions. Moreover, bacterial community structure analyses indicated electrical stimulation facilitated the enrichment of electroactive and dechlorinating populations on cathode. Metagenomic and quantitative polymerase chain reaction (qPCR) analyses revealed that direct electron transfer (via electrically conductive pili, multi-heme c-type cytochromes) between Axonexus and Desulfovibrio/cathode and indirect electron transfer (via riboflavin) for Dehalococcoides enhanced dechlorination process in BES. Overall, this study verifies the effectiveness of electrostimulated bio-dechlorination and provides novel insights into the mechanisms of dechlorination process enhancement in bioelectrochemical systems through electron transfer networks.
Collapse
Affiliation(s)
- Su-Hao Chen
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Zheng-Tao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Lan J, Wen F, Ren Y, Liu G, Jiang Y, Wang Z, Zhu X. An overview of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100278. [PMID: 37251519 PMCID: PMC10220241 DOI: 10.1016/j.ese.2023.100278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/31/2023]
Abstract
The global problem of petroleum contamination in soils seriously threatens environmental safety and human health. Current studies have successfully demonstrated the feasibility of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils due to their easy implementation, environmental benignity, and enhanced removal efficiency compared to bioremediation. This paper reviewed recent progress and development associated with bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. The working principles, removal efficiencies, affecting factors, and constraints of the two technologies were thoroughly summarized and discussed. The potentials, challenges, and future perspectives were also deliberated to shed light on how to overcome the barriers and realize widespread implementation on large scales of these two technologies.
Collapse
Affiliation(s)
- Jun Lan
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fang Wen
- Xinjiang Academy of Environmental Protection Science, Urumqi, 830011, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiuping Zhu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
9
|
Tao L, Song M, Jiang G. Enhanced depolluting capabilities of microbial bioelectrochemical systems by synthetic biology. Synth Syst Biotechnol 2023; 8:341-348. [PMID: 37275577 PMCID: PMC10238267 DOI: 10.1016/j.synbio.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Microbial bioelectrochemical system (BES) is a promising sustainable technology for the electrical energy recovery and the treatment of recalcitrant and toxic pollutants. In microbial BESs, the conversion of harmful pollutants into harmless products can be catalyzed by microorganisms at the anode (Type I BES), chemical catalysts at the cathode (Type II BES) or microorganisms at the cathode (Type III BES). The application of synthetic biology in microbial BES can improve its pollutant removing capability. Synthetic biology techniques can promote EET kinetics, which is helpful for microbial anodic electro-respiration, expediting pollutant removing not only at the anode but also at the cathode. They offer tools to promote biofilm development on the electrode, enabling more microorganisms residing on the electrode for subsequent catalytic reactions, and to overexpress the pollutant removing-related genes directly in microorganisms, contributing to the pollutant decomposition. In this work, based on the summarized aspects mentioned above, we describe the major synthetic biology strategies in designing and improving the pollutant removing capabilities of microbial BES. Lastly, we discuss challenges and perspectives for future studies in the area.
Collapse
Affiliation(s)
- Le Tao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibin Jiang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China
| |
Collapse
|
10
|
Xia J, Li Y, Jiang X, Chen D, Shen J. Enhanced 4-bromophenol anaerobic biodegradation in electricity-stimulated anaerobic system: The key role of humic acid in reshaping microbial eco-interrelations and functions. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131426. [PMID: 37084513 DOI: 10.1016/j.jhazmat.2023.131426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Electricity-stimulated anaerobic system (ESAS) has shown great potential for halogenated organic pollutants removal. Exogenous redox mediators can improve electron transfer efficiency to enhance pollutants removal in ESAS. In this study, humic acid (HA), a low-cost electron mediator, was added into ESAS to enhance the simultaneous reductive debromination and mineralization of 4-bromophenol (4-BP). Results showed that the highest 4-BP removal efficiency at 48 h was 95.43 % with HA dosage of 30 mg/L at - 700 mV, which was 34.67 % higher than that without HA. The addition of HA decreased the requirement for electron donors and enriched Petrimonas and Rhodococcus for humus respiratory. HA addition regulated microbial interactions, and enhanced species cooperation between Petrimonas and dehalogenation species (Thauera and Desulfovibrio), phenol degradation-related species (Rhodococcus) as well as fermentative species (Desulfobulbus). Functional genes related to 4-BP degradation (dhaA/hemE/xylC/chnB/dmpN) and electron transfer (etfB/nuoA/qor/ccoN/coxA) were increased in abundance by HA addition. The enhanced microbial functions, as well as species cooperation and facilitation, all contributed to the improved 4-BP biodegradation in HA-added ESAS. This study provided a deep insight into microbial mechanism driven by HA and offered a promising strategy for improving halogenated organic pollutants removal from wastewater.
Collapse
Affiliation(s)
- Jiaohui Xia
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xinbai Jiang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
11
|
Fernández-Verdejo D, Cortés P, Guisasola A, Blánquez P, Marco-Urrea E. Bioelectrochemically-assisted degradation of chloroform by a co-culture of Dehalobacter and Dehalobacterium. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 12:100199. [PMID: 36157346 PMCID: PMC9500365 DOI: 10.1016/j.ese.2022.100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/16/2023]
Abstract
Using bioelectrochemical systems (BESs) to provide electrochemically generated hydrogen is a promising technology to provide electron donors for reductive dechlorination by organohalide-respiring bacteria. In this study, we inoculated two syntrophic dechlorinating cultures containing Dehalobacter and Dehalobacterium to sequentially transform chloroform (CF) to acetate in a BES using a graphite fiber brush as the electrode. In this co-culture, Dehalobacter transformed CF to stoichiometric amounts of dichloromethane (DCM) via organohalide respiration, whereas the Dehalobacterium-containing culture converted DCM to acetate via fermentation. BES were initially inoculated with Dehalobacter, and sequential cathodic potentials of -0.6, -0.7, and -0.8 V were poised after consuming three CF doses (500 μM) per each potential during a time-span of 83 days. At the end of this period, the accumulated DCM was degraded in the following seven days after the inoculation of Dehalobacterium. At this point, four consecutive amendments of CF at increasing concentrations of 200, 400, 600, and 800 μM were sequentially transformed by the combined degradation activity of Dehalobacter and Dehalobacterium. The Dehalobacter 16S rRNA gene copies increased four orders of magnitude during the whole period. The coulombic efficiencies associated with the degradation of CF reached values > 60% at a cathodic potential of -0.8 V when the degradation rate of CF achieved the highest values. This study shows the advantages of combining syntrophic bacteria to fully detoxify chlorinated compounds in BESs and further expands the use of this technology for treating water bodies impacted with pollutants.
Collapse
Affiliation(s)
- David Fernández-Verdejo
- Biorem UAB, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Pilar Cortés
- Departament de Genètica i de Microbiologia, Facultat de BioCiències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Albert Guisasola
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Paqui Blánquez
- Biorem UAB, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Ernest Marco-Urrea
- Biorem UAB, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
12
|
Optimization of Dechlorination Experiment Design Using Lightweight Deep Learning Model. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1623462. [PMID: 35789615 PMCID: PMC9250427 DOI: 10.1155/2022/1623462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022]
Abstract
This exploration intends to remove chloride ions in production and life, enhance buildings' durability, and protect the natural environment from pollution. The current dechlorination technology is discussed based on the relevant theories, such as the lightweight deep learning (DL) model and chloride ion characteristics. Next, data statistics and comparative analysis methods are used to study the adsorption and desorption performance of dechlorination adsorbents. Finally, the lightweight DL model is introduced into the chloride diffusion prediction experiment of slag powder and fly ash concrete. The results show that in the study of dechlorination adsorption performance, the chloride ion concentration decreases gradually with the extension of adsorption time. However, with the increasing temperature, the chloride ion removal rate is increasing. The removal rate of chloride ions in water can decrease slowly with the increase of adsorbent. Therefore, selecting the 2 mol/L sodium hydroxide as the alkali concentration for adsorbent regeneration is the most appropriate. Besides, the regeneration performance of the adsorbent gradually declines with the increase of sodium chloride concentration in the solution. The lightweight DL model is applied to the chloride diffusion prediction experiment of slag powder and fly ash concrete. It is found that when the curing age is selected at 18 days, 90 days, and 180 days, respectively, the error between the lightweight DL model and the experimental results is about 0.2. It shows that the lightweight DL model is feasible for predicting the diffusion of chloride ions. Therefore, this exploration designs and studies the dechlorination experiment based on the lightweight DL model, which provides a new theoretical basis and optimization direction for removing chloride ions in the future industry.
Collapse
|
13
|
Meng L, Yoshida N, Li Z. Soil microorganisms facilitated the electrode-driven trichloroethene dechlorination to ethene by Dehalococcoides species in a bioelectrochemical system. ENVIRONMENTAL RESEARCH 2022; 209:112801. [PMID: 35093309 DOI: 10.1016/j.envres.2022.112801] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Bioelectrochemical dechlorination using organohalide-respiring bacteria (ORBs) is a promising technique for remediating contaminated groundwater. Generally, a longer enrichment period is required for selecting the ORB consortia to achieve bioelectrochemical dechlorination. However, the full dechloriantion is difficult to be achieved due to the absence of functional species (e.g. Dehalococcoides) in previously used enrich cultures. To overcome these challenges, bioelectrochemical dechlorination using a culture enriched with the pre-augmented Dehalococcoides was performed for the first time in this study. A two-chamber bioelectrochemical system (BES) inoculated with a pure Dehalococcoides culture and paddy soil with an applied voltage of -0.3 V (versus a standard hydrogen electrode) as the sole electron donor was used to achieve dechlorination. The ethene formation rate was 10-100 times higher than that in previous studies, indicating that inoculating the system with a pure Dehalococcoides culture and soil microorganisms gave effective full dechlorination performance. Microbial community analysis and bioelectrochemical analysis indicated that Desulfosporosinus species may have facilitated dechlorination through syntrophic interactions with Dehalococcoides. The results indicated that adding Dehalococcoides cells before operating a bioelectrochemical system is an effective way of achieving full dechlorination.
Collapse
Affiliation(s)
- Lingyu Meng
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya, 466-8555, Japan.
| | - Naoko Yoshida
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya, 466-8555, Japan
| | - Zhiling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
14
|
Zhu X, Wang X, Li N, Wang Q, Liao C. Bioelectrochemical system for dehalogenation: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118519. [PMID: 34793908 DOI: 10.1016/j.envpol.2021.118519] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/26/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Halogenated organic compounds are persistent pollutants, whose persistent contamination and rapid spread seriously threaten human health and the safety of ecosystems. It is difficult to remove them completely by traditional physicochemical techniques. In-situ remediation utilizing bioelectrochemical technology represents a promising strategy for degradation of halogenated organic compounds, which can be achieved through potential modulation. In this review, we summarize the reactor configuration of microbial electrochemical dehalogenation systems and relevant organohalide-respiring bacteria. We also highlight the mechanisms of electrode potential regulation of microbial dehalogenation and the role of extracellular electron transfer in dehalogenation process, and further discuss the application of bioelectrochemical technology in bioremediation of halogenated organic compounds. Therefore, this review summarizes the status of research on microbial electrochemical dehalogenation systems from macroscopic to microscopic levels, providing theoretical support for the development of rapid and efficient in situ bioremediation technologies for halogenated organic compounds contaminated sites, as well as insights for the removal of refractory fluorides.
Collapse
Affiliation(s)
- Xuemei Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Qi Wang
- Beijing Construction Engineering Group Environmental Remediation Co. Ltd. and National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|